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A Geometrically Nonlinear Shear
Deformation Theory for
Composite Shells
A geometrically nonlinear shear deformation theory has been developed for elastic
to accommodate a constitutive model suitable for composite shells when modeled
two-dimensional continuum. A complete set of kinematical and intrinsic equilibrium e
tions are derived for shells undergoing large displacements and rotations but with s
two-dimensional, generalized strains. The large rotation is represented by the ge
finite rotation of a frame embedded in the undeformed configuration, of which one a
along the normal line. The unit vector along the normal line of the undeformed refer
surface is not in general normal to the deformed reference surface because of trans
shear. It is shown that the rotation of the frame about the normal line is not zero and
it can be expressed in terms of other global deformation variables. Based on a gen
ized constitutive model obtained from an asymptotic dimensional reduction from the t
dimensional energy, and in the form of a Reissner-Mindlin type theory, a set of intr
equilibrium equations and boundary conditions follow. It is shown that only five equ
rium equations can be derived in this manner because the component of virtual rot
about the normal is not independent. It is shown, however, that these equilibrium e
tions contain terms that cannot be obtained without the use of all three components
finite rotation vector.@DOI: 10.1115/1.1640364#
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Introduction

For an elastic three-dimensional continuum, there are two ty
of nonlinearity: geometrical and physical. A theory is geome
cally nonlinear if the kinematical~strain-displacement! relations
are nonlinear but the constitutive~stress-strain! relations are lin-
ear. This kind of theory allows large displacements and rotati
with the restriction that strain must be small. A physically~or
materially! nonlinear theory is necessary for biological, rubb
like or inflatable structures where the strain cannot be consid
small, and a nonlinear constitutive law is needed to relate
stress and strain. Although this classification seems obvious
clear for a structure modeled as a three-dimensional continuu
becomes somewhat ambiguous to model dimensionally reduc
structures—structures that have one or two dimensions m
smaller than the other~s! such as beams, plates, and she
@1#—using reduced one-dimensional or two-dimensional mod
A nonlinear constitutive law for the reduced structural model c
in some circumstances be obtained from the reduction of a g
metrically nonlinear three-dimensional theory. For example, in
so-called Wagner or trapeze effect,@2–5#, the effective torsional
rigidity is increased due to axial force. This physically nonline
one-dimensional model stems from a purely geometrically non
ear theory at the three-dimensional level. On the other hand,
present paper focuses on a geometrically nonlinear analysis a
three-dimensional level which becomes a geometrically nonlin
analysis at the two-dimensional as well. That is, the tw

1Presently Assistant Professor, Department of Mechanical and Aerospace
neering, Utah State University, Logan, UT 84322-4130.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2002; final revision, June 10, 2003. Associate Editor: D. A. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineering
versity of California–Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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dimensional generalized strain-displacement relations are no
ear while the two-dimensional generalized stress-strain relat
turn out to be linear.

A shell is a three-dimensional body with a relatively sm
thickness and a smooth reference surface. The feature of the s
thickness attracts researchers to simplify their analyses by re
ing the original three-dimensional problem to a two-dimensio
problem by taking advantage of the thinness. By comparison w
the original three-dimensional problem, an exact shell theory d
not exist. Dimensional reduction is an inherently approximate p
cess. Shell theory is a very old subject, since the vibration o
bell was attempted by Euler even before elasticity theory was w
established,@6#. Even so, shell theory still receives a lot of atte
tion from modern researchers because it is used so extensive
so many engineering applications. Moreover, many shells are
made with advanced materials that have only recently beco
available.

Generally speaking, shell theories can be classified accordin
direct, derived, andmixedapproaches. The direct approach, whi
originated with the Cosserat brothers,@7#, models a shell directly
as a two-dimensional ‘‘orientated’’ continuum. Naghdi@8# pro-
vided an extensive review of this kind of approach. Although t
direct approach is elegant and able to account for transverse
normal strains and rotations associated with couple stresse
nowhere connects with the fact that a shell is a three-dimensi
body and thus completely isolates itself from three-dimensio
continuum mechanics. This could be the main reason that
approach has not been much appreciated in the engineering
munity. One of the complaints of these approaches that they
difficult for numerical implementation has been answered
Simo and his co-workers by providing an efficient formulatio
‘‘free from mathematical complexities and suitable for large sc
computation,’’ @9,10#. And more recently a similar theory wa
developed by Ibrahimbegovic@11# to include drilling rotations so
that not-so-smooth shell structures can be analyzed convenie
However, the main complaint remains that these approaches la
meaningful way to find the constitutive models ‘‘which can on
be experienced and formulated properly in our three-dimensio
real world,’’ @12#. Reissner@13# developed a very general nonlin
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5,
the
l of
ni-

l be
E

004 by ASME JANUARY 2004, Vol. 71 Õ 1



2 Õ Vol.
Fig. 1 Schematic of shell deformation
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ear shell theory introducing 12 generalized strains by conside
the dynamics of stress resultants and couples on the refer
surface as the basis. He gracefully avoided the awkwardnes
finding a proper constitutive model by pointing out two possib
means to establish them. It is recommended in@13# that one could
either design experiments to determine the constitutive const
without explicit reference to the three-dimensional nature of
structure or derive an appropriate two-dimensional model fr
the given knowledge of the constitutive relations for the r
three-dimensional model of the structure.

Derived approaches reduce the original three-dimensional e
ticity problem into a two-dimensional problem to be solved ov
the reference surface. Such reductions are usually carried o
one of two ways. The most common approach is to assum
priori the distribution of three-dimensional quantities through
thickness and then to construct a two-dimensional strain en
per unit area by integrating the three-dimensional energy per
volume through the thickness. Remarkably, classical~also known
as Kirchhoff-Love type theory!, first-order shear deformation
~also known as Reissner-Mindlin type theory!, higher-order, and
layer-wise shell theories all fall into this category, including t
theories proposed by Reddy@14#, for example. Another approac
is to apply an asymptotic method to expand all quantities into
asymptotic series of the thickness coordinate, so that a sequ
of two-dimensional problems can be solved according to the
ferent orders.

The mixed approach is used in@15# based on the argument tha
all the three-dimensional elasticity equations except the cons
tive relations are independent of the material properties, suc
the kinematical relations, equilibrium of momentum and forc
The constitutive law must be determined experimentally, a
hence it is avoidable that it is approximate. Libai and Simmon
@15# obtain exact shell equations for the balance of moment
heat flow and an entropy inequality from the three-dimensio
continuum mechanics via integration through the thickness.
71, JANUARY 2004
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analogous two-dimensional constitutive law is postulated due
the fact that even three-dimensional constitutive laws are inex

There is a sense in which the present approach can als
considered as mixed. The two-dimensional constitutive mode
obtained by the variational asymptotic method~VAM !, @16#, such
that the two-dimensional energy is as close to an asymptotic
proximation of the original three-dimensional energy as possi
@17#. The process of constructing the constitutive model defi
the reference surface and the kinematics of this surface are
metrically exact formulated in an intrinsic format. The two
dimensional equilibrium equations are obtained from the tw
dimensional energy with the knowledge of the variations of
generalized strains. The only approximate part of our tw
dimensional shell theory is the constitutive law which is not po
tulated but is mathematically obtained by VAM.

Shell Kinematics
The equations of two-dimensional shell theory are written o

the domain of the reference surface, on which every point can
represented by a position vectorr in the undeformed configuration
andR in the deformed configuration~see Fig. 1! with respect to a
fixed point O in the space. A set of two curvilinear coordinate
xa , are required to located a point on the reference surface.
coordinates are so-calledconvectedcoordinates such that ever
point of the configuration has the same coordinates during
deformation.~Here and throughout the paper Latin indices assu
1, 2, 3; and Greek indices assume values 1 and 2. Dummy ind
are summed over their range except where explicitly indicate!
Without loss of generality,xa are chosen to be the lines of curva
tures of the surface to simplify the formulation. For the purpose
representing finite rotations, an orthonormal triadbi is introduced
for the initial configuration, such that

ba5aa /Aa b35b1Ãb2 (1)
Transactions of the ASME
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whereaa is the set of base vectors associated withxa andAa are
the Laméparameters, defined as

aa5r ,a Aa5Aaa"aa. (2)

From the differential geometry of the surface and followi
@13# and @18#, one can express the derivatives ofbi as

bi ,a5AakaÃbi (3)

whereka is the curvature vector measured inbi with the compo-
nents

ka5 b2ka2 ka1 ka3cT (4)

in which kab refers to out-of-plane curvatures. We note thatk12
5k2150 because the coordinates are the lines of curvatures.
geodesic curvatureska3 can be expressed in terms of the Lam´
parameters as

k1352
A1,2

A1A2
k235

A2,1

A1A2
. (5)

When the shell deforms, the particle that had position vector
in the undeformed state now has position vectorR in the de-
formed shell. The triadbi rotates to beBi . The rotation relating
these two triads can be arbitrarily large and represented in
form of a matrix of direction cosinesC(xa) so that

Bi5Ci j bj Ci j 5Bi "bj . (6)

A definition of the two-dimensional generalized strain measu
is needed for the purpose of formulating this problem in an intr
sic form. Following@13# and @18#, they can be defined as

R,a5Aa~Ba1eabBb12ga3B3! (7)

and

Bi ,a5Aa~2Ka2B11Ka1B21Ka3B3!3Bi (8)

whereeab are the two-dimensional in-plane strains, andKi j are
the curvatures of the deformed surface, which are the summa
of curvatures of undeformed geometryki j and curvatures intro-
duced by the deformationk i j , andga3 are the transverse strain
becauseB3 is not constrained to be normal to the reference s
face after deformation. Please note that the two-dimensional
eralized strain measures are defined by Eqs.~7! and ~8! in an
intrinsic fashion, the symmetry of the inplane strain measu
such thate125e21 does not hold automatically. Nevertheless, o
is free to sete125e21, i.e.,

B1"R,2

A2
5

B2"R,1

A1
(9)

which is a constraint used in@17# to make the three-dimensiona
formulation unique.

At this point sufficient preliminary information has been o
tained to develop a geometrically nonlinear shell theory.

Compatibility Equations
It is well known that a rigid body in three-dimensional spa

has only six degrees-of-freedom. Thus, the kinematics of an
ment of the deformed shell reference surface can be express
terms of at mostsix independent quantities: three measures
displacement, sayu"bi , and three measures of the rotation ofBi
~since the global rotation tensorC, which bringsbi into Bi , can
be expressed in terms of three independent quantities!. However,
we have the 11 two-dimensional strain measurese11, 2e12, e22,
2ga3 , kab , andka3 as defined in Eqs.~7! and~8!. Thus, they are
not independent; there are some compatibility equations am
these eleven quantities. In@19# and@13# appropriate compatibility
equations are derived by first enforcing the equalities

R,125R,21 (10)

and
Journal of Applied Mechanics
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Bi ,125Bi ,21. (11)

These two vector equations lead to six independent compatib
equations equivalent to a form of those found in@13#. These equa-
tions are rewritten here for convenience in the present notat
First, from theB3 components of Eq.~10!, we obtain

~11e22!k122~11e11!k215
~A22g23! ,1

A1A2
2

~A12g13! ,2

A1A2

1e12~K222K11!. (12)

Next, from theBa components of Eq.~10! we obtain two equa-
tions for a51 and 2, respectively, as

~11e22!K132e12K235
~A2e12! ,1

A1A2
2

@A1~11e11!# ,2

A1A2
22g13k21

12g23K11 (13)

~11e11!K232e12K135
@A2~11e22!# ,1

A1A2
2

~A1e12! ,2

A1A2
22g13K22

12g23k12.

Finally, from the three components of Eq.~11! we have nine iden-
tities. However, there are only three independent equations, g
by

~A1K11! ,2

A1A2
2

~A2k21! ,1

A1A2
1K13K222k12K2350

~A1k12! ,2

A1A2
2

~A2K22! ,1

A1A2
1K23K112k21K1350 (14)

~A2K23! ,1

A1A2
2

~A1K13! ,2

A1A2
1K11K222k12k2150.

There are now 11 quantities which are related by six compatib
equations. This means that these strain measures can be
mined in terms ofonly fiveindependent quantities—not six.

In the process of dimensional reduction of@17# to find an ac-
curate constitutive model for composite shells, the authors
countered the question whether one should includek21 andk12 as
two different generalized strain measures. This was determine
the following argument. Let us denote a new twist measurev
5k121k21. From Eq.~12! the difference betweenk21 and k12
can be obtained as

k122k21

2

5

~A22g23! ,12~A12g13! ,2

A1A2
1e12~K222K11!1v~e112e22!

~21e111e22!
.

(15)

This difference is clearlyO(«h/,2) or O(«/R) disregarding the
nonlinear terms~« is the order of generalized strains,h is the
thickness of the shell,l is the wavelength of in-plane deformatio
and R is the characteristic radius of shell!. One can show that it
contributes terms that areO(«h2/,2h/R) or O(«h2/R2) to the
three-dimensional strains. Clearly, such terms will not be coun
in a physically linear theory with only correction up to the ord
of h/R and (h/ l )2.

Equations~13! can be solved for the in-plane curvaturesk13
andk23, and Eq.~15! can be used to expressk12 andk21 in terms
of v. Now, using these expressions, one can rewrite thethreeEqs.
~14! entirely in terms of theeightstrain measurese11, 2e12, e22,
2g13, 2g23, k11, 2v, andk22. This confirms thatonly five inde-
pendent measures of displacement and rotation are necessa
define these strain measuresas we will demonstrate conclusivel
below by deriving such measures.
JANUARY 2004, Vol. 71 Õ 3
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Global Displacement and Rotation Variables
There is no unique choice for the global deformation variab

For this reason, the importance~not to mention the beauty! of an
intrinsic formulation is widely appreciated. On the other hand,
the purpose of understanding the displacement field more f
for practical computational algorithms, and for easy derivation
virtual strain-displacement relations, it is expedient to introduc
suitable set of displacement measures.

The displacement measures we choose are derived by exp
ing R in terms ofr plus a displacement vector so that

R~x1 ,x2!5r ~x1 ,x2!1uibi (16)

Differentiating both sides of Eq.~16! with respect toxa , and
making use of Eq.~7!, one can obtain the identity

Ba1eabBb12ga3B35ba1ui ;abi1uikaÃbi (17)

where ( );a51/Aa]( )/]a. The above formula allows the determ
nation of the strain measureseab and 2ga3 in terms ofC, ui and
the derivatives of ui . Introducing column matricesu
5 bu1 u2 u3cT, e15 b1 0 0cT, e25 b0 1 0cT, g15 be11 e12 2g13cT,
and g25 be21 e22 2g23cT, we can obtain the following identity in
matrix form:

ea1ga5C~ea1u;a1kãu! (18)

where C is the matrix of direction cosines from Eq.~6!, ka is
defined in Eq.~4!, and ( )̃i j 52ei jk( )k .

Rodrigues parameters,@20#, can be used as rotation measures
allow a compact expression ofC. These are derived based o
Euler’s theorem, which shows that any rotation can be represe
as a rotation of magnitudeQ about a line parallel to a unit vecto
e. Defining the Rodrigues parametersr i52e"bi tan(Q/2) and ar-
ranging these in a column matrixr5 br1 r2 r3cT, the matrixC can
simply be written as

C5

S 12
rTr

4 D I 2 r̃1
rrT

2

11
rTr

4

(19)

Let us also denote the direction cosines ofB3 by

C3i5d3i1u i (20)

Hodges@21# has shown that, given the third row ofC, the Rod-
rigues parameters can be uniquely expressed in terms ofu i as

r15
r3u122u2

21u3
4 Õ Vol. 71, JANUARY 2004
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r25
r3u212u1

21u3
(21)

r352 tanS f3

2 D
wherer3 can be understood as a change of variables to simp
later parts of the derivation. Later on we will discuss the mean
of f3 for a special case. Finally, it is noted that the three rotatio
parametersu i are not independent but instead satisfy the co
straint

u1
21u2

21~11u3!251. (22)

When Eq.~21! is substituted into Eq.~19!, the resulting ele-
ments ofC can be expressed as functions ofu i andf3

C115
~21u32u1

2!cosf32u1u2 sinf3

21u3

C125
~21u32u2

2!sinf32u1u2 cosf3

21u3

C1352u1 cosf32u2 sinf3

C215
2~21u32u1

2!sinf32u1u2 cosf3

21u3

C225
~21u32u2

2!cosf31u1u2 sinf3

21u3
(23)

C235u1 sinf32u2 cosf3

C315u1

C325u2

C33511u3 .

This representation reduces to those of@22# when considering
small, finite rotations. There is an apparent singularity in
present scheme whenu3522 ~i.e., when the shell deforms in
such a way thatB3 is pointed in the opposite direction ofb3). This
should pose no practical problem, however, sinceu15u250 for
that condition, and none of the kinematical relations become i
nite in the limit asu3→22.

When these expressions for the direction cosines are substi
into Eq. ~18!, explicit expressions for the strain measures can
found as
e115F ~21u32u1
2!~11u1;12k13u21k11u3!2u1u2~u2;11k13u1!

21u3
1u1~k11u12u3;1!Gcosf3

1F ~21u32u2
2!~u2;11k13u1!2u1u2~11u1;12k13u21k11u3!

21u3
1u2~k11u12u3;1!Gsinf321

e225F ~21u32u2
2!~11u2;21k23u11k22u3!2u1u2~u1;22k23u2!

21u3
2u2~u3;22k22u2!Gcosf3

1F ~21u32u1
2!~k23u22u1;2!1u1u2~11u2;21k23u11k22u3!

21u3
1u1~u3;22k22u2!Gsinf321

e125F ~21u32u2
2!~u2;11k13u1!2u1u2~11u1;12k13u21k11u3!

21u3
1u2~k11u12u3;1!Gcosf3

2F ~21u32u1
2!~11u1;12k13u21k11u3!2u1u2~u2;11k13u1!

21u3
1u1~k11u12u3;1!Gsinf3
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e215F ~21u32u1
2!~u1;22k23u2!1u1u2~11u2;21k23u11k22u3!

21u3
1u1~u3;22k22u2!Gcosf3

1F ~21u32u2
2!~11u2;21k23u11k22u3!2u1u2~u1;22k23u2!

21u3
2u2~u3;22k22u2!Gsinf3

2g135u1~11u1;12k13u21k11u3!1u2~u2;11k13u1!1~11u3!~u3;12k11u1!

2g235u1~u1;22k23u2!1u2~11u2;21k23u11k22u3!1~11u3!~u3;22k22u2!. (24)

These expressions explicitly depend on sinf3 and cosf3. It is evident that one can choosef3 so thate125e21, yielding

tanf35
n11u2

2~u2;11k13u1!2u1
2~u1;22k23u2!1u1u2@u1;12u2;21~k112k22!u32k23u12k13u2#

n21u1
2~u1;11k11u32k13u2!1u2

2~u2;21k22u31k23u1!1u1u2~u1;21u2;12k23u21k13u1!
(25)
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n15~21u3!@u1;22u2;12u1~u3;22k22u2!1u2~u3;12k11u1!

2k13u12k23u2#
(26)

n25~21u3!@u1~u3;12k11u1!1u2~u3;22k22u2!2u1;12u2;222

2u32k23u12~k221k11!u31k13u2#

It is now clear that once the functionsu1 , u2 , u3 , u1 andu2 are
known, the entire deformation is determined. Because of this,
should expect that a variational formulation would yield only fi
equilibrium equations–not six.

For small displacement and small strain, one can obtainf3 as

f35
~A2u2! ,12~A1u1! ,2

2A1A2
(27)

which is half the angle of rotation aboutB3 , the same as obtaine
in @23#.

Although one can now find exact expressions fore11, 2e12,
e22, 2g13 and 2g23 which are independent off3 , such expres-
sions are rather lengthy and are not given here. Alternatively,
could leavef3 in the equations and regard Eq.~25! as a con-
straint. This would allow the construction of a shell finite eleme
which would be compatible with beam elements which have th
rotational degrees-of-freedom at the nodes.

Expressions for the curvatures can be found in terms ofC as

K ã52C;aCT1CkãCT (28)

where

Ka5 b2ka2 ka1 ka3cT1 b2ka2 ka1 ka3cT (29)

Following @24#, the curvature vector can also be found using R
drigues parameters

Ka5

I 2
r̃

2

11
rTr

4

r ;a1Cka . (30)

Using the form ofC from Eqs.~23!, the curvatures become

ka15u1;a cosf31u2;a sinf32
u3;a~u1 cosf31u2 sinf3!

21u3

1 k̂a12ka1

ka252u1;a sinf31u2;a cosf31
u3;a~u1 sinf32u2 cosf3!

21u3

1 k̂a22ka2 (31)
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ka35f3;a1
u1;au22u1u2;a

21u3
1 k̂a3

where

k̂a15S ka32
ka2u1

21u3
1

ka1u2

21u3
D ~u1 sinf32u2 cosf3!1ka2 sinf3

1ka1 cosf3

k̂a25S ka32
ka2u1

21u3
1

ka1u2

21u3
D ~u1 cosf31u2 sinf3!1ka2 cosf3

2ka1 sinf3 (32)

k̂a352ka2u11ka1u21ka3u3 .

As before,f3 can be eliminated from these expressions, so tha
six curvatures can be expressed in terms of five independent q
tities. Note thatka3 are not independent two-dimensional gene
alized strains. They will, however, appear in the equilibrium eq
tions because of their appearance in the virtual stra
displacement relations derived later.

Two-Dimensional Constitutive Law
To complete the analysis for an elastic shell, a two-dimensio

constitutive law is required to relate two-dimensional generaliz
stresses and strains. As mentioned before the constitutive law
not be exact, however, one should try to avoid introducing a
unnecessary approximation in addition to the already-approxim
three-dimensional constitutive relations.

Among many approaches that have been proposed to deal
dimensional reduction, the approach in@17# stands out for its ac-
curacy and simplicity. In that work, a simple Reissner-Mind
type energy model is constructed that is as close as possib
being asymptotically correct. Moreover, the original thre
dimensional results can be recovered accurately. The resu
model can be expressed as

2P5eTAe1gTGg12eTF (33)

wheree5 be11 2e12 e22 k11 k121k21 k22cT andg5 b2g13 2g23cT. It
is noticed that there is only one in-plane shear straine12 in Eq.
~33!. This is possible only after one uses the constraints in Eq.~9!.
Moreover, the strain energy is independent ofka3 so that the
rotation about the normal only appears algebraically, making
possible for it to be eliminated.

This simple constitutive model is rigorously reduced from t
original three-dimensional model for multilayer shells, each la
of which is made with an anisotropic material with monoclin
symmetry. The variational asymptotic method@16# is used to guar-
antee the resulting two-dimensional shell model to yield the b
approximation to the energy stored in the original thre
dimensional structure by discarding all the insignificant contrib
JANUARY 2004, Vol. 71 Õ 5
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tion to the energy higher than the order of (h/ l )2 and h/R. The
stiffness matricesA andG obtained through this process carry a
the material and geometry information through the thickness~see
Eqs.~63! and~73! in Ref. @17# for detailed expressions!. The term
containing the column matrixF is produced by body forces in th
shell structure and tractions on the top and bottom surfaces, a
is very important for the recovery of the original thre
dimensional results. Interested readers can refer to Ref.@17# for
details of constructing the model in Eq.~33! for multilayered
composite shells.

Having obtained the two-dimensional constitutive law fro
three-dimensional elasticity, one can derive all the other relati
over the reference surface of the shell, a two-dimensional c
tinuum.

Virtual Strain-Displacement Relations
In order to derive intrinsic equilibrium equations from the tw

dimensional energy, it is necessary to express the variation
generalized strain measures in terms of virtual displacements
virtual rotations.

The variation of the energy expressed in Eq.~33! can be written
as

dP5
]P

]e11
de111

]P

]e12
de121

]P

]e22
de221

]P

]g13
dg131

]P

]g23
dg23

1
]P

]k11
dk111

]P

]v
dv1

]P

]k22
dk22. (34)

It is now obvious that one must expressde11, . . . ,dk22, in terms
of virtual displacements and rotations in order to obtain the fi
Euler-Lagrange equations of the energy functional in their intr
sic form. Following Ref.@24#, we introduce measures of virtua
displacement and rotation that are ‘‘compatible’’ with the intrins
strain measures. For the virtual displacement, we note the form
Eq. ~18! and choose

dq5Cdu. (35)

Similarly, for the virtual rotation, we note the form of Eq.~28! and
write

dc
.

52dCCT (36)

wheredc is a column matrix arranged similarly as the curvatu
column matrix in Eq.~4! dc5 b2dc2 dc1 dc3cT. The bars indi-
cate that these quantities are not necessarily the variations of f
tions. Using these relations it is clear that

du5CTdq (37)

and
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dC52dc
.

C. (38)

Let us begin with the generalized strain-displacement relations
Eq. ~18!. A particular in-plane strain element can be written as

eab5eb
T@C~ea1u;a1kãu!2ea#. (39)

Taking a straightforward variation, one obtains

deab5eb
T@dC~ea1u;a1kãu!1C~du;a1kãdu!#. (40)

The right-hand side containsu;a anddu;a , which must be elimi-
nated in order to obtain variations of the strain that are indep
dent of displacements. These are needed to derive intrinsic e
librium equations.

Premultiplying both sides of Eq.~18! by CT, making use of Eq.
~36!, and finally using a property of the tilde operator that, f
arbitrary column matricesY andZ, ỸZ52Z̃Y, one can make the
first term in brackets on the righthand side independent ofu;a .
After all this, one obtains

dC~ea1u;a1kãu!5dCCT~ea1ga!52dc
.

~ea1ga!

5~eã1gã!dc. (41)

An expression for the second term in brackets on the right-h
side of Eq.~40! can now be obtained by differentiating Eq.~37!
with respect toxa and premultiplying byC. This yields

C~du;a1kãdu!5C~CTdq! ;a1Ckãdu5dq;a1K ãdq.
(42)

Substituting Eqs.~41! and ~42! into Eq. ~40!, one obtains an in-
trinsic expression for the variation of the in-plane strain comp
nents as

deab5eb
T@dq;a1K ãdq1~eã1gã!dc# (43)

where eb
Teã vanishes whena5b. This matrix equation can be

written explicitly as four scalar equations:

de115dq1;12K13dq21K11dq322g13dc11e12dc3

de125dq2;11K13dq11k12dq322g13dc22~11e11!dc3

(44)

de215dq1;22K23dq21k21dq322g23dc11~11e22!dc3

de225dq2;21K23dq11K22dq322g23dc22e12dc3 .

The variationsde12 and de21 should be equal due to Eq.~9!;
hence, one can solve for the virtual rotation component abouB3
as
dc35
dq2;12dq1;21K13dq11K23dq21~k122k21!dq322g13dc212g23dc1

21e111e22
. (45)
the
s as
It is now possible to write the variations of all strain measures
terms of three virtual displacement and two virtual rotation co
ponents as

de115dq1;12K13dq21K11dq322g13dc11e12dc3

de225dq2;21K23dq11K22dq322g23dc22e12dc3
(46)
in
m-

2de125dq2;11dq1;21K13dq12K23dq212vdq3

22g13dc222g23dc11~e222e11!dc3

with dc3 taken from Eq.~45!.
Let us now consider the transverse shear strains

2ga35e3
T@C~ea1u;a1kãu!2ea#. (47)

Following a procedure similar to the above, one can obtain
virtual strain-displacement equation for transverse shear strain
Transactions of the ASME
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2dga35e3
T@dq;a1K ãdq1~eã1gã!dc#. (48)

Explicit expressions for the variations of the shear strain com
nents are now easily written as

2dga35dq3;a1dca1eabdcb2Kabdqb . (49)

Finally, variations of the curvatures are found. First, taking
straightforward variation of Eq.~28!, one obtains

dkã52
dC,aCT

Aa
2

C,adCT

Aa
1dCkãCT1CkãdCT. (50)

In order to eliminatedC,a , we differentiate Eq.~36! with respect
to xa

dc
.

,a52dC,aCT2dCC,a
T . (51)

In order to eliminatedC, we can use Eq.~38!. Then, Eq.~50!
becomes

dkã5dc
.

;a1K ãdc
.

2dc
.

K ã. (52)

Using another tilde identity (ỸZ̃5ỸZ̃2Z̃Ỹ) one can find the vir-
tual strain-displacement relation as

dka5dc ;a1K ã dc. (53)

In explicit form

dk115
dc1,1

A1
2K13dc21k12dc3

dk225
dc2,2

A2
1K23dc12k21dc3 (54)

2dv5
dc1,2

A2
1

dc2,1

A1
1K13dc12K23dc21~K222K11!dc3

wheredc3 can again be eliminated by using Eq.~45!.

Intrinsic Equilibrium Equations
In this section, we will make use of the virtual strain

displacement relations in the variation of the internal strain ene
in order to derive the intrinsic equilibrium equations. Here w
define the generalized forces as

]P

]e11
5N11

]P

]e22
5N22

1

2

]P

]e12
5N12

]P

]k11
5M11

]P

]k22
5M22

1

2

]P

]v
5M12 (55)

1

2

]P

]g13
5Q1

1

2

]P

]g23
5Q2 .

To use the principle of virtual work to derive the equilibriu
equations, one needs to know the applied loads. In addition to
applied loads used in the modeling process,t iBi at the top sur-
face,b iBi at the bottom surface and body forcef iBi @17#, one can
also specify appropriate combinations of displacements, rotat
~geometrical boundary conditions!, running forces and moment
~natural boundary conditions! along the boundary around the re
erence surface. It is trivial to apply the geometrical boundary c
ditions. Although it is possible in most cases that natural bound
conditions can be derived from Newton’s law, the procedure
tedious and not easily applied here because the physical mea
for some of the generalized forces are not clear. Thus, nat
boundary conditions are best derived from the principle of virt
work.

Suppose on boundaryG ~see Fig. 2!, we specify a force result-
ant N̂nn and moment resultantM̂ nn along the outward normal o
Journal of Applied Mechanics
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the boundary curve tangent to the reference surfacen, N̂nt and
M̂ nt along the tangent of the boundary curvet, N̂n3 along the
normal of the reference surface. Then the principle of virtual wo
~strictly speaking, the principle of virtual displacements! can be
stated as:

E E
s
~dP2dqi f i2dcama!A1A2dx1dx22E

G
~N̂nndqn1N̂ntdqt

1N̂n3dq31M̂ nndcn1M̂ ntdct!dG50 (56)

where f i andma are taken directly from@17#.
It is now possible to obtain intrinsic equilibrium equations a

consistent edge conditions by use of the principle of virtual wo
and the virtual strain-displacement relations derived in the pre
ous section. The equilibrium equations are

~A2N11! ,1

A1A2
1

@A1~N121N!# ,2

A1A2
2K13~N122N!

2K23N221Q1K111Q2k211 f 150

~A1N22! ,2

A1A2
1

@A2~N122N!# ,1

A1A2
1K23~N121N!

1K13N111Q1k121Q2K221 f 250

~A2Q1! ,1

A1A2
1

~A1Q2! ,2

A1A2
2K11N112K22N22

22vN121~k122k21!N1 f 350 (57)

~A2M11! ,1

A1A2
1

~A1M12! ,2

A1A2
2Q1~11e11!2Q2e1212g13N11

12g23~N121N!2M12K132M22K231m150

~A2M12! ,1

A1A2
1

~A1M22! ,2

A1A2
2Q2~11e22!2Q1e1212g13~N122N!

12g23N221M11K131M12K231m250

where

Fig. 2 Schematic of an arbitrary boundary
JANUARY 2004, Vol. 71 Õ 7
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~N222N11!e121N12~e112e22!1M22k212M11k121M12~K112K22!
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The associated natural boundary conditions onG are

N̂nn5n1
2N1112n1n2N121n2

2N22

N̂nt5n1n2~N222N11!1~n1
22n2

2!N122N

N̂nn5n1
2N1112n1n2N121n2

2N22 (59)

N̂n35n1Q11n2Q2

M̂ nn5n1
2M1112n1n2M121n2

2M22

M̂ nt5n1n2~M222M11!1~n1
22n2

2!M12

wheren15cosf, n25sinf, andf is the angle between the ou
ward normal of the boundary and thex1 direction as shown in Fig.
2. The terms containingN stem from consistent inclusion of th
finite rotation from undeformed triad to deformed triad althou
thenonzerorotation aboutB3 is expressed in terms of other kine
matical quantities. Similar terms are found in the shell equati
derived by Berdichevsky@16# where only five equilibrium equa
tions are derived.

In a mixed formulation,N can be shown to be the Lagrang
multiplier that enforces Eq.~45!. To further understand the natur
of N one can undertake the following exercise: SettingPi50 and
e125e21 for the equilibrium equations given in@13#, (N21
2N12)/2 can be solved from Reissner’s sixth equilibrium equ
tion. This shows that Reissner’s (N212N12)/2 is the same as ou
N, and Reissner’s (N212N12)/2 is the same as ourN12. Finally,
substitution of this sixth equation into the other five yields the fi
equilibrium equations given here in Eqs.~57!. It is noted that
Reissner’s equilibrium equations are derived based on the bas
Newton’s law of motion without consideration of either constit
tive law or strain-displacement relations. However, the pres
derivation is purely displacement-based. The reproduction
those equilibrium equations by the present derivation illustra
that, as long as the formulation is geometrically exact, one
derive exact equilibrium equations.

A few investigators have noted an apparent conflict between
symmetry of the stress resultants and the satisfaction of mom
equilibrium about the normal. In reality there is no conflict, b
one must be careful. We have shown herein that the triadBi can
always be chosen so thate125e21. If this relation is enforced
strongly, there is only one in-plane shear stress resultant,N12, that
can be derived from the energy. In that case the physical qua
associated with the antisymmetric part of Reissner’s in-pl
stress resultants, while it is not available from the constitutive l
is nevertheless available as a reactive quantity from the mom
equilibrium equation about the normal. However, it must
stressed that the moment equilibrium equation about the norm
not available from a conventional energy approach, in which
virtual displacements and rotations must be independent.

In a somewhat similar vein, not being able to obtain the a
symmetric part of the moment stress resultants from derivative
the two-dimensional strain energy is a result of the approxim
dimensional reduction process in which it was determined, ba
on asymptotic considerations andgeometricallynonlinear three-
dimensional elasticity, that the antisymmetric termk122k21 does
not appear as an independent generalized strain measure i
two-dimensional constitutive law with correction only to the ord
of h/R. However, if a more refined theory with respect toh/R is
required, thenk122k21 would appear as a generalized strain in t
two-dimensional constitutive law and a new generalized mom
would be defined based on the constitutive law.
8 Õ Vol. 71, JANUARY 2004
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For practical computational schemes, equilibrium equations
boundary conditions need to use the constitutive law to relate w
the generalized two-dimensional strains. Finally a set of kinem
cal equations is needed. Depending on how this part is done
analysis can be completed in either of two fundamentally differ
ways: a purely intrinsic form, relying on compatibility equation
and a mixed form relying on explicit strain-displacement re
tions.

In the intrinsic form we have five equilibrium equations, Eq
~57!; six compatibility equations, Eqs.~12!–~14!; and the eight
constitutive equations—a total of 19 equations. The 19 unknow
are the eight stress resultants,N11, N12, N22, Q1 , Q2 , M11,
M12, andM22; and the 11 strain measurese11, 2e12, e22, 2g13,
2g23, k11, 2v12, andk22, along withk13, k23, andk122k21.
The last three strain measures appear in the equilibrium equa
but not in the constitutive law.

In a mixed formulation one would use the same five equil
rium equations and eight constitutive equations. One would a
need a set of strain-displacement relations among the 11 gen
ized strain measurese11, 2e12, e22, 2g13, 2g23, k11, 2v, and
k22, along withk13, k23, andk122k21, and the five global dis-
placement and rotational variablesu1 , u2 , u3 , u1 , andu2 . One
possible set of such equations is as follows: use five of Eqs.~24!,
using eithere12 or e21; use the six Eqs.~31!. There are also the
two other rotational variablesu3 andf3 , which are governed by
Eqs.~22! and ~25!, respectively. This way there are 26 equatio
and 26 unknowns. This mixed formulation is capable of handl
boundary conditions on two-dimensional stress resultants
displacement/rotation variables. At least in principle, one co
recover a displacement formulation by eliminating all the u
knowns except the displacement and rotation variables.

Equations~57! and~58! contain terms that could be disregarde
because of the original assumption of small strain. We will n
undertake this simplification here, because it is out of the scop
the present study to actually implement the two-dimensional n
linear theory. Therefore, our equilibrium equations and kinem
cal equations are geometrically exact; all approximations s
from the dimensional reduction process used to obtain the t
dimensional constitutive law.

The present work is a direct extension of@18# to treat shells. If
one setski j 50 andAa51, all the formulas developed here wi
reduce to those in@18#, which indirectly verifies that derivation.

Conclusions
A nonlinear shear-deformable shell theory has been develo

to be completely compatible with the modeling process in@17#.
The compatibility equations, kinematical relations and equil
rium equations are derived for arbitrarily large displacements
rotations under the restriction that the strain must be small.
resulting formulas are compared with others in the literature. T
following conclusions can be drawn from the present work:

1. The variational asymptotic method can be used to decou
the original three-dimensional elasticity problem of a shell into
one-dimensional, through-the-thickness analysis,@17#, and a two-
dimensional, shell analysis. The through-the-thickness anal
provides both an accurate two-dimensional constitutive law
the nonlinear shell theory and accurate through-the-thickness
covery relations for three-dimensional displacement, strain,
stress. This way, an intimate relation between the shell theory
three-dimensional elasticity is established.

2. A full finite rotation must be applied to fully specify th
displacement field. However, since the strain energy on which
Transactions of the ASME
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formulation is based is independent ofka3 , the rotation about the
normal is not independent and can be expressed in terms of o
quantities. Thus, it can be chosen so that the two-dimensio
in-plane shear strain measures are equal. This way all the s
measures can be expressed in terms of five independent quan
three displacement and two rotation measures, and only one s
resultant for in-plane shear can be derived from the tw
dimensional energy.

3. Only five equilibrium equations are obtainable in
displacement-based variational formulation. Moment equilibri
about the normal is satisfied implicitly. If one does not include
full finite rotation, but rather sets the rotation about the norm
equal to zero, the correct equilibrium equations cannot be
tained. This should shed some light on the nature of ‘‘drillin
degrees of freedom.
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Planar Accelerometer
Configurations
Numerous accelerometer configurations have been proposed and implemented by p
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i

s

r
r

t

e

w
t

c
i
l
f

l

b
t
e

ns
tion
ted
ill
g a

et

for
ents
tion
The
e
is

o

tive
ry

ce
is.

ut-

ents
i-r
1 Introduction
As accelerometers become cheaper and smaller, a pro

driven by the application of the technology in mass-produced c
sumer items, the possibility of designing practical propriocept
units ~sensor combinations that are able to sense their own mo
and position!, is becoming a reality.

Even before accelerometers became cheap, researcher
plored their use for determining parameters of motion such
angular velocities and accelerations, and employed integra
schemes to determine body orientations and positions. An e
example is the work of Schuler@1#, who presented five accele
ometer configurations of varying complexity to determine the
tational parameters of the spatial acceleration field, sugges
that it would be feasible to remove the gyroscopes from the
ditional inertial navigation system. In 1973, Morris@2# presented a
five-axis accelerometer scheme to assess human gait. This
closely followed by Kane et al. in 1974,@3#, who used a 12-axis
configuration to study the dynamics of a tennis racquet. This c
figuration was later used by Hayes et al. in 1983 to study hum
gait, @4#. Another configuration, this time composed of nine ax
was developed by Padgaonkar in 1975,@5#, to determine angular
and translational acceleration for general spatial motion. This c
figuration was used by Chou and Sinha@6# to study the kinematics
of the head of a crash-test dummy. Later Mital and King@7# pre-
sented an integration scheme for the configuration that allo
the computation of spatial orientation. Also concerned with
kinematics of crash-test dummies, Nusholtz@8,9# presented
schemes for planar~four axes! and spatial motion~with nine
axes!. A very similar system was used by Shea and Viano@10# for
the same purpose. Recently, Chen et al.@11–13# have discussed a
six-axis scheme that enables the determination of angular a
eration and, with numerical integration, translational accelerat
Schaecter@14# has considered the problem of designing acce
ometer configurations that will yield the acceleration vector o
point on a rigid body with the condition that the configuratio
should still yield the desired information should one of the ax
fail. This brief review indicates the interest in the use of acce
ometers in determining parameters of rigid-body motion, and a
the large range of configurations that have been used.

Up to a numerical limit, it is generally true that the more ax
that are used, the more information that can be determined a
the motion. Even below this limit, however, one can add axes
yield no additional information. It is the contribution of this pap

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 4, 200
final revision, June 9, 2003. Associate Editor: O. O’Reilly. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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to find the geometrical conditions on the minimal configuratio
of accelerometers that yield subsets of the possible informa
for the case of planar motion. Once similar analysis is comple
for spatial motion, all feasible accelerometer configurations w
be contained within a general framework. Rather than designin
configuration by trial and error, it will be possible to follow a s
of design rules.

This paper proceeds by first developing a useful expression
the planar acceleration field in Sec. 2. Section 3 then pres
configurations of single-axis accelerometers for the determina
of angular motion parameters, either separately or together.
major problem of determining all possible information from th
minimal number of axes is the subject of Sec. 4. All analysis
undertaken using simple vector geometry.

2 The Planar Acceleration Field
Consider a rigid body,E, undergoing planar motion relative t

an inertial frame,S, as shown in Fig. 1. We identifyn11 points
Ri i 50,1,2, . . . ,n fixed within E. Position vectorsr0i from R0 to
Ri (r0i5Ri2R0) are used to identify each of the points. AsE
moves, the points have non-zero velocity and acceleration rela
to S. The position vectors of the points relative to an arbitra
point fixed inS are denotedRi , thus

Ri5R01r0i i 51,2, . . . ,n. (1)

The acceleration vector atRi is found by a double differentiation
of Eq. ~1!:

A i5A01as0i2v2r0i (2)

wherev is the angular velocity anda is the angular acceleration
of bodyE relative toS. The vectors0i is obtained through a1p/2
rotation of r0i , and A0 is the acceleration vector at pointR0 .
Since there is an acceleration vector for every point inE, we have
a time-varying vector field. It is easily confirmed that the choi
of R0 in E is arbitrary, and this point is exploited in the analys

In the following, an accelerometer axis at a pointRi parallel to
unit vectorsi is modeled as a perfect operator that gives as o
put, mi , the scalar product of the total acceleration vector atRi
with si .

The total acceleration vector atRi , T i , is the vector sum of the
inertial and gravitational acceleration vectors at the point,T i
5A i1g, thus the output of theith axis can be written:

mi5si•~A01g!1asi "s0i2v2si "r0i . (3)

Since the accelerometers are fixed in the body, the coeffici
si "s0i andsi "r0i are time invariant. This paper shows how a min
mal number of scalar measurements,mi , can be used to find the
parameters of the acceleration field.
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3 Finding Rotational Parameters
This section discusses simple configurations of scalar meas

ments that may be used to determine the rotational paramete
the acceleration field (a,v2) first separately, then together, usin
the minimum number of measurements.

When determining a single parameter~a or v2), the approach
is to design configurations so that linear combinations of the o
puts of the accelerometers result in an expression involving o
the parameter of interest. To achieve this, one can alter the rel
positions and orientations of the axes. In particular, since we
not for the moment interested in determiningT05A01g, the mo-
tion parameters which are independent of position, the orie
tions of the axes must be arranged so as to remove the ef
from the outputs. A general linear combination of accelerome
outputs is of the form

(
i 51

n

l imi5(
i 51

n

l isi "T01a(
i 51

n

l isi "s0i2v2(
i 51

n

l isi "r0i .

(4)

Clearly for the combination to be free ofT0 , which is a time
varying vector, the orientation vectorssi i 51,2, . . . ,n must be
such that it is possible to selectl i i 51,2, . . . ,n such that

(
i 51

n

l isi50. (5)

The smallest configuration that may be used to this end is a
allel pair, s15s2 , with the outputs differenced, i.e.,l152l2 .
Denoting the orientations of the two axes bys, the equation for
their difference is

Fig. 1 Definitions

Fig. 2 The construction of circle C12
Journal of Applied Mechanics
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m12m25s•~T01as012v2r01!2s•~T01as022v2r02!

5s•~a~s012s02!2v2~r012r02!!

5s•~as212v2r21! (6)

and it is seen that, sinces21 andr21 are orthogonal, it is possible to
select, for everys, relative positions for the two acceleromet
axes so that the differences in the outputs is linearly proportio
to a or v2.

To determinea using two accelerometers, Eq.~6! states that we
must haves"r2150, i.e., the line between the two accelerome
axes must be orthogonal to the sensing direction of the axes. C
versely, to determinev2, the line between the two acceleromet
axes must be collinear with the sensing directions.

To determine botha and v2 it would be possible to use a
combination of the configurations described above forv2 anda,
requiring four accelerometer axes. It is possible, however, to
fewer than four axes, as is now demonstrated. Since two par
eters are now desired, two linearly dependent equations are
quired. These equations must both be independent ofT0 . The
minimum number of accelerometers that can be used to gene
two such equations is three, where all have the same orienta
s. To prove this, consider the following discussion. Assume t
s1 ands2 are non-parallel, then for the equation

l1s11l2s21l3s350 (7)

to have a solution,l3 must be nonzero, in which case the equati
can be rewritten as

l18s11l28s25s3 (8)

in which case there is only one solution to the equation~remember
we are only working in two dimensions!. Employing a parallel
pair of axess15s2 , with s3Þ6s1 has only the solution (l1
52l2 , l350). Finally if three parallel axes are used, then the
are two distinct solutions (l152l2 , l350) and (l152l3 ,
l250), the solution (l150, l252l3) being obtainable as a
linear combination of these. The differences in outputs for
case of three parallel axes may be written as

m12m25as•~s12s2!2v2s•~r12r2!
(9)

m12m35as•~s12s3!2v2s•~r12r3!.

If ( r12r2)Þl(r12r3) these equations are linearly independe
and it is possible to solve forv2 anda. Geometrically, this means
that the three parallel axes are positioned so that there is n
single line through their locations. Since it is not possible to u
any less than three axes to generate two linearly indepen
equations without the effect ofT0 present, the three parallel axe
are the minimal configuration required to determine botha and
v2.

4 Planar Configurations
In this section, the configurations of accelerometers that y

the full set of motion parameters (a,v2,T0) are discussed. As
shown above, theith measurement, i.e., the output of the accel
ometer axis atRi with orientationsi is linear in the motion pa-
rameters:

mi5T0"si1a~si "s0i !2v2~si "r0i ! (10)

thus yielding an equation in four unknowns,T0 comprising two of
these. In order to solve for these unknowns, it is required that f
measurements be taken such that the resulting equations, fo
by multiple instances of Eq.~10! are linearly independent in the
acceleration parameters, i.e., the only set of constantsl i , i 51, 2,
3, 4 that satisfy the equation

(
i 51

4

l imi50 (11)
JANUARY 2004, Vol. 71 Õ 11
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for all possible motions arel i50 i 51, 2, 3, 4. Equivalently we
must demonstrate the non-singularity of theconfiguration matrix
C with general row:

ci5@si
T si

Ts0i si
Tr0i #

where (si ,r0i ,s0i) are coordinate matrices of (si ,r0i ,s0i). Using
m to denote the column matrix of measurements andxT

5@T0
T a v2# to describe the acceleration parameters, we can w

the four measurement equations in the formCx5m, which shows
that we can only solve forx if C is nonsingular. The nonsingular
ity of the spatial analogue of this configuration matrix is t
method that Tan et al.@12,13# used to prove the feasibility of thei
six-axis configuration. The advantage of the present approach
the use of a configuration matrix is the geometric insight offer

In the following, rather than identify the conditions o
(Ri ,si) i 51, 2, 3, 4 such that the equations are linearly indep
dent, the converse is undertaken, i.e., the configurations for w
at least onel iÞ0 are found. This is performed incrementall
First the configurations of two axes which lead to linearly dep
dent equations are found. Next two axes are assumed to be p
so that the equations are linearly independent, and the posi
and orientations of a third axis which yield three dependent eq
tions are studied. Similar analysis is completed for four ax
Upon completion of each stage of this analysis, sets of config
tions which yield linearly dependent equations for two, three a
four axes can be identified. A configuration yielding linearly ind
pendent equations is any that is not a member of these sets.

A configuration ofn axes which yieldsn linearly independent
equations is defined as being a feasiblen-axis configuration. If a
particular position,Rn11 , of an axis sn11 renders a feasible
n-axis configuration an infeasible (n11)-axis configuration, then
Rn11 is referred to as an infeasible position for an axis of orie
tation sn11 .

Before undertaking the analysis, some general equations
are useful in all the following cases are introduced. If we hav
feasiblen-axis configuration, then there are no non-zero consta
that satisfy( i 51

n l imi50. In order for the (n11)-axis configura-
tion to be infeasible, there must be nonzero constants that sa
( i 51

n11l imi50. Since then-axis configuration is feasible, the con
stantln11 associated with the measurement of then11 must be
nonzero, and the equation may be rewritten

(
i 51

n

l imi5mn11 (12)

where thel i constants are different than those above. Allowi
arbitrary variation in the motion parameters, and considering
form of Eq. ~10!, this scalar equation is seen to be equivalent
the following set of equations:

(
i 51

n

l isi5sn11 (13)

(
i 51

n

l i~si "s0i !5sn11"s0n11 (14)

(
i 51

n

l i~si "r0i !5sn11"r0n11 . (15)

A given sn11 constrains the set of scalars$l i% i 51
n satisfying Eq.

~13!. Equations~14! and~15! are then used to solve forr0n11 the
infeasible position~s!, relative toR0 , for the axis with orientation
sn11 . The method of solution for Eqs.~14! and ~15! is to note
that sj "s0 j52tj "r0 j , wheretj is the vector obtained by rotatin
sjp/2 radians counterclockwise. Then, sincetn11 and sn11 are
orthogonal unit vectors, we have

r0n115(
i 51

n

l i~ti "r0i !tn111(
i 51

n

l i~si "r0i !sn11 . (16)
12 Õ Vol. 71, JANUARY 2004
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The general method of solution for each stage is to find$l i% i 51
n

for a particularsn11 and then find the associatedr0n11 . If the
solution for$l i% i 51

n is unique for eachsn11 then there is only one
infeasible position for each axis. However, if there are an infi
tude of solutions$l i% i 51

n that satisfy Eq.~13! then there is also an
infinitude of infeasible positions for each axis. The results of
analysis are summarized at the end of each section.

4.1 Infeasible Configurations for Two Axes. For two axes
to be arranged in an infeasible configuration, it is necessary
the measurements of the two axes be multiples of each othe
all time and all possible motions. Considering Eq.~13! for the
casen51, the only possible solutions arel151 in which case
s25s1 or l1521 ands252s1 . Substituting these two solu
tions into ~16! gives

r025~t1"r01!t11~s1"r01!s15r01 (17)

in both cases. The equivalence of axes atR with orientationss
and 2s leads us to identify them as identical in the followin
development.

4.2 Infeasible Configurations for Three Axes. If, as
shown in Fig. 2,u1 j is the angle of rotation betweens1 andsj ,
i.e., s1 must be rotated byu1 j counterclockwise so that it is
aligned withsj , then

sj5cosu1 js11sinu1 jt1 j 52,3. (18)

Now, we can identifyl1 andl2 such thats35l1s11l2s2 from

s35l1s11l2s25~l11l2 cosu12!s11l2 sinu12t1

5cosu13s11sinu13t1 (19)

from which

l15cosu132
sinu13

sinu12
cosu12 (20)

l25
sinu13

sinu12
. (21)

Since there is only one pair of scalars (l1 ,l2) for eachs3 , we
conclude from Eq.~16! that there is only one infeasible positio
R3(s3) for each orientations3 . Now the general equation,~16!
for r03(s3), the vector fromR0 to theuniqueinfeasible position,
R3(s3), for the axis with orientations3 can be written as

r03~s3!5~l1s1"r011l2s2"r02!s31~l1t1"r011l2t2"r02!t3 .
(22)

We placeR0 at the center of the circle,C12, of radiusr, defined
by the three points,R1 , R2 andX12, the point of intersection of
the linesLi drawn throughRi parallel tosi for i 51, 2 ~we assume
for now thats1 and s2 are not parallel!. With such a choice of
R0 , we know from a well known theorem on angles measured
the center and circumference of circles,@15#, that the angle be-
tween the vectorsX12R1 andX12R2 , and hences1 ands2 (u12) is
half that betweenr01 andr02, ~see Fig. 2!. Thus, definingc to be
the angle by whichr01 must be rotated to bring it parallel tos1 ,
we immediately havec2u12 as the angle betweenr02 and s2 .
Thus Eq.~22! becomes

r03~s3!5r ~cos~c2u13!s32sin~c2u13!t3! (23)

which demonstrates that the unique infeasible positionR3(s3) for
the axis s3 has the same relationship to (R1 ,s1) as (R2 ,s2)
does, i.e., extending a line parallel tos3 throughX12, the infea-
sible position fors3 lies at the intersection of this line and th
circle, C12, as is shown in Fig. 3. The infeasible position for a
axiss can therefore be found by extending the line throughX12 to
C12(s) the point of intersection with the circleC12. Thus, in the
case of three axes, at least two of which are non-parallel we kn
that the axes form an infeasible configuration if the lines dra
Transactions of the ASME
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through the positions parallel to the axes intersect at a single p
on the circle drawn through the positions of the axes.

Now we consider the special cases. We have already seen w
considering the minimal configuration for the determination oa
and v2 that three parallel axes are infeasible if it is possible
draw a line through their locations. This line may be considered
the circle of infinite radius through the accelerometer positio
and the pointX12 at infinity. It is also easily confirmed, using Eq
~16! that any three axes at a point are infeasible. In this case,R1 ,
R2 , R3 , andX12 exist at a single point, which may be consider
a circle of zero radius. Thus the above stated result on the in
sible configurations for three axes is seen to hold in all cases

Summary:Three axes (Ri ,si) i 51, 2, 3 are in an infeasible
configuration if the linesLi drawn throughRi parallel tosi
intersect at a single point, which is on the circle throughR1 ,
R2 , andR3 .

4.3 Infeasible Configurations for Four Axes. Now we
have to expresss4 as s45( i 51

3 l isi where the constants for
given s4 are no longer unique. We assume thats1 and s2 are
nonparallel then we can find constants (m1 ,m2) and (h1 ,h2) such
that

m1s11m2s25s3 (24)

h1s11h2s25s4 (25)

then Eq.~13! becomes

s45l1~l3!s11l2~l3!s21l3s3 (26)

where
l i~l3!5h i2l3m i . (27)

Now, Eq. ~16! for the determination ofr04(s4), the vector from
R0 to the infeasible position of an axis with orientations4 , be-
comes

r04~s4 ,l3!5$~h1s1"r011h2s2"r02!s41~h1t1"r01

1h2t2"r02!t4%2l3~m1s1"r011m2s2"r02

2s3"r03!s42l3~m1t1"r011m2t2"r022t3"r03!t4

5r04~s4,0!1l3v~s4!. (28)

This is the equation of a line parametrized byl3 . Using the
analysis from the previous section, identifyingh i with l i , we see
that r04(s4,0) is the vector fromR0 to the pointC12(s4), i.e., the
intersection of the circle throughR1 , R2 and X12 with the line
throughX12 parallel tos4 . Thus, the infeasible positions for a
axis with orientations4 lie on a line throughC12(s4). Note that
the coefficients of the vectorv(s4) are constants, fixed by th
configuration of the first three axes. Consequently rotatings4
causes an identical rotation ofv(s4) and knowledge of the vecto
for somes is sufficient to specifyv for all orientations. Choosing
s45s3 , we get

Fig. 3 The infeasible positions and orientations of a third axis
Journal of Applied Mechanics
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v~s3!5~m1s1"r011m2s2"r02!s31~m1t1"r011m2t2"r02!t3

2r03. (29)

Now, we can identifym i5l i from the previous section, so

v~s3!5r04~s3,0!2r035C12~s3!2R3 (30)

and
R4~s3 ,l3!5C12~s3!1l3~C12~s3!2R3! (31)

i.e., the infeasible positions for an axiss3 lie on the line through
R3 , the position of the axiss3 , and C12(s3), the position
deemed infeasible by the configuration of the first two axes. Si
this relationship is valid for alll3 there is, unlesss3 is tangent to
C12 at C12(s3), another point,F on C12 at which it is infeasible
to place an axis with orientations3 , as is shown in Fig. 4. Now,
writing s4(u) to mean the vector obtained by rotatings3 by u we
know that v(s4(u)) is obtained by rotatingv(s3) by u while
r04(s4(u),0) is found by rotatingr04(s3,0) by 2u, hence we have
the same geometry as was encountered in the previous sec
and the lines of infeasible positions are seen to all pass througF.
Thus the general expression for the infeasible positions for an
with orientations4 is

R4~s4 ,l3!5C12~s4!1l3~C12~s4!2F !. (32)

This equation shows that there is a line of infeasible positio
throughF for every orientation of axiss4 , as is shown in Fig. 5.
Conversely for every point excludingF in the plane, there is one
infeasible orientation of axiss4 . Since every line of infeasible
positions passes throughF, any axis atF will render the configu-
ration infeasible. As was previously discussed, ifR15R2 (s1
Þs2) then the circular distribution shrinks to a point, which
alsoX12 andF. If a third axis is located at a distinct point,R3 , the
three axis configuration is immediately feasible. A fourth axis m
also be added atR3 if it is not parallel to the third and we see tha
a configuration consisting of two pairs of nonparallel axes at t
distinct points is always feasible. This is of interest since biax
accelerometers are commercially available.

The assumption at the beginning of the analysis was that tw
si i 51, 2, 3 were nonparallel. These two non-parallel axes
required to generate the circular distribution of infeasible ax
then the third axis is used to find the point,F. If this is not the
case, i.e., the three axes are parallel, and in a feasible config
tion, it has already been shown that there must not be a
throughR1 , R2 and R3 . For a fourth axis to yield an infeasible
configuration, it must be parallel to the first three, in which ca
there are two degrees-of-freedom in the selection of (l1 ,l2 ,l3).
For instance,l1 andl2 may be chosen arbitrarily, whilel3 must
satisfyl3512l12l2 . The equation forr04 in this case is

Fig. 4 Construction of F
JANUARY 2004, Vol. 71 Õ 13



14 Õ Vol. 71, JAN
Fig. 5 Some of the infeasible positions and orientations for a fourth axis given three
axes, at least two of which are nonparallel. „The totality fill the plane. …
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r04~s,l1 ,l2!5s•~l1r011l2r021~12l12l2!r03!s1t•~l1r01

1l2r021~12l12l2!r03!t

5l1~r012r03!1l2~r022r03!1r03 (33)

and sincer012r03 and r022r03 are not parallel, it is seen tha
every point in the plane is an infeasible position for a fou
parallel axis, as would be expected.

Summary:No configuration of four parallel axes is feasibl
Selecting any two non-parallel axes (R1 ,s1) and (R2 ,s2)
from a feasible configuration of three axes we can draw
circle C12 throughR1 , R2 andX12, the point of intersection
of lines drawn throughR1 and R2 parallel to s1 and s2 .
Every pointP on C12 is identified as an infeasible positio
for an axis parallel to the lineX122P, and if s is parallel to
X122P we write the infeasible position asC12(s). The line
throughR3 andC12(s3) also intersects circleC12 at a point
F. The lines,L~s!, through F are infeasible positions fo
axes with orientations, whereC12(s) lies at the intersec-
tion of L andC12 that is notF.

5 Discussion
This paper has presented the infeasible configurations for

three, and four accelerometer axes in the case of planar mo
four being the number required to extract as much information
possible about the motion of the configuration. The infeasible c
figurations were specified since they are less numerous than
feasible configurations and once infeasible configurations
known, any configuration that does not belong to this set mus
feasible. The graphical means of finding the infeasible configu
tions may be used as a design tool if a general four-axis confi
ration is desired. Minimal configurations for findinga, v2 and
both of these parameters together have also been presented.
determining A0 from T0 requires either integration, and th
knowledge of initial conditions, or some other sensing device
may be that these configurations are the ones that are mor
rectly useful.

A possible direction for future research is the extension to
spatial case which is obviously more generally applicable. So
results in spatial accelerometer configurations have been obta
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by Tan et al.@13#, although there is no geometric interpretation
the infeasibility configurations. Another interesting area of
search is the determination of robust configurations; configu
tions that are least sensitive to placement errors and manufa
ing errors in the accelerometers.
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Elasticity Solutions Versus
Asymptotic Sectional Analysis of
Homogeneous, Isotropic,
Prismatic Beams
The original three-dimensional elasticity problem of isotropic prismatic beams has
solved analytically by the variational asymptotic method (VAM). The resulting class
model (Euler-Bernoulli-like) is the same as the superposition of elasticity solution
extension, Saint-Venant torsion, and pure bending in two orthogonal directions. Th
sulting refined model (Timoshenko-like) is the same as the superposition of ela
solutions of extension, Saint-Venant torsion, and both bending and transverse shear
orthogonal directions. The fact that the VAM can reproduce results from the theo
elasticity proves that two-dimensional finite-element-based cross-sectional analyses
the VAM, such as the variational asymptotic beam sectional analysis (VABS), have a
mathematical foundation. One is thus able to reproduce numerically with VABS the
results for this problem as one obtains from three-dimensional elasticity, but with or
of magnitude less computational cost relative to three-dimensional finite elements.
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Introduction

The variational asymptotic method~VAM ! is a mathematical
approach applicable to any problem governed by an energy f
tional having one or more small parameters. Contrary to the
mal asymptotic methods, VAM applies the asymptotic expans
to the energy functional instead of the system of differential eq
tions, @1#. Hence, dropping a small term in the functional
equivalent to neglecting such quantities in several differen
equations simultaneously. This implies that, when applica
VAM is more compact and less cumbersome than stand
asymptotic methods. The VAM includes the merits of both var
tional ~systematic! and asymptotic~without ad hoc kinematic as
sumptions! methods. It allows one to replace a three-dimensio
structural model with a reduced-order model in terms of
asymptotic series of certain small parameters inherent to the s
ture. Although there are different forms of this method, e.g., C
rlet and Destuynder@2# and Berdichevsky@3#, the method used in
the present work is more closely aligned with the latter.

The application of the VAM to model beams with general g
ometry and material has been demonstrated in the theory as
ated with the computer program VABS~variational asymptotic
beam sectional analysis!. VABS was first mentioned in@4#. Its
development over the past ten years is described in@5–10# and
takes the variational asymptotic method~VAM !, @3#, as the math-
ematical basis. By means of the VAM, a general thre
dimensional nonlinear elasticity problem for a beam-like struct
is rigorously split into a two-dimensional linear cross-sectio
analysis and a one-dimensional nonlinear beam analysis. It is
teresting to know that Trabucho and Viano@11# applied the VAM

1Presently, Assistant Professor, Department of Mechanical and Aerospace
neering, Utah State University, Logan, UT 84322-4130.
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of Ciarlet and Destuynder@2# to construct mathematical mode
for rods. Their work is oriented more toward mathematicians th
engineers.

In accord with the theory behind it, VABS can perform a cla
sical analysis for initially twisted and curved inhomogeneous,
isotropic beams with arbitrary geometry, material properties,
reference cross sections. It captures both trapeze and Vlaso
fects, which are useful for specific beam applications. VABS
also able to calculate the one-dimensional stiffness matrix w
transverse shear refinement for initially twisted and curved, in
mogeneous, anisotropic beams with arbitrary geometry and m
rial properties. Finally, the three-dimensional stress and st
fields can be recovered, if required, for finding stress concen
tions, interlaminar stresses, etc.

There are a lot of beam theories in the literature. Howev
almost all published work is of the ad hoc variety, especially
the area of modeling composite structures. Because VABS de
ops stiffness models that use the same fundamental types o
formation that appear in traditional beam theories~such as those
of Euler-Bernoulli, Timoshenko, and Vlasov!, some researcher
may be tempted to believe that VABS is nothing more than
computerized adaptation of elementary theories. However, VA
is really very different from the traditional beam theories, and
assumptions behind it are far less restrictive. The fact that VA
uses the traditional types of deformation winds up creating
simple and smooth connection to traditional beam theories, so
the one-dimensional beam analyses will remain essentially
same. A large body of additional information regarding thre
dimensional behavior of the beam, which need not be conside
at all in a one-dimensional beam analysis, is actually taken
account by introducing three-dimensional warping functions t
are subsequently calculated.

In view of this, the main purpose of the present work is to ta
the reader, who is presumed to have a basic understandin
elasticity and calculus of variations, through an analytical deri
tion and application of the equations used by VABS for a spec
ized case so that its relationship with traditional theories will
clearer and its mathematical basis~VAM ! will appear less arcane
This paper is in essence ananalyticalvalidation of VABS against
the well-established theory of elasticity. Although numerous n
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Fig. 1 Schematic of beam deformation
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merical validation examples have been provided in@6,7,10,12#,
the present extensive and rigorous validation is required to d
onstrate conclusively its versatility and accuracy. This paper t
should increase the reader’s confidence in results obtained
VABS.

To accomplish the above, the present work specializes
VABS general formulation for the analysis of isotropic, prisma
beams. Starting with the governing differential equations and
sociated boundary conditions of elasticity theory, we set ou
prove~a! that the results from the classical model of VABS are t
same as the superposition of elasticity solutions of extens
Saint-Venant torsion, and pure bending in two orthogonal dir
tions; and~b! that the results from the Timoshenko-like model
VABS are the same as the superposition of the elasticity solut
of extension, Saint-Venant torsion, and both bending and tra
verse shear in two orthogonal directions.

Three-Dimensional Formulation
As sketched in Fig. 1, a beam can be represented by a refer

line r measured byx1 , and a typical cross sections with h as its
characteristic dimension and described by cross-sectional C
sian coordinatesxa . Note that here and throughout the pap
Greek indices assume values 2 and 3 while Latin indices ass
1, 2, and 3. Repeated indices are summed over their range e
where explicitly indicated. For the convenience of comparing w
elasticity solutions, the locus of all cross-sectional centroids al
the beam is chosen as the reference line. An orthonormal triabi
is chosen for the purpose of resolving tensorial quantities in c
ponent form for actual computation. For convenience,bi is chosen
to be tangent toxi , respectively.
6 Õ Vol. 71, JANUARY 2004
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The spatial position vectorr̂ of any point in the undeformed
beam structure can be written as

r̂ ~x1 ,x2 ,x3!5r ~x1!1xaba (1)

wherer is the position vector of the points of the reference lin
Note for a prismatic beam, the beam axis in the undeformed s
is straight. Finally,r 85b1 and ~ !8 means the partial derivative
with respect tox1 .

After deformation, the particle that had position vectorr̂ in the
undeformed state now has the position vectorR̂ in the deformed
state. Another orthonormal triadBi is introduced to express th
deformed configuration, and theBi unit vectors are not necessaril
tangent to the deformed beam coordinates. However, for the
venience of applying VAM, we chooseBi to coincide withbi in
the case of zero deformation,B1 to be tangent to the deforme
beam reference axis, andBa determined by a rotation aboutB1 .
ThenBi can be related tobi by a rotation tensor which is called
the global rotation tensor,@13#, such that

CBb5Bibi . (2)

CbB is the inverse rotation to bringBi back tobi which means

CBb"CbB5I (3)

whereI is the identity tensor. Please note that we donot make any
restrictive assumption here by choosingB1 to be tangent tox1 .
Instead, the transverse shear deformation will be included in
warping functions introduced below and will be explicitly broug
into evidence when we fit the asymptotic model into an engine
ing model that can account for this type of deformation, such a
Timoshenko-like model.
Transactions of the ASME
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The position vectorR̂ can be represented as

R̂~x1 ,x2 ,x3!5R~x1!1xaBa~x1!1wi~x1 ,x2 ,x3!Bi~x1! (4)

whereR is the position vector to a point on the reference line
the deformed beam, andwi are the components of warping, bo
in and out of the cross-sectional plane. By introducing the
known three-dimensional warping functions into the formulatio
one takes into account all possible deformation.

One should note that Eq.~4! is four times redundant because
the way warping was introduced. One must impose four appro
ate constraints on the displacement field to remove the red
dancy. The four constraints applied here are

^wi&50 (5)

^x2w32x3w2&50 (6)

where the notation̂ & means integration over the reference cro
section. The implication of Eq.~5! is that warping does not con
tribute to the rigid-body displacement of the cross section. T
leads to one-dimensional displacement variables for extension
bending that have easily identifiable geometric meanings: t
correspond to the measure numbers in thebi basis of the average
displacement of the cross section. Equation~6! implies the tor-
sional rotation variable is the average rotation of the cross sec
aboutB1 .

To formulate this problem in an intrinsic form, we need t
definition of the one-dimensional generalized Lagrangean stra

g5CbB"R82b1 (7)

Bi85k jBjÃBi (8)

where the column matrices of the ‘‘force-strain’’ measuresg
5 bg11 0 0cT andk i are the ‘‘moment-strain’’ measures. Based
the concept of decomposition of rotation tensor,@13#, if the local
rotation is small, which is the case for all the framework of VAB
except the trapeze solution~not considered in this paper!, the
Jaumann-Biot-Cauchy strain components are given by

G i j 5
1

2
~Fi j 1F ji !2d i j (9)

whered i j is the Kronecker symbol, andFi j the mixed-basis com-
ponent of the deformation gradient tensor such that

Fi j 5Bi "Gkg
k"bj . (10)

Here Gk5]R̂/]xk is the covariant basis vector of the deform
configuration andgk5bk for prismatic beams.

Because of the small strain assumption, which is applicabl
the framework of a geometrically nonlinear formulation, we m
neglect all terms that are products of the warping and the o
dimensional generalized strains. Thus, one obtains the th
dimensional strain field as

G115g111x3k22x2k31w18

2G125w1,22x3k11w28

2G135w1,31x2k11w38

G225w2,2

2G235w3,21w2,3

G335w3,3 (11)
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where ( ),a means the partial derivative with respect toxa . For an
isotropic elastic body with Young’s modulusE, shear modulusG
and Poisson’s ration, twice the three-dimensional strain energ
per unit length can be written as,@14#,

2P5E^G11
2 &14G^G12

2 1G13
2 1G23

2 &

1
E

~11n!~122n! K H nG111G22

nG111G33
J TF12n n

n 12n
G

3H nG111G22

nG111G33
J L . (12)

From energy principles, we know that the exact warping functio
satisfying the constraints, Eqs.~5! and ~6!, should minimize the
strain energy in Eq.~12!. However, the same difficulties as on
finds in solving general three-dimensional elasticity problems w
be encountered if one tries to solve this minimization probl
directly. Fortunately, as demonstrated in publications related
VABS, the VAM can be used to solve for the unknown warpin
functions asymptotically to avoid the difficulty of the origina
three-dimensional formulation. This will be illustratedanalytically
in the following sections.

Classical Model

Before applying the VAM, one must define the small para
eters of the problem. It was mentioned above that products of
one-dimensional generalized strains and warping are assume
be small because of the small-strain assumption. The assum
of small strain is adopted for the purpose of deriving a geome
cally nonlinear beam formulation. It will be assumed and sub
quently validated from the results that the warping is of the or
of h« with h as the characteristic dimension of the cross secti
The smallness of the one-dimensional generalized strains is t
into account as follows. The stretching of the beam reference
is denoted byg11; the maximum strain induced by twist is of th
order ofhk1 , while the maximum strain induced by bending is
the order ofhka . This observation is consistent with the sma
local rotation assumption used to derive Eq.~9!. Now, let us de-
note the order of the maximum strain as«5max(g11,hk i). This
small parameter is then utilized when deriving the thre
dimensional strain field, Eq.~11!, so that the smallness of« need
not be used in the rest of derivation. Another small paramete
h/ l wherel is the wavelength of beam axial deformation. This
the only small parameter one needs for prismatic beams for
purpose of solving the unknown warping functions asymptotica
and obtaining a strain energy asymptotically correct up to a c
tain order.

The classical model of a prismatic beam is represented in te
of a strain energy per unit length that is asymptotically correct
to the order ofm«2 where m is of the order of the maximum
material constant. All the prime terms in Eq.~11! are of orderh/ l
higher than the rest and do not contribute to such an energy. T
this energy, which is called the zeroth-order energy, can be
tained from Eq.~12! as
JANUARY 2004, Vol. 71 Õ 17



2P05ESg11
2 1EIaka

21G^~w1,22x3k1!21~w1,31x2k1!21~w3,21w2,3!
2&

1
E

~11n!~122n! K H n~g111x3k22x2k3!1w2,2

n~g111x3k22x2k3!1w3,3
J TF12n n

n 12n
G H n~g111x3k22x2k3!1w2,2

n~g111x3k22x2k3!1w3,3
J L (13)

Fig. 2 Sketch of a clamped prism
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whereS is the cross-sectional area andI a are the principal area
moments of inertia aboutxa . The warping functions that mini-
mize the above energy are governed by the Euler-Lagrange e
tions of this energy functional, given by

w1,221w1,3350 (15)

2~12n!w2,221~122n!w2,331w3,2322nk350 (16)

2~12n!w3,331~122n!w3,221w2,2312nk250 (17)

and the associated boundary conditions

n3~x2k11w1,3!1n2~w1,22x3k1!50 (18)

n3~w2,31w3,2!1
2n2

122n
@n~g111x3k22x2k3!1nw3,31~1

2n!w2,2#50 (19)

n2~w2,31w3,2!1
2n3

122n
@n~g111x3k22x2k3!1nw2,21~1

2n!w3,3#50 (20)

wherena is the direction cosine of outward normal with respect
xa . Here, to maintain a simpler derivation, we do not u
Lagrange multipliers to enforce the constraints of Eqs.~5! and~6!.
Instead, we keep these constraints in mind and check whether
can be satisfied by the solution. It can be observed that Eqs.~15!
and~18! are just the equations of Saint-Venant warpingc(x2 ,x3)
in elasticity textbooks such as,@15#, except

w1~x1 ,x2 ,x3!5ŵ1~x1 ,x2 ,x3!5c~x2 ,x3!k1~x1!. (21)

Hence the first approximation of the out-of-plane warpingŵ1 can
be solved by the methods given in elasticity books. According
the theory of elasticity,c can be determined up to a constant, a
one can choose the constant so that the constraint^ŵ1&50 is
satisfied. The following functions ofwa satisfy the other con-
straints as well as Eqs.~16!, ~17!, ~19!, and~20!:
18 Õ Vol. 71, JANUARY 2004
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w25ŵ252n~x2g111x2x3k2!1
nk3

2 S x2
22x3

21
I 22I 3

S D
w35ŵ352n~x3g112x2x3k3!2

nk2

2 S x2
22x3

21
I 22I 3

S D .

(22)

Having obtained all the warping functions, the three-dimensio
strain field can be recovered by Eq.~11! up to the zeroth order as

G115g111x3k22x2k3

2G125w1,22x3k1

2G135w1,31x2k1

G2252n~g111x3k22x2k3!

2G2350

G3352n~g111x3k22x2k3!. (23)

If one takes the definition of torsional rigidity from elasticit
texts, which is

GJ5G^x2
21x3

21x2c1,32x3c1,2& (24)

whereJ is the Saint-Venant torsion constant, then the asympt
cally correct three-dimensional energy, up to the order ofm«2,
can be written as

2P05ESg11
2 1GJk1

21EI2k2
21EI3k3

2. (25)

This energy coincides with the result of classical beam theo
however, it is obtained without any ad hoc kinematic assumpti
whatsoever. Such ad hoc assumptions as assuming the cros
tion to be rigid in its own plane or settingn50 are common in the
development of traditional beam theories in the literature.

For a straight beam clamped atx150 and under the tip load
F1 , Mi at x15L ~see Fig. 2!, the one-dimensional strain measur
can be solved with the help of the strain energy Eq.~25! as

g115
F1

ES
k15

M1

GJ
k25

M2

EI2
k35

M3

EI3
. (26)

If a linear beam theory is used, the three-dimensional displa
ment field can be recovered as
Transactions of the ASME
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u15
F1

ES
x12

M3

EI3
x2x11

M2

EI2
x3x11c

M1

GJ

u252nx2

F1

ES
2nx2x3

M2

EI2
1

nM3

2EI3
S x2

22x3
21

I 22I 3

S D1
M3

EI3

x1
2

2

u352nx3

F1

ES
1nx2x3

M3

EI3
1

nM2

2EI2
S x2

22x3
21

I 22I 3

S D2
M2

EI2

x1
2

2
(27)

which is essentially the superposition of elasticity solutions
extension, pure bending in two directions and torsion. The o
exception to this statement is that there is a difference of a c
stant from the elasticity solutions forua due to differences in the
way the clamped boundary condition is handled. Published e
ticity solutions enforce the clamped condition at the beam re
ence line. In our case, however, since the one-dimensional v
ables implied by the VAM solution are averages of the thr
dimensional displacement, the most straightforward solution
our framework constrains the average displacement to be z
Clearly, by enforcing a modified boundary condition in the on
dimensional beam theory, so as to mimic the clamped condi
used in the elasticity solutions, the two solutions will becom
identical; in particular, the constant terms inu2 andu3 will simply
drop out.

From the above, it is clearly shown that the above class
model stores the complete three-dimensional energy of prism
beams due to uniform extension, uniform torsion, and pure be
ing in two directions obtained by elasticity theory. The lineariz
three-dimensional displacement field recovered by VABS is
same as that obtained from elasticity theory.

Timoshenko-Like Model
Elasticity theory has another set of equations to solve for

so-called flexure problem, which involves both bending and tra
verse shear. For this VABS provides a Timoshenko-like mod
Because a Timoshenko-like model can at most approximate
original three-dimensional energy up to the order ofm«2(h/ l )2, a
strain energy that is asymptotically correct to the second orde
h/ l is sought first

2U15eTAe12eTBe81e8TCe812eTDe9 (28)

where A, B, C, and D are matrices carrying the geometry an
material information of the cross section, elements ofe
5 bg11 k1 k2 k3cT are the generalized one-dimensional strain m
sures of Euler-Bernoulli beam theory. For isotropic prisma
beams, in which the locus of cross-sectional centroids is take
the reference line and cross-sectional principal axes are alongxa ,
A becomes a diagonal matrix with diagonal terms given by
extensional stiffnessES, the torsional stiffnessGJ, and bending
stiffnessesEI2 andEI3 . A Timoshenko-like model is then create
out of the energy, Eq.~28!, as

2U5e t
TXe t12e t

TFg1gTGg (29)

where e t are the classical strain measures~but defined slightly
differently because of the framework of Timoshenko-like mode!,
andg5 b2g13 2g23cT transverse shear strains. The stiffness ma
cesX, F, andG can be found by~see@9#!

G5~QTA21CA21Q!21

F5BTA21QG

X5A1FG21FT (30)

where

Q5F0 0 0 1

0 0 21 0GT

. (31)

e t ande are related bye t5e2Qg.
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By a simple algebraic derivation,F and G can be expressed in
terms of the components ofA, B, andC as

G5
E2

C33C442C34
2 F C33I 3

2 C34I 2I 3

C34I 2I 3 C44I 2
2 G

F5
E

C33C442C34
2 F ~B41C332B31C34!I 3 ~B31C442B41C34!I 2

~B42C332B32C34!I 3 ~B32C442B42C34!I 2

~B43C332B33C34!I 3 ~B33C442B43C34!I 2

~B44C332B34C34!I 3 ~B34C442B44C34!I 2

G
(32)

where the subscripted terms involvingB andC are specified ele-
ments in those matrices. Here, one can conclude thatG is deter-
mined by the coefficients associated withka8kb8 in the asymptotic
energy, andF is determined by the coefficients associated w
kag118 and kak i8 . This observation is very important because
leads to our finding a closed-form solution for the Timoshenk
like model for isotropic, prismatic beams. To obtain the seco
order energy, we perturb the warping functions as

wi5ŵi1Vi (33)

whereVi is of the order«h/ l . Substituting the perturbed warpin
functions back into Eq.~11!, one obtains

G115g111x3k22x2k31ŵ181V18=

2G125ŵ1,22x3k11V1,21ŵ281V28=

2G135ŵ1,31x2k11V1,31ŵ381V38=

G225ŵ2,21V2,2

2G235ŵ3,21ŵ2,31V3,21V2,3

G335ŵ3,31V3,3 (34)

where the underlined terms are of the order«h/ l , the double
underlined terms are of the order«h2/ l 2, and the rest of the terms
are of the order«. Substituting this perturbed strain field into th
energy functional Eq.~12! and neglecting all the terms of orde
higher thanm(h/ l )2«2, one obtains

2P52P012P112P2 (35)

whereP0 is the energy obtained for the classical model, Eq.~25!
and

P15E^ŵ18~g11=1x3k22x2k3!&

1G@^~ŵ1,22x3k1!V1,21~ŵ1,31x2k1!V1,3&

1^~ŵ1,22x3k1!ŵ281~ŵ1,31x2k1!ŵ38&]. (36)

It is easy to prove that the underlined terms vanish for arbitr
V1 . According to Eq.~32!, the double underlined terms will no
affect the Timoshenko-like model constructed from the seco
order energy. Thus, the only terms of interest are

P15E^ŵ18~x3k22x2k3!&. (37)

Note these terms will not necessarily vanish unless the Sa
Venant warping, for which we have already solved, posses
some kind of symmetry. Thus, the second-order energy beco
JANUARY 2004, Vol. 71 Õ 19
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2P252E^V18~g111x3k22x2k3!1ŵ18
2&1G^~V1,21ŵ28!2

12V28~ŵ1,22x3k1!&1G^~V1,31ŵ38!212V38~ŵ1,31x2k1!

1~V2,31V3,2!
2&

1
E

~11n!~122n! K H nŵ181V2,2

nŵ181V3,3
J TF12n n

n 12n
G

3H nŵ181V2,2

nŵ181V3,3
J L . (38)

The underlined terms create difficulty to solve this problem in
two-dimensional cross-sectional domain. However, our goal i
find an interior solution without consideration of boundary effe
at the ends of the beam. Hence, integration by parts with res
to x1 can be used, and the residual terms at the ends ca
considered as having no effect on the interior solution. This ar
ment can be illustrated mathematically if one constrains the w
ing V1 in such a way that

^V1~g111x3k22x2k3!ux150&5^V1~g111x3k22x2k3!ux15L&.
(39)

The effect of such a constraint will die out after a small distan
from the ends according to the Saint-Venant principle. Then,
Euler-Lagrange equations for the functionalP2 are

V1,221V1,3312~g118 1x3k282x2k38!50 (40)

2~12n!V2,221~122n!V2,331V3,231~2n21!x3k181ŵ1,28 50
(41)

2~12n!V3,331~122n!V3,221V2,231~122n!x2k18

1~122n!ŵ1,38 50 (42)

and the associated boundary conditions given by

n3~V1,31ŵ38!1n2~V1,21ŵ28!50 (43)

n3~ŵ2,31ŵ3,2!1
2n2

122n
@nV3,31~12n!V2,21nŵ18#50

(44)

n2~ŵ2,31ŵ3,2!1
2n3

122n
@nV2,21~12n!V3,31nŵ18#50.

(45)

It is observed thatVa is decoupled fromV1 ; Va should be some
function multiplying k18 and V1 will be a linear combination of
g118 , and ka8 . The terms associated withVa will not affect the
Timoshenko-like model as shown in Eq.~32!. ~In fact these terms
are related with the Vlasov theory and will be studied in la
paper.! Hence, one can setVa to be zero and drop all terms tha
have no effect on the Timoshenko-like model. Then, after re
culatingP2 , one finds

2P252E^V18~x3k22x2k3!&

1GK FV1,22nx2x3k281
nk38

2 S x2
22x3

21
I 22I 3

S D G2L
1GK FV1,31nx2x3k381

nk28

2 S x2
22x3

21
I 22I 3

S D G2L .

(46)

Then the corresponding Euler-Lagrange equation, Eq.~40!, and
boundary condition, Eq.~43!, will be modified to

V1,221V1,3352~x2k382x3k28! (47)
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n3FV1,31nx2x3k381
nk28

2 S x2
22x3

21
I 22I 3

S D G
52n2FV1,22nx2x3k281

nk38

2 S x2
22x3

21
I 22I 3

S D G .
(48)

One can introduce a special function as

V1,22nx2x3k281
nk38

2 S x2
22x3

21
I 22I 3

S D
5f ,31~11n!x2

2k381 f ~x3!
(49)

V1,31nx2x3k381
nk28

2 S x2
22x3

21
I 22I 3

S D
52f ,22~11n!x3

2k281g~x2!

to satisfy Eq.~47! automatically, wheref (x3) andg(x2) are arbi-
trary functions. The advantage of introducingf is that Eq.~48!
can be made much simpler based on the choice off (x3) and
g(x2). Using Eq.~49!, the boundary condition, Eq.~48! becomes

]f

]s
52@ f ~x3!1~11n!x2

2k38#n22@g~x2!2~11n!x3
2k28#n3

(50)

wheres is the contour coordinate along the cross-sectional bou
ary. If the arbitrary functions are chosen such that on the bound

f ~x3!5H 2~11n!x2
2k38 if n2Þ0,

arbitrary if n250

g~x2!5H ~11n!x3
2k28 if n3Þ0,

arbitrary if n350
(51)

then the right-hand side of Eq.~50! vanishes andf is constant
along the boundary. For simply connected domains, one
choosef to vanish along the boundary. The governing different
equations forf can be deduced from Eq.~49! as

f1,221f1,33522nx2k281
dg~x2!

dx2
22nx3k382

d f~x3!

dx3
. (52)

This equation is the same as that governing the flexure proble
both directions if one expresseska8 in terms of the tip transverse
force and multipliesf by the shear modulusG. Therefore, all
flexure problems that are solvable by elasticity theory can also
solved analytically by the VAM~the procedure on which VABS is
based!. After f is obtained, one can findV1 up to a constant using
Eq. ~49!, where the constant can be determined by the constr
^V1&50. The portion of asymptotically correct energy Eq.~28!
that is needed for constructing the Timoshenko-like model can
found from Eqs.~35! and ~46!.

Although it is necessary to carry out an integration by pa
with respect tox1 for the sets of terms in the first bracket of E
~46! to render the present problem as a purely cross-secti
problem, this operation should not be applied at the step where
strain energy is obtained. Previous publications,@7,9#, are silent
on this seemingly inconsistent practice because a reasonabl
planation had not been formulated. However, for the present p
lem, the transverse shear energy is completely represented b
last two sets of terms and the first set of terms is part of the ene
due to extension. If one integrates this first set of terms by pa
this energy represented by it will be transformed into transve
shear energy according to Eq.~32!, which is at least physically
inappropriate; and, in the worst case, the total transverse s
energy will turn out to be negative. Nevertheless, if one does
integration by parts and also keeps the residual terms at the e
the fictitious transverse shear energy caused by integration
parts will be canceled by the residual terms at the boundar
which means the final three-dimensional results will not be
Transactions of the ASME



t
t

a

i

g a
re.

ries
fected by this operation. Based on this fact and Eq.~32!, the first
set of terms in Eq.~46! for the present problem will not affec
the final Timoshenko-like model and will be discarded in la
calculations.

After constructing the Timoshenko-like model using Eqs.~32!
and~30! and using it to solve the one-dimensional beam proble
the three-dimensional strain field can be recovered using Eq.~34!
and the displacement field can be recovered similarly as Eq.~27!.
This procedure will be given in detail for some example cro
sections that follow.

Example Cross Sections
In this section two typical examples listed in the elasticity te

of Timoshenko and Goodier@15# are studied here using the an
lytical procedures formulated in previous sections.

Elliptical Section. For an elliptical cross section with sem
axesa and b in the directions ofx2 and x3 , respectively, andr
5a/b as the aspect ratio, the Saint-Venant warping is found to

c5
~b22a2!x2x3

a21b2
. (53)

If one chooses thef (x3) andg(x2) according to Eq.~51!

f ~x3!52~11n!x2
2k3852~11n!S 12

x3
2

b2D a2k38

g~x2!5~11n!x3
2k285~11n!S 12

x2
2

a2D b2k28 (54)

then both Eqs.~50! and ~52! will be satisfied by

f5mS x2
2

a2
1

x3
2

b2
21D x31nS x2

2

a2
1

x3
2

b2
21D x2 (55)

with

m52
r2@n1~11n!r2#

113r2
b2k38

n52
@nr21~11n!#

31r2
b2k28 . (56)

Then one can obtainV1 by Eq. ~49! as

V15p
x3k28

24~31r2!
1q

x2k38

24~113r2!
(57)

with

p524x3
2@41n1~22n!r2#212x2

2~22n1nr2!13b2@1618r2

113n12nr21nr4!]
(58)

q54x2
2@~41n!r2122n#212x3

2@~22n!r21n#23b2@16r4

18r2113nr412nr21n!].

Then the energy of the order (h/ l )2 excluding the terms that do
not affect the final Timoshenko-like model can be computed a

2P2

EAb4
5

@r4n212r2~11n!215~11n!2#k28
2

12~31r2!~11n!

1
r2@n212r2~11n!215r4~11n!2#k38

2

12~113r2!~11n!
. (59)

The final Timoshenko-like model can be expressed as
Journal of Applied Mechanics
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2U5H g11

k1

k2

k3

J TF ES 0 0 0

0 GJ 0 0

0 0 EI2 0

0 0 0 EI3

G H g11

k1

k2

k3

J
1 H2g12

2g13
J TFS2 0

0 S3
G H2g12

2g13
J (60)

where

S5pab J5
pa3b3

a21b2
I 25

p

4
ab3 I 35

p

4
a3b (61)

and

S25
3a2~3a21b2!~11n!2GS

2@b4n215a4~11n!212a2b2~11n!2#

S35
3b2~a213b2!~11n!2GS

2@a4n215b4~11n!212a2b2~11n!2#
. (62)

The results are the same as those in@10#, but in that work the
results are obtained by using the Ritz method and assumin
third-order polynomial which is of the exact form as shown he
This result is the same as what is in@16# which has been obtained
through elasticity theory. However, the result provided in@17# is
an approximation of the exact solution.

Rectangular Section. For a rectangular section of width 2a
in x2-direction and height 2b in x3-direction ~see Fig. 3!, the
Saint-Venant warping can be expressed in a form of infinite se
such as

c52x2x3

1
32b2

p3 (
n50

`
~21!n

~2n11!3

sinhS 2n11

2

px2

b D
coshS 2n11

2

pa

b D sinS 2n11

2

px3

b D .

(63)

To solve forf, we should choose the arbitrary functionsf (x3) and
g(x2) first. Along x256a, n2Þ0, so we can choosef (x3)
52(11n)a2k38 and g(x2) can be arbitrary. Alongx356b, n3

Þ0, we can chooseg(x2)5(11n)b2k28 and f (x3) can be arbi-
trary. Solving Eq.~52!, one finds

f52
n

3
~x2

22a2!x2k28

1
4na3k28

p3 (
n51

` ~21!n coshS npx3

a D sinS npx2

a D
n3 coshS npb

a D 2
n

3
~x3

2

2b2!x3k381
4nb3k38

p3 (
m51

` ~21!m coshS mpx2

b D sinS mpx3

b D
m3 coshS mpa

b D .

(64)

Then one can deriveV1 to be
JANUARY 2004, Vol. 71 Õ 21
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4a3nk28

p3 (
n51

` ~21!n sinhS npx3

a D cosS npx2

a D
n3 coshS npb

a D

1
4nb3k38

p3 (
m51

` ~21!m sinhS mpx2

b D cosS mpx3

b D
m3 coshS mpa

b D
1F S n

6
1

1

3D x2
32S a21

5a2n

6
2

b2n

6 D x22
nx2x3

2

2 Gk38

2F S n

6
1

1

3D x3
32S b21

5b2n

6
2

a2n

6 D x32
nx2

2x3

2 Gk28 .

(65)

Then the energy of the order (h/ l )2 excluding the terms that do
not affect the final Timoshenko-like model can be computed a

2P2

G
5F 16n2ba5196b5a~11n!2

45
2

32n2a6

p5

3(
n51

` tanhS bnp

a D
n5

Gk28
2

1F 16n2b5a196a5b~11n!2

45

2
32n2b6

p5 (
m51

` tanhS amp

b D
m5

Gk38
2. (66)
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The final Timoshenko-like model can be expressed as Eq.~60!
with

S54ab J5bab3 I 25
4

3
ab3 I 35

4

3
a3b Sa5

GS

ka
(67)

whereb can be found in elasticity textbooks such as@15# andka
are the so-called shear correction factors, given by

k25
6

5
1S n

11n D 2

r24F1

5
2

18

rp5 (
m51

`
tanh~mpr!

m5 G
k35

6

5
1S n

11n D 2

r4F1

5
2

18

p5 (n51

`
tanh~npr21!

n5 G . (68)

Although the form of the shear correction factors are differe
from those of Renton@16#, the numerical values for different as
pect ratios are the same. The reason the two results are of diffe
form is because in@16# the flexure problem is solved by using
double trigonometric series while here hyperbolic series are u
along with the trigonometric series which converge to a fix
value more rapidly. Please note that although@17# is also based on
the VAM, the shear correction factors presented therein for
rectangular section are approximations of the elasticity solutio

Conclusions
The variational asymptotic method, on which the finit

element-based cross-sectional analysis VABS~variational
asymptotic beam sectional analysis! is based, has been used
analytically solve the isotropic prismatic beam problem. The sa
governing equations for Saint-Venant warping and the gen
flexure problem have been shown to correspond with those of
theory of elasticity. Identical results have been found betwe
elasticity and VAM solutions for beams with elliptical and recta
gular cross sections. It has been proven mathematically that fo
isotropic prismatic bar with an arbitrary cross section the class
model of VABS is the same as the superposition of elastic
solutions for extension, pure bending in two directions and t
Transactions of the ASME
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sion. Moreover, the Timoshenko-like model of VABS consists
these plus the solution for the general flexure problem in b
directions.

The fact that the numerical procedure in VABS reproduces
results of elasticity theory clearly demonstrates that the VAM,
mathematical foundation of VABS, is a valid methodology th
can be used to avoid the difficulties of dealing with thre
dimensional elasticity while obtaining results that are coincid
with the exact solutions. Although it may not be possible to va
date the general theory of VABS for anisotropic beams in t
same way, it is a natural deduction from the above demonstrat
to conclude that the results for generally anisotropic beams sh
be the same as those calculated by methods based on t
dimensional elasticity theory, such as three-dimensional finite
ements. Indeed, as three-dimensional finite elements allow on
go beyond the limitations of three-dimensional elasticity, VAB
may also be considered as a means for going beyond those l
when considering the cross-sectional analysis of beams.
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Nanoscale Domain Stability in
Organic Monolayers on Metals
Certain organic molecules, such as alkanethiols, can adsorb on metals to form mon
ers. Sometimes domains appear in the monolayers. For example, an incomplete
layer may form islands, and a mixed-composition monolayer may separate into di
phases. During annealing, the molecules diffuse on the metal surface. The domain b
ary energy drives the domains to coarsen. The contact potential between the diss
domains drives the domains to refine. On the basis of existing experimental inform
we suggest that the competition between coarsening and refining should stabilize c
domain patterns. We formulate a free energy functional to include the effects of m
species, domain boundary, and contact potential. An approximate energy minimiz
estimates the equilibrium domain size. We derive a diffusion equation consistent wi
free energy functional. The numerical solution of the diffusion equation follows the
lution of the monolayers from a random initial concentration field to patterns of dots
stripes. We also discuss the practical implications of the theory and, in particular,
possibility of guided self-assembly.@DOI: 10.1115/1.1640366#
h

i

e

s
v

b

e

a
e
s
i

. A
i-
.
um

x-

uir
ile.
d-

in a
do-
he
rgy
rns,
s to

e
the
y
ch
, as
ap-
tro-
gly.
, and
on
the
tial,
rgy
sti-
a

nd

on,
ffu-

so-
les
orb,
ears
s the
om-

0

1 Introduction
An alkanethiol molecule, HS~CH2)nX, consists of a thiol group

HS at one end, an alkyl chain (CH2)n in the middle, and a tail
group X at the other end. As illustrated in Fig. 1, when a cle
gold substrate is in contact with an alkanethiol solution, the m
ecules adsorb on the gold surface to form a self-assembled m
layer~SAM!, @1–3#. The thiol groups bond to the gold surface, t
alkyl chains attract one another through the van der Waals fo
and the tail groups are exposed at the surface. Alkanethiol mo
layers have been used as a model system to study many phe
ena, @4–7#. For instance, SAMs can control surface propert
~e.g., adhesion and wetting!, @4#. Patterned SAMs~e.g., by micro-
contact printing! are used to fabricate devices, and to confine c
and biomolecules in desired regions on a substrate,@5–7#.

Under certain conditions, a SAM spontaneously forms d
mains. For example, for an incomplete monolayer, patches of
monolayer coexist with patches of the bare metal,@8–10#. ~The
‘‘bare metal’’ can actually be covered by the lying-down pha
@1#.! Also, when a monolayer of dissimilar alkanethiols fully co
ers the metal surface, different phases may coexist,@9–12#!. Un-
less the distinction is important, we will refer to the patches
domains, be they standing-up phase, lying-down phase, or
metal. The domains observed so far have sizes ranging from
nometers to micrometers, and do not form any regular pattern
the domain size set by thermodynamic equilibrium, or by kin
ics? Can the domains be guided to form some regular patte
such as an array of stripes or a lattice of dots? Within the
kanethiol family, properties vary considerably with the alkyl cha
length and the tail group, giving rise to a large parameter sp
which can be used to tailor experiments. Regular domain patt
of a controllable size would open new applications of theses
tems. Consequently, it is significant to consider these quest

1To whom correspondence should be address. Present address: Division of
neering and Applied Sciences, Harvard University, Cambridge, MA 02138. e-m
suo@deas.harvard.edu

2Present address: Division of Engineering, Brown University, Providence,
02912.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Sept. 4, 20
final revision, July 8, 2003. Associate Editor: H. Gao. Discussion on the paper sh
be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mech
ics, Department of Mechanical and Environmental Engineering, University
California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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theoretically, even though definitive experiments are lacking
predictive theory will point to fruitful experiments with alkaneth
ols on gold, as well as with other molecule-substrate systems

This study was also prompted by the observation of equilibri
domain pattern formation in monolayers of several types. E
amples include atomic monolayers on solid surfaces,@13–19#, and
molecular monolayer at the air-water interface, i.e., Langm
films, @2,20–23#. The adsorbed atoms or molecules are mob
Domainscoarsento reduce the total length of the domain boun
aries. The residual stresses, or the presence of electric dipoles
monolayer, induce an elastic or electrostatic field, so that the
mains mayrefine to reduce the free energy associated with t
field. It is the competition between the domain boundary ene
and the field energy that leads to the equilibrium domain patte
@23–30#. The observed domain sizes range from nanometer
hundreds of micrometers.

Domains in a Langmuir film change by viscous flow in th
monolayer and water, although molecules may also diffuse on
surface,@21,31,32#. Domains in a SAM on a metal change b
molecular diffusion. Electronic transport in the metal is mu
faster than molecular diffusion on the surface. Consequently
molecules diffuse on the surface, electrons flow in the metal r
idly, the electric potential in the metal equalizes, and the elec
static field in the space above the monolayer adjusts accordin

Section 2 discusses phase separation, domain coarsening
domain refining, drawing on experimental data of alkanethiols
gold. Section 3 formulates a free energy functional to describe
effects of mixed species, domain boundaries, contact poten
and electrostatic field. In Section 4, we minimize the free ene
by assuming sinusoidal concentration fields, arriving at an e
mate of the equilibrium domain size. In Section 5, we derive
diffusion equation compatible with the free energy functional, a
numerically simulate the annealing process.

2 Phase Separation, Domain Coarsening, and Domain
Refining

When a gold substrate is in contact with an alkanethiol soluti
two kinds of mass transport, i.e., adsorption-desorption and di
sion, proceed simultaneously. First consider the case that the
lution contains a single species of alkanethiol. Initially molecu
adsorbed on the surface form islands. As more molecules ads
the islands connect, and the remaining bare gold surface app
as monolayer-deep vacancy islands. Further adsorption cause
vacancy islands to shrink and disappear. Finally a monolayer c
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pletely covers the gold surface. A necessary condition to form
equilibrium domain pattern of an incomplete monolayer is
break the contact between the solution and the metal before
monolayer completes. In subsequent annealing, molecules dif
on the surface to change the domain patterns.

Similar considerations apply to the case that the solution c
tains two alkanethiol species, A and B. As pointed out by Folk
et al., @32#, if gold is kept in contact with the solution, allowing
the molecules on gold to exchange with those in the solution
equilibrium the monolayer will have a single phase. Again, a n
essary condition to stabilize two phases in a monolayer is to br
the contact between the solution and the metal at some point.
monolayer covers the entire surface, and the amount of the
components in the monolayer has a suitable ratio. For the
phases to equilibrate in annealing, the enthalpy of mixing has
overcome the entropy of mixing. LetC be the concentration of the
monolayer, namely, the fraction of surface sites on gold occup
by B-alkanethiols. During annealing, the molecules can diffuse
the surface, but the amount of either species remains constan
that the average concentration of the monolayer,C0 , remains in-
variant. Figure 2 illustrates the free energy of mixingg(C) for a
homogeneous monolayer. The two wells atCa andCb correspond
to the two phases. WhenCa,C0,Cb , the monolayer separate
into the two phases in equilibrium.

Alkanethiol molecules form strong bonds to gold surface, a
are not very mobile at room temperature. The diffusivity of a
kanethiols on gold is estimated to beD510221 m2/s, @33#. For the
concentration field to change over a length scaleL, the time
needed scales ast;L2/D. For example, if the domain size is 1
nm, the time scale is;105 s. It has been observed that nanosca
islands in an incomplete monolayer under atmospheric conditi
coarsen at room temperature in days,@8#. To accelerate pattern
formation, the monolayer can be annealed above room temp
ture, as long as the molecules do not evaporate appreciably,
the phases are still stable.

The excess free energy of the domain boundaries, i.e., the
tension, drives coarsening. For domains to be stable, a refin
action must exist to prevent domains from growing too large.
now examine how the contact potential drives domains to refi
Regard the monolayer and a few top layers of gold atoms as
interfacial system. Across the thickness of this system, the p
tive and the negative electric charges are unevenly distribu

Fig. 1 When a metal is in contact with an alkanethiol solution,
the alkanethiol molecules adsorb on the metal surface to
form a monolayer. The structure of a HS „CH2…4OH molecule is
illustrated.
Journal of Applied Mechanics
an
to
the

fuse

on-
rs

, in
c-

eak
The
two
two

to

ied
on
t, so

s

nd
l-

le
ons

era-
and

line
ing
e

ne.
an

osi-
ted,

resulting in an electric dipole normal to the surface. Now consid
two gold substrates, one covered with a monolayer of phasea,
and the other with a monolayer of phaseb. When the two sub-
strates are connected, electrons flow from one substrate to
other, until the chemical potentials of electrons in the two su
strates are equilibrated. Due to the difference in the two monol
ers, the electric potential in space neara differs from that nearb,
sayfa,fb . The difference,U5fb2fa , is known as the con-
tact potential, and can be measured by the Kelvin method,@34–
36#. The contact potential sets up an electrostatic field in
space, and a charge density field on the metal surface,@37#.

Figure 3 illustrates a monolayer composed of two kinds of d
mains,a and b. The periodl represents the domain size. Th
metal occupies the lower half spacex3,0, and the monolayer
coincides with the (x1 ,x2) plane. The space above the monolay
is occupied by air. The electrostatic energy stored in the sp
depends on the magnitude of the contact potential, but not on h

Fig. 2 The free energy of mixing for a monolayer composed of
two molecular species, A and B. The pair has a large enthalpy
of mixing, so that the free energy of mixing has two wells at Ca

and Cb , corresponding to two phases. When the average con-
centration of the monolayer, C0 , is between the two wells, to
reduce the free energy, the monolayer separates into the two
phases.

Fig. 3 The contact potential UÄfbÀfa causes an electro-
static field in the air, a positive charge on the metal surface
under domain b, and a negative charge under domain a. Rep-
resent the domain size by the period l.
JANUARY 2004, Vol. 71 Õ 25
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the contact potential is set up. Imagine that the contact pote
can be varied from zero to its final magnitudeU. This can be
accomplished, for example, by starting with a purea-phase mono-
layer, and gradually converting some patches into theb-phase.
When the contact potential is zero, the charge on the metal su
is zero. As the contact potential increases, electrons flow in
metal, setting up a net positive charge1Q on the metal surface
under theb domains, and a net negative charge2Q under thea
domains. Because the electrostatic field equations in the spac
all linear,Q is linear inU ~Fig. 4~a!!. The slope of the line is the
inverse of the capacitance of the system. When the contact po
tial changes from 0 toU, the electrostatic energy stored
the space above the monolayer is 1/2QU. It is always a positive
quantity.

In reality, the contact potentialU is held constant by the mo
lecular difference between the two domains. The contact pote
acts like a battery, and theb and a domains act like two elec-
trodes. The metal substrate serves as a wire connecting the
trodes. When transporting an amount of chargeQ from the a
domains to theb domains, the constant voltageU does workQU.
Having done this work, the ‘‘battery’’ reduces the free ener
Consequently, the electric free energy, of the combined system
the electrostatic energy in space minus the work done by the
stant contact potential, namely, 1/2QU2QU521/2QU. The
electric free energy is always a negative quantity. At a cons
voltage, the higher the capacitance, the larger the charge, an
lower the free energy. That is, to reduce the electric free energ
the constant contact potentialU, the system evolves toward
configuration of high capacitance.

We can now understand the refining action due to the con
potential. In the discussion above, we kept the domain pat
fixed. Now allow the domain pattern to change by molecular d
fusion. In this process,U is constant, but both the chargeQ on the
metal surface and the electrostatic field in space change. As
domain size decreases froml2 to l1 , the capacitance increase
~Fig. 4~b!!. The trend is analogous to a parallel-electrode capac
~Fig. 4~c!!. The chargeQ increases as the domain size decreas
The electric free energy is reduced if the domain size decrea
so that the contact potential drives the domains to refine.

3 Free Energy as a Functional of the Concentration
Field

Similar to the Cahn-Hilliard model@38#, we represent a poly-
domain monolayer by a continuum concentration field,C(x1 ,x2),
and a domain boundary by a gradient in the concentration fi
First consider a surface of gold covered with a homogen
monolayer of concentrationC. Denotef as the contact potentia
between this surface and a reference surface, say, a gold su
covered with a monolayer of pure A. We assume that the con
potential is linear in the concentration:

f5zC. (1)

That is, the dipole moment of an individual molecule, either A
B, is assumed to be unaffected by the presence of other molec
on the substrate. The metal is covered by pure A atC50, and by
pure B atC51. Consequently, the slopez in ~1! equals the contac
potential between a substrate covered by pure B and another
strate covered by pure A.

Figure 5 illustrates the interface between the air and the me
We assume that the thickness of the interfacial system is s
compared to the domain size, and is negligible in calculating
electrostatic field. Denote the electric potential in the space
C(x1 ,x2 ,x3). The electric potential in the bulk of the metal
constant, taken to be zero. In the space, at a point immedia
above the monolayer,x3501, the electric potential equals th
contact potential:

C~x1 ,x2,0!5f~x1 ,x2!5zC~x1 ,x2!. (2)
26 Õ Vol. 71, JANUARY 2004
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Fig. 4 „a… The charge Q accumulated under either domain in-
creases linearly with the contact potential between the two do-
mains, UÄfbÀfa . The area of the triangle is the electrostatic
energy stored in the space occupied by the air. The slope of the
line is inverse of the capacitance of the system. „b… The Q-U
lines for two domain sizes, l1Ël2 . At a constant voltage, the
smaller the domain size, the larger the charge, namely, Q1
ÌQ2 . „c… In a parallel-electrode capacitor, the electric interac-
tion causes the attraction between two electrodes. To keep the
two electrodes in place, one has to apply a pair of forces to pull
the electrodes apart.
Transactions of the ASME
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Let the electric charge per unit area on the metal surface
s(x1 ,x2). Applying Gauss’s law to a small volume containing a
element of the interfacial system, one confirms that the elec
displacement component in the space immediately above
monolayer isD3(x1 ,x2,0)5s(x1 ,x2). Consequently, the surfac
charge density relates to the electric potential in space as

s~x1 ,x2!52«0

]C

]x3
, x350. (3)

The field equations are standard. The electric field relates to
gradient of the electric potential asE52¹C. The electric dis-
placement is linear in the electric field, namely,D5«0E. We as-
sume that the upper half space is free of charges, so that
electric displacement is divergence-free,¹•D50. Consequently,
the electric potential in the air satisfies the Laplace equation:

¹2C50. (4)

The electrostatic energy stored in the space is the same a
work done in building up the contact potential from zero tof,
namely,

E 1

2
E"DdV5E 1

2
fsdA. (5)

The integral on the left-hand side extends over the volume of
half space above the surface, and the integral on the right-h
side extends over the area of the surface. Equation~5! can also be
confirmed by using the field equations and the divergence th
rem. We assume that the system as a whole is neutral,*sdA
50. Equation~5! shows that the electrostatic energy in the spa
above the monolayer vanishes when the contact potential is
form over the surface, as expected.

Next we examine the free energy of the interfacial system. T
interfacial energy density,G, takes an unusual from. Assume th
G is a function of the concentrationC, the concentration gradien
¹C, and the surface charge densitys. Expanding the function
into the Taylor series to the leading order terms in¹C ands, we
have

G5g1hu¹Cu22fs, (6)

whereg, h, andf are in general functions ofC. The termg(C) is
the surface energy density when the concentration is uniform
the surface charge vanishes. Indeed, the functiong(C) is the free
energy of mixing~Fig. 2!, taken to be an input of the mode
Because the interfacial energy density is independent of the di
tion of the concentration gradient, the leading term in¹C is qua-
dratic, with h being a positive constant. In the expansion~6!, we

Fig. 5 The boundary conditions at the interfacial object be-
tween the air and the bulk of the metal
Journal of Applied Mechanics
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keep the third term linear ins, but neglect terms which are highe
order ins. As discussed in Section 2, whenf is held a constant
for the interfacial element, the work done byf to add charges to
the element issf, which reduces the free energy.

The excess free energy of the interfacial object is the integra
G over the area of the surface. The free energyG of the system—
the SAM on metal and the space above—is the sum of the e
trostatic energy stored in the space, Eq.~5!, and the excess free
energy of the interfacial object, namely,

G5E S g1hu¹Cu22
1

2
fs DdA. (7)

In summary, this section defines a thermodynamic system
prescribing a procedure to calculate its free energy. The free
ergy is a functional of the concentration field. Given a concen
tion field C(x1 ,x2), one determines the electric potenti
C(x1 ,x2 ,x3) by solving the Laplace Eq.~4! subject to the bound-
ary condition~2!, and then calculates the surface charge den
s(x1 ,x2) according to~3!. Equation~7! gives the free energy o
the system. The concentration field evolves to minimize this f
energy.

4 An Approximate Analysis of Equilibrium Domain
Sizes

An equilibrium domain pattern corresponds to a concentrat
field that minimizes the free energy functional~7!. To estimate the
equilibrium domain size, we minimize the free energy over a p
ticular family of concentration fields:

C~x1 ,x2!5C01C1 sinS 2px1

l D . (8)

This family represents an array of periodic stripes oriented al
the x2 direction. During annealing, the metal is no longer in co
tact with the alkanethiol solution, so that the average concen
tion of the monolayer,C0 , is fixed. The amplitude of fluctuation
C1 , and the period,l, are varied to minimize the free energy.

A combination of~1! and ~8! gives the contact potential

f5zC1 sinS 2px1

l D . (9)

Matching this boundary condition, the solution to the Lapla
equation gives the electric potential in the upper half-space:

C5zC1 sinS 2px1

l DexpS 2
2px3

l D . (10)

The electric potential decays exponentially asx3→`, the decay
length beingl/2p. The surface charge is calculated according
~3!, giving

s5«0zC1S 2p

l D sinS 2px1

l D . (11)

The surface charge is in phase with the contact potential~9!, as
expected.

The average energy per unit area is the integral~7! over one
period, divided by the period. The calculation gives

Ḡ5ḡ1
C1

2

4 F2hS 2p

l D 2

2«0z2S 2p

l D G . (12)

The average energy of mixing,ḡ, is independent of the wave
length. The two terms in the bracket result from, respectively,
domain boundary and electrostatics. The trends discussed in
tion 2 can now be seen clearly in~12!. The domain boundary
energy reduces when the wavelength increases, and drives
domains to coarsen. The electrostatic energy reduces when
wavelength decreases, and drives the domains to refine.
JANUARY 2004, Vol. 71 Õ 27
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The free energy is quadratic in~2p/l!, and reaches its minimum
at the wavelength

l05
8ph

«0z2
. (13)

Using «058.85310212 F/m, h510221 J and z50.5 V, we find
that l0511 nm. Before taking this estimate seriously, we sho
discuss the validity of the analysis, and the field of variability
the parameters.

In reaching~13!, we have sought the energy minimizer amo
candidates of a very small family of concentration fields, Eq.~8!.
The sinusoidal concentration profile is a reasonable approxima
when the domain size is not too large compared to the dom
boundary width. This happens when the refining action is stro
or when the coarsening action is weak~e.g., when the binary
monolayer is held just below the critical temperature!. When the
domain size is, say, more than ten times the domain boun
width, however, the concentration profile is close to a squ
wave, which should be represented by a Fourier series of m
wavelengths. An analysis following this line of thought shows th
the equilibrium domain size is larger than that given by~13!, @39#.
In the limit that the domain size is much larger than the dom
boundary width, the line tension model is appropriate, giving
other estimate of the equilibrium domain size,@25,26#:

l`52pa expS 2pg

«0U2
11D , (14)

where a is a cutoff radius~close to molecular dimensions,a
; 1 nm),g the line tension, andU the contact potential betwee
the two domains. The step jump of the contact potential at
domain boundary makes the electrostatic energy unbounded
the cutoff radius is introduced to regularize the problem. Tak
g510212 N andU50.5 V, we find thatl`5292 nm.

Next we discuss the variability field of the parameters that
termine the equilibrium domain size. We have assumed that
space above the monolayer is occupied by air. If a hi
permittivity dielectric fluid lies above the monolayer during a
nealing, the equilibrium domain size will reduce accordingly.
course, the presence of a dielectric fluid, rather than the air,
modify the contact potential and the domain boundary ene
somewhat. Independent measurements of these quantities ha
be made. Similarly, if one places a high-permittivity dielect
solid at a small gap above the monolayer during annealing,
can, in principle, even tune the equilibrium domain size by adju
ing the gap.

Contact potentials have been measured for alkanethiols on g
@35,36#. The potential increases linearly with the alkyl cha
length by 0.0093 V per CH2 unit. The potential changes also whe
the tail group changes; variation between20.75 V to10.60 V has
been reported. One can even incorporate polar groups in
middle of the alkyl chain to increase the contact potential with
compromising the functionality of the tail group.

We are unaware of any measurement of the domain boun
energy in alkanethiol monolayers. The line tension of the ph
boundary in Langmuir films has been measured experimental
representative order of magnitude beingg510212 N, @22#. Con-
sidering the similarity of the inter-molecular forces involved
Langmuir films and in SAMs, we expect that the magnitude of
line tension should be comparable in the two systems. Note
the line tension decreases as the temperature increases, and
ishes above the critical temperature. Because the inter-mole
forces are weak, the critical temperature is not too high, an
typically within experimental reach.

Given the large variability in the parameters, one should exp
very different equilibrium domain sizes in different systems. Th
is, the equilibrium domain size should be tunable.
28 Õ Vol. 71, JANUARY 2004
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When both the surface stress and contact potential are pre
a combination of the above analysis and that in@28# gives the
equilibrium domain size:

l05
8ph

«0z21
~12n!j2

m

, (15)

wherem is the shear modulus,n is Poisson’s ratio, andj is the
slope of the surface stress as a function of the concentration.
relative importance of the electrostatic and elastic interaction
quantified by a dimensionless ratio

R5
m«0z2

~12n!j2
. (16)

The surface stress has been measured for alkanethiols on
giving 0.017 N/m per CH2 unit, @40#. The available data indicate
that the effect of the surface stress and that of the contact pote
are comparable for alkanethiols on gold. However, if one int
duces high-permittivity dielectrics in the space above the mo
layer, and incorporates polar groups into the molecules, the e
trostatic interaction can be altered by orders of magnitude.

5 Diffusion Equation and the Need to Break
Symmetry

In this section, we consider the diffusion process, in which
monolayer starts from an arbitrary initial concentration field, a
evolves to a stable domain pattern. We derive a diffusion equat
following a standard procedure in nonequilibrium thermodyna
ics, @28,38#. Imagine a curve on the substrate surface. When so
number of A-molecules crosses this curve, to maintain the int
rity of the monolayer, an equal number of B-molecules must cr
the curve in the opposite direction. Denote the unit vector lying
the surface normal to the curve bym. Let I be a vector field in the
surface, such thatI "m is the number of B-molecules across a un
length of the curve.

When the concentration on an element of the surface varie
dC, the same number of B-molecules must move into the elem
from the neighboring regions on the surface, namely,

LdC52¹•~dI !, (17)

whereL is the number of surface sites per unit area. Combin
~7! and ~17!, we find the variation of the free energy:

dG5
1

L E ~dI !•¹S ]g

]C
22h¹2C2zs DdA. (18)

In deriving ~18!, we have used the fact that the termfs in ~7! is
quadratic inC. We have also discarded integrals along curves
the surface, assuming periodic boundary conditions.

Define the diffusion driving forcef as the free-energy reductio
associated with a molecule relocating by a unit distance. Com
ing this definition and~18!, we obtain an expression for the dif
fusion driving force:

f52
1

L
¹S ]g

]C
22h¹2C2zs D . (19)

When the diffusion driving force vanishes, the free energy va
tion vanishes, and the concentration field reaches equilibrium.
quantity in the parenthesis is a chemical potential. A concentra
field is in equilibrium when the chemical potential is constant ov
the surface. Obviously, a homogeneous monolayer is an equ
rium state, which can be unstable. We are interested in sta
inhomogeneous equilibrium states.

In general, for an arbitrary concentration field, the driving for
does not vanish—it drives the diffusion flux. Assume that t
diffusion flux, J, is linearly proportional to the driving force
namely,J5M f, whereM is the mobility of the molecules on the
Transactions of the ASME
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surface. The conservation of molecules requires thatL]C/]t
52¹•J. These considerations lead to the diffusion equation

]C

]t
5

M

L2
¹2S ]g

]C
22h¹2C2zs D . (20)

To evolve the concentration field numerically, we need
specify the free energy of mixingg(C). Any function with two
wells, as shown in Fig. 2, will serve the purpose. To be spec
we assume that the binary monolayer is a regular solution, w
the free energy of mixing given by

g~C!5LkBT@C log C1~12C!log~12C!#1LvC~12C!,
(21)

wherekB is Boltzmann’s constant, andT the absolute temperature
The parameterv measures the magnitude of the enthalpy of m
ing. Whenv/kBT,2, the entropy of mixing prevails, andg(C)
has a single well. Whenv/kBT.2, the enthalpy of mixing pre-
vails, andg(C) has two wells.

A comparison of the first two terms in~20! leads to a length:

b5S h

LkBTD 1/2

. (22)

This length scales the distance over which the concentra
changes from the level of one phase to that of the other. From~20!
and ~21!, we note that the diffusivity scales asD;MkBT/L. To
resolve events occurring over the length scaleb, the time scale is
b2/D. This consideration defines a time scale

t5
h

M ~kBT!2
. (23)

To evolve the concentration field according to~20!, at each
time-step, for a given concentration field, we need to solve
electrostatic boundary value problem, and calculate the sur
charge field. This can be done by an area integral of a Gre
function. The integral is singular, and extends over the entire
face. This approach would take a great deal of computation ti
Rather, we will solve the electrostatic boundary value problem
the Fourier space. Consider the Fourier transform

C~x1 ,x2 ,t !5E
2`

1`E
2`

1`

Ĉ~k1 ,k2 ,t !exp~ ik1x11 ik2x2!dk1dk2 .

(24)

To ensure thatC(x1 ,x2 ,t) is real-valued, the two Fourier compo
nentsĈ(k1 ,k2 ,t) and Ĉ(2k1 ,2k2 ,t) must be complex conju-
gate. Because the electrostatic field is governed by linear e
tions, we only need to determine the electrostatic field for
individual Fourier component, and then superimpose all the c
ponents. For a pair of components,Ĉ(k1 ,k2 ,t) and Ĉ(2k1 ,
2k2 ,t), the concentration field is

C52 Re@Ĉ~k1 ,k2 ,t !exp~ ik1x11 ik2x2!#, (25)

where Re stands for the real part of a complex number. The c
tact potential is

f52z Re@Ĉ exp~ ik1x11 ik2x2!#. (26)

This prescribes the boundary condition atx350 for the electro-
static field in the upper half-space. One can readily confirm t
the solution to the Laplace equation is

C52z Re@Ĉ exp~ ik1x11 ik2x22kx3!#, (27)

wherek5Ak1
21k2

2. This electric potential matches the bounda
condition~26!, and vanishes asx3→1`. The surface charge den
sity is

s52«0kz Re@Ĉ exp~ ik1x11 ik2x2!#. (28)
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Normalizing the time byt and the spatial coordinates byb in
~20!, and taking the Fourier transform on both sides, we obtai

]Ĉ

]t
52k2P̂22k4Ĉ1rk3Ĉ, (29)

wherer58pb/l0 is a dimensionless parameter, andP̂(k1 ,k2) is
a Fourier component of the function

P~C!5 logS C

12CD1
v

kBT
~122C!, (30)

which comes from the derivative of the free energy of mixi
~21!.

Remarkably, Eq.~29! is identical to that of a monolayer on a
isotropic elastic substrate, where the surface stress drives do
refining, @29#. We will use the same numerical method to evol
the concentration field. The functionP(C) is nonlinear inC, so
that P̂ at a given point in the (k1 ,k2) plane depends onĈ at all
points in the (k1 ,k2) plane. Consequently,~29! evolvesĈ at all
points in the (k1 ,k2) planes simultaneously, in a coupled mann
Numerical simulation proceeds as follows. Start with a kno
concentration fieldC(x1 ,x2 ,t0) at timet0 . CalculateP according
to ~30!, and P̂ by using the fast Fourier transform~FFT!. Also
obtain Ĉ by FFT. Equation~29! updates the fieldĈ for a small
time step. Take an inverse FFT to obtain the updatedC field.
Repeat the procedure for many time steps to evolve the con
tration field over a long period of time. More details of numeric
implementation can be found in@29,41#.

In numerical simulations, we takev/kBT52.2, so thatg(C)
has two wells atCa50.249 andCb50.751. We taker52, so that
l054pb, and the equilibrium domain size is about one order
magnitude larger than the domain wall width. We restrict the c
culation within a 256b3256b square cell, and chooseb as the
grid size. Periodic boundary conditions are used to replicate
cell to the entire monolayer. Figure 6 shows two simulation res
taken from@29#, which was originally intended for patterns stab
lized by surface stress. Now if we interpretl0 by ~15!, the same
simulation describes pattern evolution under combined action
surface stress and contact potential.

Figure 6~a! shows the concentration field after the anneali
time t5105t. The initial concentration field randomly fluctuate
around the average valueC050.5. At aroundt5102t, the con-
centration field has already separated into two phases of mean
ing stripes. The pattern and the feature size hardly change betw
102t to 105t.

Figure 6~b! shows a pattern at timet543106t, initiated from
a concentration field randomly fluctuated around the aver
valueC050.4. The dots are established aroundt5102t. Further
annealing does not change the size of the dots appreciably
improves the spatial ordering of the dots. Att543106t shown in
Fig. 6~b!, the pattern consists of grains, each grain being a tri
gular lattice consisting of fewer than ten dots across.

Both meandering stripes and disordered dots have been
served in alkanethiol monolayers,@8–12#. Some of these experi
ments were carried out with the monolayers in contact with
alkanethiol solution at room temperature, so that the adsorp
process affected the domain patterns. Alkanethiol molecules
fuse slowly on gold at room temperature, so that the obser
domains may not be of the equilibrium size.

Figure 6 also clearly shows the effect of symmetry on patt
formation. The model is isotropic, with no preferred orientation
the plane of the monolayer. Consequently, stripes of all orien
tions are equally possible, so are lattices of all orientations.
proving the long-range order by annealing alone takes a long ti
A powerful way to form patterns with long-range ordering is
break the symmetry. In a series of papers,@39,42–44#, we have
studied the effect of symmetry breaking of various modes on
main patterns, assuming surface stress stabilizes the domains
JANUARY 2004, Vol. 71 Õ 29



T
s
a

h
y
e
-

m

s

g

e

i

bili-
ork
lore
he
les.
ects
h to

gh
by

arch
ac-
k,

r,’’

ties

he
J.

lf-

el,
ng

n-
ev.,

and

Be-

94,
nto

-
ixed

se
of

al.

, G.,
Re-

the
s.

i-
ev.

f-
ure

ng,
of

lf-

, P.,
er

,

at

id

s in
mains stabilized by contact potential offer additional opportu
ties. For example, during annealing, one can place an anisotr
dielectric crystal at a small distance above the monolayer.
presence of the crystal affects the electrostatic field, and can
preferred orientation to guide the pattern. Similarly, one can m
a metal pattern on a solid using lithography, and then place
patterned solid over the monolayer. During annealing, this lit
graphic pattern can guide the pattern formation in the monola
The concept is analogous to the lithographically-induced s
assembly~LISA!, @45–47#. We will report details of these intrigu
ing possibilities in subsequent papers@48,49#.

6 Concluding Remarks
On the basis of available experimental data and theories,

suggest that alkanethiol SAMs on gold should form domain p
terns under certain conditions. Upon annealing, alkanethiol m
ecules diffuse on the gold surface, and the domain pattern
evolve into an equilibrium state. The domain boundary ene
drives the domains to coarsen, and the contact potential drive
domains to refine. The competition sets an equilibrium dom
size, which can be varied by varying the alkyl chain length,
incorporating polar groups into the molecules, by placing a hi
permittivity dielectric liquid above the monolayer, and by chan
ing the temperature. In an isotropic system, the domain patt
are not organized over a long distance. Various modes of sym
try breaking may guide domains into periodic lattices. SAMs w

Fig. 6 „a… The concentration field initially fluctuates with small
amplitude around the average concentration C0Ä0.5, and
evolves into a pattern of meandering stripes. „b… The concen-
tration field initially fluctuates with small amplitude around the
average concentration C0Ä0.4, and evolves into a pattern of
dots.
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ordered domains of controllable sizes would open new possi
ties for applications. Further experiments and theoretical w
need to be carried out to ascertain the premises, and to exp
new opportunities, particularly those of guided self-assembly. T
concepts are also applicable to monolayers of other molecu
Provided molecules on surfaces are mobile, the combined eff
of surface stress and contact potential may be strong enoug
stabilize domains of desired sizes.
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Mechanical Modeling of Fabrics
in Bending
A fabric bending model that includes contributions from nonlinear elasticity, and visc
and Coulomb friction with hysteretic effects is presented. The model allows the rec
of the loading, unloading and hysteresis behaviors observed in the Kawabata evalu
system (KES) bending tests and provides the ability to simulate a continuum of pro
curves and to extrapolate to loading conditions not covered in the KES regimen. M
results are compared to experimental results. It is found that hysteretic behavior is
served due to friction between the yarns, and that nonlinear elastic behavior arises
jamming of the yarns and their subsequent compression.@DOI: 10.1115/1.1629757#
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Introduction
Characterization of fabric bending remains an unresolved p

lem in that there is no clear ‘‘best’’ experimental protocol to e
tablish the values of the set of parameters that uniquely define
material model. Nor is the parameter set defined and agreed u
Abbott @1# have compared five different bending stiffness tes
the cantilever test, the heart loop test, the Schiefer Flexometer
Planoflex, and the M.I.T. Drapemeter. The cantilever test was
ferred to the other tests due to its simplicity and its high corre
tion to the subjective measurements. Subsequently, Grosberg
Abbott @2# discussed the apparatus of Livesey and Owen@3# and
proposed an alternative apparatus based on the Instron Te
Tester. In a contemporaneous paper,@4#, they discussed the sig
nificant contribution that friction makes during the bending p
cess and noted that large errors are present if a linear ben
approximation is used.

The effect of friction was modeled by Grosberg@5# and by
Grosberg and Swani@6# as a Coulomb-type frictional restrain
moment at the yarn intersections. Once this frictional moment
overcome the yarns could be bent and that bending was mod
with a linear moment-curvature relationship. The inclusion of c
clic bending behavior was presented by Zhou and Ghosh@7# in a
more developed model of fabric bending which used a piecew
linear model of the bending behavior that included hystere
This model is illustrated in Fig. 1. Illustrated in Fig. 2 is the mo
recent model of Shi et al.@8# who used a rheological model tha
included curvature-spring and curvature-friction elements. Th
elements allow for the inclusion of friction and hysteresis effe
in the fabric model. Other investigations of bending include
linear bending model of Hu and Chung@9# which examined the
effect of vertical seams on bending stiffness and the work of
et al. @10# which examined the effect that orientation plays
bending hysteresis.

The Kawabata, evaluation system fabric bending~KES-FB!
test, @11#, is perhaps the most frequently encountered and c
test used to determine the bending characteristics of fabric. In
KES-FB test the test sample is mounted vertically, to eliminate
effect of gravity, and the bending moment is measured as
sample is bent, at a constant rate of 0.5 cm21/s, forward and
backward through a range of curvatureskP@22.5,2.5#cm21 as
shown in Fig. 3. The apparatus used to conduct the KES-FB
has been designed to ensure, that over this range of curvature

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 9, 2002; final revision, June 23, 2003. Associate Editor: D. A. Kouris. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four mo
after final publication of the paper itself in the
ASME JOURNAL OF APPLIED MECHANICS.
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sample is in pure bending,@11#. The characteristic values recorde
by the system are:B, the bending rigidity per unit length, an
2HB, the moment of hysteresis per unit length. Note that in
dition to measuring these values for the weft and warp directio
they are also measured in the forward and backward directio

Fabric Bending Friction and Hysteresis
There are a number of mechanisms that influence the ben

behavior of fabric. As illustrated in Fig. 4 it is generally the ca
that hysteresis is exhibited in KES-FB test results and that
loading and unloading portions of the curve are seldom linear.
absence of linear loading and unloading paths implies that a lin
spring model is not an adequate for the ‘‘elastic’’ part of the fab
response. The shapes of the loading and unloading portions o
bending curve indicate that there is more than a linear ela
behavior present so an additional cubic spring element is inclu
in the model.

The hysteresis loop implies that friction and rate effects sho
be included in the constitutive model yet there is a paucity
work on modeling hysteretic effects in fabric. It is clearly nece
sary to include this effect in a model for it to be able to accurat
reproduce fabric bending behavior. Lindberg et al.@12# introduced
both friction and rate ~damping! elements in their load-
deformation model of fabric with limited success. The curre
techniques used in fabric simulations are unable to capture al~or
even most! of the characteristics of the mechanical prope
curves.

The friction model used here is based on a modification to
Bliman and Sorine friction model,@13–15#. This model is de-
picted in Fig. 5 and the governing equation for the model is

mk̈52dk̇2k1k2k3k32M f~k!2Mext (1)

The frictional moment termM f(k) is defined by,@15#,

ẋ5Ax1Bk̇, x~0!50 (2)

M f~k!~ t !5Cx~ t ! (3)

where

x5Fx1

x2
G , A52

uk̇u
« f

F 1

h
0

0 1
G , B5

1

« f
F f 1

h
2 f 2

G , C5@1 1#.

(4)

The state vectorx contains internal system variables that defi
the friction behavior. To ensure a dissipative system it is neces
that, @15#,

f 1. f 2>0 (5)

« f.0 and 0,h,1 (6)

-
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e is
be satisfied. The model can represent both dynamic and s
friction through the selection off 1 , f 2 , h, and« f . With reference
to Fig. 6, the static friction threshold is given by

Ms5Mk1 f 2S h f 2

f 1
D h/~12h!

~12h! (7)

where the steady-state kinetic friction is

Mk5 f 12 f 2 . (8)

The value of the curvature at the peak static friction is

se5
« fh

12h
logS f 1

h f 2
D (9)

while the 5% settling curvature~defined to be the curvature wher
the friction moment is within, and stays within, 5% of the stead
state dynamic friction valueMk) is given by

sp53« f . (10)

The minimum slope of the moment versus curvature curve
given by,@16#,

Fig. 1 Zhou and Ghosh „1999… bending model

Fig. 2 Shi et al. „2000… bending model

Fig. 3 KES: bending measurements
Journal of Applied Mechanics
tatic

e
y-

is

kF
25

f 2

« f
S h2f 2

f 1
D h/~12h!

~12h! (11)

and the maximum slope of the moment versus curvature curv
given by,@16#,

kF
15

f 12 f 2h

h« f
. (12)

Fig. 4 A representative KES-FB result

Fig. 5 Model of fabric bending

Fig. 6 Bliman and Sorine second-order model
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Further discussion of this friction model can be found in Lah
@16#.

The differential equation form of the friction model, as given
Eq. ~2!, is useful if the curvature history is to be calculated. T
integral form, found by solving the differential equation, is use
if the curvature history is known. If it is assumed~or known! that
there is no initial curvature at rest the frictional bending restra
can be modeled by

M f~k!~ t !5~ f 12 f 2!sign~ k̇~ t !!

1sign~ k̇~0!!~e2s~ t !/« f f 22e2s~ t !/h« f f 1!. (13)

This integral form is useful here because, during the KES-FB t
the curvature is prescribed over time. The quantitys(t) in Eq. ~13!
is the total curvature that the fabric has experienced at timet and
is given by

s~ t !5E
0

t

uk̇udt. (14)

Determining the Model Parameters
It is necessary to find the best set of parameter values for

model to agree with the experimental results obtained from
KES-FB test. The curvature is prescribed by the test and is th
fore known throughout the duration of the experiment. Hence
task is to find the set of model parameters that yields the
agreement between the model computed external moment an
experimental external moment. Looking at the problem differen
to that in Eq.~1!, the new problem can be written as

Mext5mk̈1k1k1dk̇1k3k31M f~k! (15)

where M f(k) is determined by Eq.~13!. The KES-FB test pre-
scribes a constant curvature rate of 0.5 cm21/s, @11#, but fails to
specify, the acceleration profile that is needed to go from res
the constant rate, the deceleration/acceleration profile ne
when the curvature rate changes sign, and the deceleration p
that is needed to come to a stop at the end of the test. T
regions of non-constant curvature rate are referred to as trans
regions. The present model depends on the curvature acceler
curvature velocity, and curvature value; this makes the transi
regions important. The acceleration profiles in the transition
gions are modeled by quadratic polynomials which are chose
satisfy the velocity and acceleration continuity conditions at
beginning and end of each region.

Model Parameter Identification. Because the equipmen
necessary to perform the experimental tests was not availab
the authors a digitization of Deng’s,@17#, experimental data was
used for the purpose of illustration. The data is for a 100% po
ester satin fabric that was bleached, dyed, and pre-shrunk
resin finish. More specific details of the weave and finishing p
cess were not available to us but it is likely that the fabric is
warp float satin similar to that illustrated in Figs. 7 and 8. Figu
7 shows a cross section of a 431 warp-float satin weave while
Fig. 8 shows the pattern. The warp is represented in gray while
weft is represented in white.

The values of the model parameters that produce a model
best approximates the experimental results were found by ap
ing a simulated annealing optimization method to a nonlinear le
squares minimization problem. The curvature, velocity, and ac

Fig. 7 Warp-float satin „4Ã1… weave cross section
34 Õ Vol. 71, JANUARY 2004
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eration for the experiment were precalculated to facilitate the
timization procedure. The parameters that need to be identified
f 1 , f 2 , « f , h, k1 , d, andk3 . It was assumed that the duration o
each acceleration/deceleration phase is a constant for the
equipment and was set a priori to a value of one second.

The objective function to be minimized is

R~k!5( ~Mmodel~k!2Mexp~k!!2. (16)

Because Mexp was not available as a continuous function, separ
fourth-order polynomials were fit~in a least-squares sense! to the
digitized experimental loading, unload/reverse loading, and
loading paths. These polynomial approximations to each of
Mexp paths were used because the simulation results are calcu
through a time-stepping procedure and it is necessary to be ab
evaluate the experimental results at points that lie between
digitized data. The model and the experiment approximating po
nomials were sampled at intervals of one millisecond.

Results are presented in detail for the weft direction of t
fabric, with some warp results presented for comparison purpo
Additional results for the warp direction of this fabric are given
detail in Lahey and Heppler@18#. The parameters and plots of th
results for the full model for a cotton twill are also present
herein. Full details on the results for the cotton twill fabric a
given in @16#.

The parameters determined through the optimization proced
are given in Table 1. Comparing the weft direction parameters
those of the warp, we see a number of interesting results. First
value of the weft damping parameterd is less than half of the
damping parameter value for the warp, the value of the weft lin
spring constantk1 is roughly three-quarters of the warp value, a
the cubic spring constantk3 is five times greater in the warp
direction than in the weft. If the cubic spring behavior is caus
by jamming of the yarns~i.e., the yarns are in a compressiv
configuration with no space to move!, this could be explained by
a greater spacing of yarns in the warp direction than in the w

Examining the friction model parameters in Table 2 we see t
the maximum frictional momentMs in the weft direction occurs a
a curvature value ofse510.49 m21 which is approximately half-
way through the loading path while the curvature valuesp re-
quired to reach within 5% of the kinematic friction thresholdMk
is only approached at the end of the initial loading path. T
pronounced difference between these two values demonstrate
utility of using a friction model that incorporates both static a
kinematic friction. The friction in the warp direction, where on
dynamic friction is encountered, is considerably different to th
encountered in the weft direction.

Figure 9 shows the frictional contribution, for both the wa
and the weft directions, throughout the KES test. Region 1 is
loading portion of the test, here we see, for the weft direction, t

Fig. 8 Warp-float satin „4Ã1… weave pattern
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Table 1 Model parameters

Parameter~Units! Satin Weft Value Satin Warp Value,@18# Twill Weft Value Twill Warp Value

f 1 (N-m/m) 4.45031021 6.06431021 4.2913 1021 4.26631021

f 2 (N-m/m) 4.43831021 6.04531021 4.2913 1021 4.24031021

h 9.93931021 9.99831021 9.9693 1021 9.90831021

« f (m21) 7.316 7.302 1.0093 1021 7.207
d (N-m-s) 2.09431025 5.68131025 5.5063 1025 1.44531024

k1 (N-m) 4.47331025 6.25731025 3.5823 1025 1.13331024

k3 (N-m3) 1.587310210 8.489310210 5.5203 10210 1.06931029
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the maximum static frictional moment (Ms51.849
31023 N-m/m) occurs at the curvaturese510.49 m21 as given in
Table 2. The unloading region is marked as region 2. Here we
that when the experiment passes through zero curvature the
no frictional moment. Region 3 consists of bending the fabric
the opposite direction. Note that due to the characteristics of
test, we do not see any static frictional effects in this regi
Finally, region 4 consists of unloading from this negative curv
ture. Here, once again we see the static and kinematic fric
behavior with a final frictional set in the fabric. The material b
haves differently in the warp direction. The warp friction para
eters in Table 2 show that the curvature valuese corresponding to
the maximum static friction valueMs is greater than the valuesp
required to reach the kinematic friction thresholdMk . This
would, in view of Fig. 6, appear to be counterintuitive but
should also be noted that there is no difference between the s
and dynamic friction values. This can be interpreted to mean
ied Mechanics
see
re is
in
the
n.
a-
ion
e-

-

it
tatic

the friction model is behaving in a manner that is analogous to
overdamped system and that there is no ‘‘overshoot’’ behavio
the form shown for the weft direction in Fig. 9.

Figures 10–13 each show a comparison of three differ
curves. The dash-dotted line is the digitized version of experim
tal results from Deng@17#. The dotted line is constructed from
three separate fourth-order polynomial fits to the digitized da
One polynomial is fit to the loading path, another to t
unloading/reverse loading path, and the third to the reverse
loading path. The solid line shows the model simulation resul

It is of interest to examine the contribution of each of the pa
of the model to the overall system response. To begin, cons
Fig. 10 which shows the model behavior that would be obtaine
a linear viscoelastic material were assumed such that
Table 2 Supplementary friction results

Parameter~Units! Satin Weft Value Satin Warp Value,@18# Twill Weft Value Twill Warp Value

se (m21) 10.49 83.98 1.00731021 11.76
sp (m21) 21.95 21.85 3.02731021 21.62
Mk (N-m/m) 1.20031023 1.98631023 3.70831028 2.51231023

Ms (N-m/m) 1.84931023 1.98631023 4.98331024 3.27631023

Fig. 9 Polyester satin–frictional contribution to the bending moment
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Fig. 10 Polyester satin–weft direction „no friction and no cubic …
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Mext5mk̈1k1k1dk̇. (17)

Of particular note is the straightness of the unloading portion
the response predicted by the model and its poor fit in the reg
where the direction of bending is changing or where the tes
coming to a stop. The slope given by the model does not ma
NUARY 2004
of
ons
t is
tch

the experimental results due to optimization over the entire
perimental procedure. Also in Fig. 10, one can see that the exp
mental results demonstrate a different slope and loop width wh
makes fitting the model difficult, as the model does not inclu
different material properties for positive and negative load
directions.
Fig. 11 Polyester satin–weft direction „no friction …
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Fig. 12 Polyester satin–weft direction „no cubic …

Fig. 13 Polyester satin–weft direction full model

Table 3 Polyester satin-weft direction: model comparison

Test Case Residual„N-mÕm…

2

Full model 1.8983 1022

No friction term 3.7303 1022

No cubic term 2.0563 1022

No friction or cubic term 4.3033 1022
d Mechanics JANUARY 2004, Vol. 71 Õ 37
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Fig. 14 Polyester satin–warp direction full model

Fig. 15 Cotton twill–weft direction full model
NUARY 2004 Transactions of the ASME
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Fig. 16 Cotton twill–warp direction full model
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In contrast to Fig. 10 consider Fig. 11 where the viscous da
ing as been retained and a cubic spring has been added t
model so that in this case

Mext5mk̈1k1k1dk̇1k3k3. (18)

The addition of the cubic spring does little to improve the over
fit, although it does improve the fit in the initial unloading pha
from 150 m21 to 0 m21.

In Fig. 12 is shown the model behavior that is obtained wh
the Bliman and Sorine friction model,@13–15# is included but the
cubic spring is not~Eq. ~19!!.

Mext5mk̈1k1k1dk̇1M f~k! (19)

This case shows a noticeable improvement over both of the
vious cases. We now see a closer approximation everywhere
cept for the initial acceleration region from 0 m21 to 50 m21, and
there is a final set at the end of the test that was not exhibite
the previous cases.

The results obtained from each of these three partial mo
suggests that by combining them together a single, superior m
should result. This is the case, as may be seen in Table 3 wher
can compare the quality of the model fit, as measured by the
of the residual for each of the different test cases. The comp
model provides the best fit and the importance of the friction te
is evident by comparing the magnitude of the residual for
cases that include it to those that do not.

The results obtained when all the above features are comb
are illustrated in Fig. 13 where it may be observed that ther
only a marginal improvement over the last case. Considering
the cubic term contributed little to the improvement of the fit, th
result is not surprising.

While the results for the weft direction are not as close as
might prefer, the complete model provides an excellent fit for
warp direction as shown in Fig. 14.

The parameters for a 100% cotton twill fabric that has be
bleached, dried and pre-shrunk in a pure finish are given in Ta
1 and 2. The resulting simulation for the weft direction is sho
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in Fig. 15. Note that only static friction is present in the model a
as such does not fit the final frictional moment. As with the w
direction of the satin fabric, the model has a poor fit in the ne
tive curvature region, but a fair fit to the positive loading regio
This is in contrast to the fit to the warp direction given in Fig. 1
which gives a good fit throughout.

Conclusions
It is believed that the friction arises due to the slipping of t

yarns with respect to each other and therefore comes into
once larger curvatures~displacements! are reached. Since this fab
ric is comprised of a monofilament yarn it is assumed that
friction internal to the yarn is small. However, in some fabrics t
friction seen is more likely to be a combination of both intraya
and interyarn friction. The cubic term is believed to arise from t
jamming of the yarns and their subsequent compression bec
the cubic contribution is greater in the negative curvature reg
where ~with reference to Fig. 7! the weft yarns will be forced
together as a result of the negative bending moment. Some o
response may also be due to a nonlinear yarn bending respo

The model provides the ability to simulate a continuum of pro
erty curves and to extrapolate to loading conditions not covere
the KES regimen.

Nomenclature

A,
B, C 5 state-space friction model matrices

d 5 material damping coefficient
f 1 5 friction model property
f 2 5 friction model property
k1 5 linear spring curvature stiffness
k3 5 cubic spring curvature-stiffness
m 5 rotatory inertia parameter

Mext 5 external moment calculated by model
M f 5 friction moment generated by the internal friction

model
JANUARY 2004, Vol. 71 Õ 39
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Mk 5 steady-state kinematic friction moment
Mmodel 5 external moment calculated by model

Mexp 5 KES-FB measured moment
Ms 5 static friction threshold moment
se 5 curvature at the maximum static friction
sp 5 curvature for 5% settling ofM f to Mk
x 5 friction model state vector

« f 5 friction model property
h 5 friction model property
k 5 curvature
k̇ 5 curvature rate
k̈ 5 curvature acceleration
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Predicting Oscillatory
Fluid-Elastic Instability of a
Tongue-in-Groove Leakage Joint
This paper describes the application of the small boundary displacement model (SB
of fluid-structure coupling for predicting oscillatory fluid-elastic instability of a tongu
in-groove leakage joint. This coupling model extends structural small displacement th
to fluid-structure interfaces, eliminating the need for temporally changing meshes
structural motion is small compared with joint dimensions. The SBDM algorithm a
rately predicts the onset of oscillatory instability for a tongue-in-groove leakage j
when compared with experimental data. Even though the methodology is speci
applied to a tongue-in-groove joint, the approach is equally suitable for evaluating
fluid-elastic stability of leakage joints in general.@DOI: 10.1115/1.1640368#
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1 Introduction

Mechanical fluid-structure interactions arise from the trans
of mechanical energy across the fluid-structure interface where
generated fluid forces deflect the structural boundary. As the st
ture displaces, the fluid experiences a change in boundary velo
which affects the fluid forces and the cycle continues. Coupling
fluid and structural systems in an analytical model involves app
ing the appropriate structural motions to the fluid boundary wh
concurrently imposing the fluid boundary forces onto the adjac
structural surface. Although simple in concept, coupling the str
tural equations of motion and the Navier-Stokes fluid equation
difficult because the governing equations have fundamentally
ferent forms. Displacements are the primary solution variables
the structural problem while velocities and pressures are the
knowns for the fluid problem. Therefore, the resulting discretiz
equations are not immediately compatible. A fluid-structure c
pling algorithm is needed to enforce compatibility between
fluid and structural equations.

The study of fluid-structure interaction has long been of inter
to engineers, and treatments based on simple models appe
textbooks such as Blevins@1#. More fundamental approache
based on the equations of motion, appear in journal articles
conferences such as Ziada and Staubli@2#. This paper first pre-
sents a model based on loop pressure drops that is used to ide
the critical components, and then a finite difference model for
fluid coupled to rigid structural motion and pressure drops for
rest of the loop.

The small boundary displacement model~SBDM! is a stable
and efficient algorithm formulated to couple the fluid and stru
tural representations,@3#. It extends structural small displaceme
theory to the fluid-structure interface by assuming that fluid a
structural velocities agree at the interface but that net struct
displacement is small compared with structural dimensions. F
forces at the interface contribute to the structural motion. B
fluid and structural meshes are stationary in time, and the fluid
structural equations are simultaneously solved without iterat
The SBDM has been shown,@3#, to mathematically conserve en
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ergy at the fluid-structure interface, making it a good candid
method for predicting the onset of unstable oscillation.

Leakage joints,@4#, are a mechanical design feature that min
mize unintentional flow around components that have neces
clearances to enable installation and removal. Examples of le
age joints include a tube-in-tube slip joint, a piston ring and
tongue-in-groove joint. In service, leakage joints have exhibi
unstable behavior that is a function of flow through the joint. Th
fluid-elastic instability behavior can occur in an excursive or o
cillatory manner.

Excursive instability is characterized by a steady growth, u
ally rapid, of a structural displacement without oscillation. For
excursive instability, the destabilizing fluid force overwhelms t
restoring structural force to produce the abrupt deflection. U
stable numerical techniques can result in excursive beha
where the destabilizing force is a numerical artifact.

Oscillatory instability is typified by vibrations of the structur
with steadily increasing amplitude. In this case, the energy in
to the structure by the destabilizing fluid forces exceeds the
chanical energy dissipated in the system~e.g., damping, viscous
dissipation!. From a design perspective, identification and avo
ance of an unstable response is essential for a component or
tem to function properly.

Prediction of oscillatory instability is more difficult than predic
tion of excursive behavior because excessive numerical dam
can contribute to system damping and can artificially suppres
otherwise unstable oscillatory response. Numerical damping
also shift the onset conditions of an oscillatory instability to r
quire higher than observed flow rates. Accurate simulation of
cillatory instability requires that numerical damping be min
mized, at least near fluid-structure interfaces.

This paper describes the application of the SBDM for pred
ing the onset of oscillatory fluid-elastic instability. Experiment
results are available for a tongue-in-groove leakage joint whic
characterized by a simple two-dimensional geometry. The
setup is described in Section 2. A stability model based o
hydraulic representation of joint flow is analyzed in Section 3. T
hydraulic model of joint flow is replaced with an SBDM repre
sentation and results from this simulation based on first princip
are provided in Section 4. Some technical details in implemen
the SBDM are discussed in the Appendix. Even though the m
odology is specifically applied to a tongue-in-groove joint, t
approach is equally suitable for evaluating the fluid-elastic sta
ity of leakage joints in general.
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2 Problem Description
The test section shown in Fig. 1 consists of a 0.305 m30.127 m

~12 in35 in nominal! rectangular plate made of aluminum~r
52768 kg/m3! that is clamped at one end with a tongue-in-groo
joint at the opposite end~see Fig. 2!. The dry natural frequency of
the plate was measured by impulse testing,@5#, to be 270 Hz with
0.4% material damping.

This plate configuration was chosen to ensure two-dimensio
flow of de-aerated water~r51000 kg/m3 and n50.984
•1026 m2/sec) through the joint. Dependent on loop condition
the plate experiences either oscillatory or excursive beha
when flow is increased. Prediction of oscillatory instability is th
more demanding case and this case is investigated below.

The loop was configured for the bench test with an accumula
to maintain the pump inlet pressure at 482.65 kPa~gauge! ~70
psig! and heat exchangers to keep the loop temperature be
65.6°C~150°F!. The loop was connected to the test section with
flexible 63.5 mm~2.5 in! fire hose to mitigate the transmission o
mechanical vibrations. Flow was generated by a 2.24 kW~3 hp!
DC variable speed pump and the loop flow was controlled
pump speed. Loop flow was redundantly measured with Roto
eter and Annubar flow meters, and venturis upstream of the
section.

The tongue-in-groove joint geometry is shown in Fig. 3. Lea
age flow around the sides of the plate was restricted by placem
of side blocks so that the side leakage flow was negligible co
pared to flow through the tongue-in-groove joint. As a result, flo

Fig. 1 Tongue-in-groove leakage joint bench test section

Fig. 2 Plate geometry „schematic …
42 Õ Vol. 71, JANUARY 2004
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through the test section was essentially two-dimensional an
appropriately simulated using a two-dimensional fluid dynam
code.

The plate was positioned so that the upper gap spacing (du in
Fig. 3! was 0.401 mm~15.8 mils! for zero joint flow. As the pump
speed was increased, the pressure drop across the joint an
edge flow increased, causing the upper gap spacing to decr
due to the increasing force on the plate. The joint exhibited
oscillatory instability for the set of test conditions defined by
21.65 kPa~3.14 psi! pressure drop, a 0.316 l/sec~5 gpm! edge
flow and a 0.232 mm~9.15 mil! upper gap spacing for a spee
controlled pump without bypass flow. At these conditions, t
plate oscillated at a frequency of 2.5 Hz.

3 Hydraulic-Based Stability Model
This section discusses the modeling and hydraulic-based st

ity analysis of the tongue-in-groove joint described in the previo
section. The point of this model is to show that the destabiliz
fluid force is associated with hydraulic conditions within the joi
and it is not attributed to details exterior to the test section, t
setting the stage for the fluid-structure interaction model in
next section. The stability analysis accounts for the joint press
drop-flow relationship, plate structural characteristics, pump he
flow, loop resistance, and loop inertia. Fluid compressibility
neglected since water is essentially incompressible at subcri
flows.

Fig. 3 Curtiss-Wright tongue-in-groove joint geometry. This
joint can be regarded as five channels in sequence: „1… vertical
channel indicated by l 12 ; „2… horizontal channel indicated by
l ue ; „3… vertical channel indicated by l 34 ; „4… horizontal channel
indicated by lle ; and „5… vertical channel indicated by l 56 .
Transactions of the ASME
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The approach taken here is to use the analytical models
cussed below to generate a closed-form symbolic representati
Mathematica. Once assembled, the eigenvalues~i.e., stability! of
the system are evaluated for the range of test parameters. S
bolic analysis enables detailed assessment of the conditions
lead to joint instability. Once the instability mechanism is und
stood, the hydraulic model of joint flow~see Eq.~2! below! is
replaced with an SBDM representation and a first principles-ba
simulation conducted as described in Section 4.

Cross-sectional dimensions of the 0.305 m~12 in! wide plenum
separating plate are shown in Fig. 2. The 10.16 mm~0.40 in! thick
section acts as an elastic hinge and the remainder of the pla
essentially rigid. As a result, the plate responds as a cantilev
rigid body.

The generalized coordinate chosen to describe the plate mo
is the displacement of its free end, characterizing the position
the tongue-in-groove joint. The generalized mass for this varia
definition and plate geometry is derived to beM51.03 kg (M
50.0059 lb-sec2/in). Once the mass is defined, a stiffness value
K52.97•106 N/m (K51.70•104 lb/in) and damping coefficient o
C514.0 N-sec/m (C50.08 lb-sec/in) are determined from th
measured frequency and damping values, respectively. The
sure difference between the plena results in an equivalent f
acting on the plate where the generalized force is half the p
area times the pressure drop across the plate orF50.194
•1021 DPjoint . The plate equation of motion is

Mẍ1Cẋ1Kx50.194•1021DPjoint (1)

wherex is the displacement of the plate tip.
The following joint pressure drop versus flow relationship, c

responding to the joint description in Fig. 3, is based on hydra
theory, and accounts for transitional and friction losses in
joint.

DPjoint

qe
2r

5
K11

2d12
2

1
K121K23

2du
2

1
K33

2d34
2

1
K341K45

2d l
2

1
K55

2d56
2

1
f

4 S l 12

d12
3

1
l 34

d34
3

1
l 56

d56
3

1
l ue

du
3

1
l le

d l
3D (2)

whereQjoint is joint flow m3/sec,
qe is volumetric joint flow per unit width5Qjoint/0.305 m2/sec,
r is fluid density,r51000 kg/m3,
du is upper gap spacing50.401•10232y3 m,
K1150.50,

K1250.47,

K235S 11
0.401•1023

du
D 22

,

K335S 11
0.226 sin2 22°

2d34
D 22

K3450.30,

K4551.10,

K5551.0,

d1250.140•1022 m,

d3450.279•1023 m,

d l50.117•10222du m,

d5650.140•1022 m,

f is friction factor5H 96/Re Re<2042

0.316/Re0.25 Re.2042

l 1250.848•1022 m,
Journal of Applied Mechanics
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l 3450.404•1022 m,

l 5650.848•1022 m,

l ue50.848•102210.631•1021Adu m,

and

l le50.848•102210.631•1021Ad l m.

The joint pressure drop equation was obtained by idealizing
tongue-in-groove joint as five connected channels shown in Fi
with transition and friction losses for each channel. TheKi j term
represents the loss transitioning from channeli to channelj while
K11 and K55 represent the entrance and exit losses for the jo
respectively. Friction losses were modeled by the Darcy-Weisb
relationship,@6#, for laminar flow where the channel lengths we
adjusted for the expansion and contraction regions for each c
nel. The friction factor changes from the laminar relationship
the Blasius relationship for turbulent flow,@6#, at Re>2042.

The transitional loss coefficientsKi j were initially estimated
using handbook values,@7#, for idealized channel geometries. Th
coefficientK33 represents a smooth contraction plus an expans
in a lossless channel. This is similar to the treatment of a U-b
by Idelchik @7#. Results from the joint pressure drop equation~Eq.
~2!! using the frictional losses and the estimated transitional los
were compared to CFD calculations to produce improved val
for the K12, K34, andK45 transitional loss coefficients. The fric
tional loss contributions were assumed to be sufficiently accu
and these terms were not altered.

The pump head-flow characteristics were determined by m
suring the pressure head produced by the pump for several
rates. The fitted pump head-flow equation~Eq. ~3!! is applicable
for different speed control settings.

DPpump50.0777~rpm!220.138•104~rpm!Qloop

20.288•1010Qloop
2 (3)

where rpm is rpm of speed controlled pump, andQloop is loop
flow m3/sec. The pump head was measured in combination w
loop flow to produce the following expression for loop hydrau
resistance:

DPloop5
r

2

K

A2
Qloop

2 (4)

where K/A250.649•107 m24. The loop inertia was determine
from a transient test where the main throttle valve was initia
closed, then rapidly opened and the loop flow was measured
function of time. The test section was replaced with a short len
of pipe that had a negligible pressure drop for the loop inertia
because the joint pressure drop would otherwise dominate
response. The calibrated loop inertia is given below.

DPinertia5r
L

A

dQloop

dt
(5)

whereL/A50.113•105 m21.
The loop equilibrium equation is obtained by summing t

pressure losses around the loop as follows:

DPpump5DPjoint1DPloop1DPinertia.

It is important to note that the total loop flow is equal to the jo
leakage flow plus a contribution to account for plate motions w
the corresponding swept volume of fluid.

Qloop5Qjoint10.194•1021ẋ (6)

whereẋ is the velocity of the plate tip. The relationships for pum
head-flow, loop resistance, and loop inertia~Eqs.~3!, ~4!, and~5!!
are functions of the total loop flowQloop while the joint pressure
drop versus flow representation~Eq. ~2!! is a function of joint flow
Qjoint . Substituting the equation for loop inertia~i.e., Eq.~5!! and
JANUARY 2004, Vol. 71 Õ 43
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the above expression for total flow into the loop equilibrium eq
tion results in the following loop equilibrium equation.

Q̇joint10.194•1021ẍ5
g

r

A

L
@DPpump~Qloop!2DPjoint~Qjoint!

2DPloop~Qloop!# (7)

where DPxxx(Qyyy) denotesDPxxx as a function ofQyyy . The
plate equation of motion~Eq. ~1!! and the loop equilibrium equa
tion ~Eq. ~7!! comprise the governing equations for the coup
plate/loop system.

The stability of the nonlinear system given by Eqs.~1!–~7! for
a particular joint leakage flow and plate position can be de
mined by fixing the pressure drops at that joint leakage flow
plate position and then computing the eigenvalues of the resu
linear differential system. This procedure can be carried out us
a symbolic manipulation package such as Mathematica@8#. Figure
4 is a plot of the structural eigenvalue’s real component a
function of flow rate and upper gap spacing. Negative and pos
components indicate stable and unstable conditions, respecti
while the neutral stability point is identified by a zero value.

For the test conditions of 0.316 l/sec~5 gpm! and an upper gap
spacing of 0.232 mm (du59.15 mils) ~see Fig. 3!, the real part of
the structural eigenvalue is equal to 0.047 which indicates v
slow growth at the stability point, as expected. The true worth
this symbolic approach is the ability to isolate the instabil
mechanism by explicitly evaluating changes in system stab
when system parameters are changed.

The most significant result obtained from the symbolic eval
tion of the hydraulic-based stability analysis is identification
the second to last term,f l ue/4du

3, in the joint pressure drop-flow
relationship~Eq. ~2!! to be the destabilizing fluid force. This term
represents the frictional loss in the narrow section of the tong
in-groove joint characterized by the upper gap spacingdu ~see
Fig. 3!. This frictional loss accounts for 45% of the joint pressu
drop and elimination of the corresponding term in the hydrau
based stability analysis results in a stable system. The e
would be the same if the system losses~e.g., structural damping
fluid convection! exceeded this destabilizing term in magnitud
Additional system damping, although it may be insufficient its
to preclude an oscillatory instability, will shift the point of insta
bility to a higher flow rate for a given gap spacing. The poten
for an excursive instability increases under these conditions
the onset of an oscillatory instability may be superseded.

Fig. 4 Stability map showing the structural eigenvalue’s real
component as a function of flow rate and upper gap spacing.
Negative and positive components indicate stable and unstable
conditions, respectively, while the neutral stability point is
identified by a zero value. „Joint flow is given in m 3Õsec and
plate position in m. …
44 Õ Vol. 71, JANUARY 2004
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A second result of this study is the conclusion that the reduc
of plate frequency from an air to a water environment~i.e., 270
Hz versus 2.5 Hz! is due to the swept volume~or added mass!
contribution described above. The loop inertia couples the sw
volume of water and the structural motion causing the freque
reduction.

The natural frequency of the immersed plate predicted by
hydraulic-based stability analysis is greater than the measured
quency~i.e., 4.23 Hz versus 2.5 Hz!. This over-prediction of im-
mersed frequency is attributed to neglecting the hydrodyna
mass of unrepresented water in the loop that is external to
plena volume. Sensitivity studies were conducted with vario
swept volumes and it was concluded that the stability point
minimally affected by the over-prediction of frequency for th
range of parameters evaluated.

To summarize, the symbolic evaluation of the hydraulic-bas
stability analysis identified the destabilizing fluid force in the joi
pressure-drop flow relationship. This force is associated with
draulic conditions within the joint and it is not attributed to deta
of the exterior loop, although a loop must be suitably represen
before the instability can be observed. In the next section, a t
dimensional fluid-structure interaction analysis model for flo
within the joint is presented. This model, which was develop
from first principles, is seen to predict the same flow instabil
that was observed experimentally when the joint model is coup
with the loop representation described above.

4 SBDM Model
As mentioned above, if the system losses are greater than

destabilizing forces, then the system will remain stable. Exces
numerical damping, which contributes to the system damping,
artificially suppress an otherwise unstable response. In any c
numerical damping will shift the onset conditions of an oscillato
instability to require higher than observed flow rates. This is w
the successful prediction of the instability point of a self-excit
vibration has been so elusive. The hallmark of the SBDM is elim
nation of numerical damping due to the coupling model itse
Other sources of numerical damping are well known and th
sources are important in determining details of the steady fl
prior to initiation of instability, but are less important in determi
ing the onset of instability due to fluid-structure interaction. Th
application is an acid test for any fluid-structure interaction ana
sis capability.

The first step in replacing the hydraulic representation of lo
flow ~Eq. ~2!! with an SBDM representation is to generate a s
ficiently accurate fluid-only solution to serve as the starting po
for the coupled solution. The channel model used for the calc
tion is shown in Fig. 5 where the plate is positioned so that
upper gap spacingdu50.232 mm (du59.15 mils) ~see Fig. 3! is
consistent with a channel flow rate of 0.316 l/sec~5 gpm!. The
fluid mesh consisted of the union of quadrilaterals with 10 ce
across the channel and 1076 cells along the length. Although
mesh details cannot be discerned in Fig. 5, the joint geometr
clearly depicted. A closeup of the mesh at the first inlet be
where the majority of the joint pressure drop occurs is provided
Fig. 6. The inlet and exit plena are not modeled because the b
structured mesh requirements of the computer program mak
impractical to transition the mesh from the plena to the chan
and vice versa. The inlet and exit pressure losses are repres
with sufficient accuracy by hydraulic loss coefficients~see theK11
andK55 terms in Eq.~2!! because these features are not the sou
of the destabilizing fluid force.

Laminar flow is represented because at 0.316 l/sec~5 gpm! the
channel flow is laminar everywhere other than the narrow sec
of the tongue-in-groove joint characterized by the upper gap sp
ing du ~see Fig. 3!. The Reynolds number varies from 1050 at t
inlet and exit regions to 6300 in the narrow section of the joi
No-slip wall conditions are specified and pressure forced bou
ary conditions are implemented to produce the 0.316 l/sec~5 gpm!
Transactions of the ASME
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flow rate. A constant time step of 1.2531026 sec is used to pro-
duce a stable solution for the model shown in Fig. 5. Convec
terms are discretized using a weighted average of 37.5% of do
cell differencing and 62.5% centered differencing, values cho
to maintain as much accuracy as possible from centered differ

Fig. 5 Channel model mesh. Half the mesh lines in each direc-
tion have been omitted for clarity.

Fig. 6 Mesh closeup of first inlet bend
Journal of Applied Mechanics
ion
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ing while maintaining a manageable time step size. Finally,
density and kinematic viscosity of the water were defined
1000 kg/m3 ~0.0361 lb/in3! and 0.984•1026 m2/sec (0.152
•1022 in2/sec), respectively.

To establish a net pressure drop consistent with the disc
flow solution, a constant channel exit pressure of 482.65 kPa~70
psi! was specified and the inlet pressure was adjusted by trial
error until the desired flow rate of 0.316 l/sec~5 gpm! was
achieved. The fluid-only solution was simulated for a total of 0
sec to establish steady-state flow conditions throughout the jo
The resulting channel pressure drop of 22.340 kPa~3.24 psi!,
combined with the 0.414 kPa~0.06 psi! inlet and exit channel
losses, equals a 22.754 kPa~3.30 psi! pressure drop across th
joint at a leakage flow of 0.317 l/sec~5.024 gpm!. This analytical
estimate is within 5% of the 21.650 kPa~3.14 psi! measured
across the test section. Velocity and pressure profiles for the fl
only solution are provided in Figs. 7 and 8, respectively. Note
effectiveness of the tongue-in-groove joint geometry of Fig. 3
limiting leakage flow where the majority of pressure drop occ
on the inlet side of the joint.

The next phase of the effort is incorporation of the plate mo
into the SBDM fluid-structure interaction analysis to obtain
steady-state solution. The reason for taking this intermediate
and not directly analyzing the full system including loop cond
tions is that the latter approach can produce an excursive inst
ity if the initial conditions do not represent equilibrium of th
plate position and pressure drop. The SBDM coupled simulati

Fig. 7 Velocity profile for the fluid-only solution
JANUARY 2004, Vol. 71 Õ 45
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~both with and without loop conditions modeled! used the same
analysis parameters~e.g., laminar flow, time step! as previously
described for the fluid-only solution.

The same plate representation used for the hydraulic-based
bility analysis described in Section 3 was used here. A hydro
namic mass of 0.422•104 kg (24.1 lb-sec2/in) was added to the
structural mass to account for the swept volume of water~see Eq.
~6!! that is not represented because the inlet and outlet plena
not modeled as described above. The only additional represe
tion required for SBDM implementation is specification of th
geometrical relationship between fluid degrees-of-freedom on
plate and the generalized structural degree-of-freedom for
plate itself.

The coupled problem~without loop conditions! was run for a
single time step to calculate the fluid force acting on the plate
the channel. A counterbalancing plate force was then specifie
balance the fluid forces and this process was repeated unti
plate was neutrally balanced in its nominal position. The coup
problem was simulated for 0.2 sec to assure the stability of
SBDM model. With the plate and fluid forces initially in balanc
the plate did not experience an excursive instability.

The next step in the process is to introduce the representa
for pump head-flow~Eq. ~3!!, loop hydraulic resistance~Eq. ~4!!,
and loop inertia~Eq. ~5!! into the SBDM coupled simulation. The
first task is to determine the pump speed that corresponds to
loop flow and pump head in accordance with Eq.~3!. The nominal
loop flow was calculated at the beginning of the simulation pr
to any time step calculations and this flow is the same flow as
end of the earlier SBDM simulation without the loop model f
consistency. Using this value for loop flow, the pump head w
determined by evaluating the equilibrium of the loop for stea
state conditions~i.e., DPinertia50) as shown below.

DPpump5DPjoint1DPloop (8)

DPpump50.223•1051
qe

2r

2 S K11

d12
2

1
K55

d56
2 D 1

r

2

K

A2
Q2

Fig. 8 Centerline pressure profile for the fluid-only solution.
Pressure is plotted versus vertical length, with channel geom-
etry overlaid for clarity.
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The joint pressure drop is represented above by contribut
for the channel inlet and exit pressure losses~i.e., K11 and K55
terms of Eq.~2!! plus the channel pressure drop of 22.340 k
~3.24 psi! that was imposed in the fluid-only solution to produce
leakage flow of 0.317 l/sec~5.024 gpm!. Once the pump head wa
calculated, the corresponding pump speed was determined
Eq. ~3!. This pump speed was kept constant throughout the si
lation and the pump head varied with loop flow according to E
~3!. The counterbalancing plate force for the ‘‘SBDM-with-loop
simulation had to be redefined to account for the pressure d
across the joint in addition to the fluid force acting on the chan
that was determined in the ‘‘SBDM-without-loop’’ simulation. Us
ing the same representation for joint pressure drop descr
above and the initial joint leakage flow, the counterbalancing fo
was specified to neutrally balance the plate in its nominal posi
at the start of the ‘‘SBDM-with-loop’’ simulation.

The ‘‘SBDM-with-loop’’ simulation was driven by a channe
inlet pressure that varied for each time step. The channel i
pressure is implicitly dependent on the loop flow which requi
treatment for incorporation into an explicit CFD code. The a
proach taken here was to estimate the loop flow for the next t
step, then calculate the channel inlet pressure that was consi
with the estimated loop flow. Both the loop flow and correspon
ing inlet pressure were determined by evaluating unsteady l
equilibrium conditions as follows:

DPinertia1DPloop1DPjoint2DPpump50.

The first, second, and last terms of the above equilibrium equa
are appropriately represented by Eqs.~5!, ~4!, and ~3!, respec-
tively. The joint pressure drop is a combination of channel in
and exit pressure losses plus the pressure drop across the ch
where the latter is an implicit function of loop flow and chann
inlet pressure. The channel pressure drop was approximate
calculating a hydraulic loss for the channel based on the
SBDM time step and applying this estimate to the new time st
With this approximation and a central difference expression
loop flow rate in Eq.~5!, the unsteady loop equilibrium equatio
becomes

05r
L

A

2Qn112Qn22Qn211Qn22

2dt
1

r

2

K

A2
~Qn11!2

116.12S r

2D S Qn11

d12
D 2

1
Pinlet

n 20.483•106

~Qn!2
~Qn11!220.195

•107 ~rpm!210.139•104~rpm!Qn1110.288•1010~Qn11!2.

The above quadratic equation was solved to estimate the loop
for the next time stepQn11. Once the loop flow was estimated
the channel inlet pressure for the next time step was calcul
from the unsteady loop equilibrium equation as follows:

Pinlet
n1150.483•1061DPpump2DPI/O2DPloop2DPinertia

whereDPI/O is channel inlet and exit pressure losses.

Pinlet
n1150.483•10610.0777~rpm!220.139•104~rpm!~Qn11!

20.288•1010~Qn11!20.161•1022S r

2D S Qn11

d12
D 2

2r
K

A2
~Qn11!22r

L

A

2Qn112Qn22Qn211Qn22

2dt

The above scheme proves to be an effective means of inco
rating the loop conditions into the coupled SBDM simulation.
delicate point arises in devising a suitable numerical schem
extrapolate the channel pressure drop to then11 time step. Al-
ternate treatments, such as lagging the loop flow, result in ex
sive instabilities. The definition of a difference expression for t
loop flow rateQ̇n11 that preserved enough system energy to p
Transactions of the ASME
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mit oscillatory instability is an equally difficult task. Note that th
contribution of the swept volume of water to the total loop flo
was not considered in the SBDM analyses. This contribution
insignificant ~amounting to less than 1% of the total flow! and
successful incorporation of this term into an explicit analy
without dissipating excessive energy is difficult.

The coupled simulation with loop conditions was started fro
the steady-state solution for the coupled simulation without
loop modeled and run for a number of plate vibration cycles
shown in Fig. 9. The plate immediately began vibrating but t
oscillations were centered around a nonzero plate position wh
indicated the counterbalancing plate force was slightly off. T
perturbation generated a nonsteady plate motion that was m
apparent in the first cycle of response. The plate displacem
were an order of magnitude smaller than the channel gap
which confirmed that the small displacement assumption of
SBDM formulation is appropriate for this class of problem. Als
this example demonstrates that instabilities begin with small d
placements that grow in time. The velocity and pressure profi
for the SBDM coupled simulation with loop conditions are esse
tially the same as the fluid-only results shown in Figs. 7 and 8

The natural frequency of the SBDM simulation is equal to t
hydraulic-based stability analysis result which, in turn, is high
than the measured frequency~4.23 Hz versus 2.5 Hz!. Since the
SBDM simulation accounts for the added mass of the water in
tongue-in-groove joint and the hydraulic-based model does no
is concluded that this added mass is negligible because the
dicted frequencies for the two approaches are virtually the sa
The over-prediction of immersed frequency is attributed to n
glecting the hydrodynamic mass of the water in the remainde
the loop.

Visual stability assessment of the results in Fig. 9 is clarified
least-squares fitting straight lines to the upper and lower peak
oscillation ~as shown in Fig. 9!, respectively, after the first vibra
tion cycle. Examination of the relative slopes of the fitted lin
reveals the steady growth of an oscillatory instability. The grow
is consistent but slow which indicates that the flow of 0.317 l/s
~5.024 gpm! appears to be the stability point.

To assess the stability point and demonstrate that the SBDM
not inherently unstable, the previously described simulations~i.e.,
fluid-only, coupled without loop conditions, and coupled wi
loop conditions! were conducted for the last experimental da
point that was investigated prior to experiencing the instabil
The last stable data point had a channel flow rate of 0.284 l/
~4.5 gpm! corresponding to an upper gap spacing ofdu
50.250 mm (du59.86 mils) ~see Fig. 3!. For the simulations of

Fig. 9 Results of SBDM coupled simulation with loop condi-
tions modeled, Qjoint Ä0.317 lÕsec
Journal of Applied Mechanics
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the 0.284 l/sec~4.5 gpm! case, the mesh refinement and all n
merical treatments were kept the same as the parameters use
the unstable 0.316 l/sec~5 gpm! flow case.

The results of the 0.284 l/sec~4.5 gpm! simulation are shown in
Fig. 10 attached, as before, straight lines were least-squares
the upper and lower peaks of response following the first vibrat
cycle. Examination of these lines clearly indicates a decaying
stable response. Therefore, the 0.317 l/sec~5.024 gpm! flow is
shown to be the instability point consistent with the experimen
data and the SBDM is shown to correctly predict the stabi
point in addition to the general phenomenon of oscillato
instability.

5 Summary
The fluid-elastic instability of a tongue-in-groove leakage jo

was evaluated using the SBDM of fluid-structure coupling a
compared to experimental results. The test configuration con
of a rectangular plate that is elastically hinged at one end with
tongue-in-groove joint at the opposite end. For a speed contro
pump, the plate experiences an oscillatory response when flo
increased.

A hydraulic-based stability analysis was executed symbolica
using Mathematica to identify the frictional loss factor in the joi
as the destabilizing force. Building on the lessons from the Ma
ematica model, a fluid-structure interaction analysis using
SBDM coupling algorithm was conducted for the test configu
tion.

1. A steady-state fluid-only solution was generated as a star
point for the coupled simulation.

2. The coupled model without loop conditions was simulat
long enough to allow the joint to achieve an equilibrat
position.

3. The coupled simulation with loop conditions was execu
for a number of plate vibration cycles to demonstrate
growing oscillatory behavior.

4. The coupled simulation with loop conditions was execu
for reduced flow conditions to correctly demonstrate a sta
response, thus indicating the higher flow as the instabi
point.

The SBDM of fluid-structure coupling is demonstrated to co
rectly predict the oscillatory instability and instability point of
tongue-in-groove leakage joint from a first principles basis. T
success has been made possible by the energy conserving fe
of the SBDM coupling algorithm. Even though the methodolo
is specifically applied to a tongue-in-groove joint, the approach
equally suitable for evaluating the fluid-elastic stability of leaka
joints in general.

Appendix
The small boundary displacement model~SBDM! for fluid/

structure coupling is based on explicit time differencing for bo
the fluid and structural equations that are solved simultaneou
Structural displacements are assumed small compared with p
lem dimensions. As implemented for this paper, the structure
modeled as a single degree-of-freedom, but the formulation ca
applied to multiple structural degrees-of-freedom as well. C
pling between fluid and structure is accomplished by setting fl
velocity at fluid-structure interfaces equal to structural veloc
and by determining forces exerted on the structure from pres
and viscous forces generated within the fluid. Because displ
ments are assumed small, both fluid and structural meshes
stationary in time, avoiding difficulties arising from mesh motio
The authors’ experience has shown that mesh motion can in
duce ‘‘numerical dissipation’’ that is large enough to mask t
initiation of physical instabilities.

Suppose that a spatial mesh and discretization method h
been chosen, and denote byU the vector of fluid velocity degrees
of-freedom, byP the fluid pressure degrees-of-freedom, and byX
JANUARY 2004, Vol. 71 Õ 47
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the structural displacement degrees-of-freedom. Suppose also
a uniform time step,Dt is chosen and denote by a superscript
time level. The equations of motion can be schematically rep
sented in the following way.

M fluid

Un112Un

Dt
1GPn115Sn, (9)

GTUn1150, and, (10)

M struct

Xn1122Xn1Xn21

Dt2
1KXn5Fn11, (11)

where Eq.~9! is the discretized Navier-Stokes equation withS
denoting all convective, viscous, and forcing terms; where
~10! is the equation of the continuum; and where Eq.~11! is
Newton’s law of motion withF denoting all external forces, in
cluding fluid forces. Here,M fluid andM structare the fluid and struc-
tural mass matrices,K is the structural stiffness matrix, andG is a
matrix representing the discrete gradient operator. The disc
divergence operator is the transpose of the gradient,GT.

At the fluid-structure interface, the equations are coupled
gether in the following way:

Un115
Xn112Xn

Dt
, and (12)

Fn1152GPn111Sn1body forces (13)

Equation ~12! equates the structural and fluid velocities at t
interface and Eq.~13! indicates that the pressure force on t
structure is the most important fluid force. It is essential that b
Eqs.~12! and ~13! be evaluated using consistent time levels.

The formulation sketched above, along with a stationary und
lying mesh, yields a fixed linear system that must be solved
each time step in order to advance to the next time step. T
linear system can be solved very efficiently. It should be no
that the marching procedure is not stable unless the time in
ment is limited in size. The limitation depends very strongly
48 Õ Vol. 71, JANUARY 2004
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the discrete treatment of the convection terms and usually requ
some form of upwinding to maintain a reasonably sized time
crement. For the current case, convection terms are discre
using a weighted average of 37.5% of donor-cell differencing a
62.5% centered differencing, values chosen to balance the ina
racy of upwind differencing against its beneficial effect on tim
step size. System stability predictions are not sensitive to
choice of weighting because stability depends primarily on
rate of energy transfer across the fluid-structure interface, and
on dissipation mechanisms within the fluid and structure the
selves.

The form of the discretized fluid equations is based on
method of Hirt, Amsden, and Cook@9#. This finite volume method
employs mesh elements that are quadrilateral in shape, with
locity approximated as a bilinear function based on corner valu
and constant pressure in each element. This element is neu
stable in the Babusˇka-Brezzi-Ladyzhenzkaya sense, and spurio
pressure modes are eliminated by specification of pressure i
elements at the exit of the flow region.
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Nonlinear Transient Response
of Thermally Loaded Laminated
Panels1

The nonlinear response of a composite laminated panel that is suddenly exposed to
flux is examined using the finite element method. The panel is cantilevered onto a
hub, the rotation motion of which is either fully or partially restrained. The panel ela
deformations are assumed large and are modeled via the von Ka´rmán strain-displacement
relationship while the rigid-body angular rotation, for the case of a rotating rigid hub
assumed small. The system of nonlinear governing equations is solved by the Ne
Raphson method in conjunction with the Newmark time integration scheme. The
deformation is observed to be sensitive to the motion of the base.
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1 Introduction

The sudden application of a heat flux to a structure modele
a beam, plate, or shell has the tendency to cause the structu
vibrate. This phenomenon is called thermal-induced vibration;
dependent upon the relative magnitudes of the thermal time
stant and the fundamental natural frequency of the struct
Tauchert@1# presents an extensive review of the subject. Anot
important survey study is by Thornton@2# which concentrates on
the aerospace industry. The study by Heppler@3# is also worthy of
mention; it examines the response of shells subject to ther
radiation from a nuclear burst.

Analysis of the response of both curved and flat panels
arises from exposure to a sudden heat flux finds applicatio
industries such as aerospace, nuclear and manufacturing. Th
fluence of thermomechanical loads on laminated plates is ex
ined by Chandrashekhara and Tenneti@4#. A similar problem, but
for the case involving only thermal loads, is investigated for lam
nated cylindrical panels by Chang and Shyong@5#. The study
examines the issue of thermomechanical coupling and concl
that the degree of its relevance decreases with increasing p
radius of curvature. Feldman and Gilat@6# investigate the dynamic
response of antisymmetric laminated plates and cylindrical pa
for both temperature-dependent and independent material pro
ties. The aforementioned studies consider fully restrained
rotation.

The current study examines the nonlinear response of com
ite laminated panels that are suddenly exposed to heat flu
typical panel is cantilevered onto a rigid hub, the rotation mot
of which is fully or partially restrained. The responses of curv
and flat panels with fully or partially tangential edge constrai
under thermomechanical loads is the subject of the paper by
brescu and Win@7#. They include geometric imperfections an
conclude that the panel response can be enhanced by varyin

1Part of this work was presented at the 5th International Conference on Dyna
and Control of Systems and Structures in Space, July 14–18, 2002, Cambridg

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, September
2002; final revision, May 1, 2003. Associate Editor: M.-J. Pindera. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
Copyright © 2Journal of Applied Mechanics
as
re to
t is
on-
re.
er

mal

hat
in

e in-
am-

i-

des
anel

els
per-
ub

os-
. A
on
ed
ts
Li-

d
the

degree of the tangential edge restraints. The occurrence of s
through buckling is also shown to be dependent upon the de
of the restraints.

The introduction of partial restraint on the hub rotation moti
in present study makes the model the preferable choice in ana
ing systems such as space-based pointing systems. Furthe
added feature permits the use of the model in the investigatio
thermal induced satellite attitude dynamics,@8#. Johnston and
Thorton’s@8# study on the attitude dynamics of a satellite is bas
on a linear strain-displacement relationship even though the de
mined elastic deformations are greater than the boom thicknes
orders of magnitude.

The nonlinearity in the present study is geometric. It is mode
via the von Kármán strain-displacement relationship for mode
ately large deformations. A spatially uniform but time-depend
temperature distribution is assumed. The results obtained from
linearized governing equations are also presented, and a para
ric study of the effects of:~1! geometric nonlinearity,~2! the mag-
nitude of the inertia of the hub relative to that of the panel, and~3!
the panel shallowness, is implemented.

2 Mathematical Formulation
The system of interest is depicted in Fig. 1. It comprises

laminated cylindrical panel,ABCD that is cantilevered onto a rigid
circular cylindrical hub which can rotate about its geometric ax
The panel is assumed to be in a stress-free initial state when
exposed to a sudden heat flux that results in a uniform tempera
change over the surface of the panel. The temperature changDT
is constant through the thickness and is spatially uniform. It
taken after Johnson and Thornton@8# and is of the form

DT5DTss~12e2t/Tt! (1)

whereDTss is the steady-state temperature difference,t is time,
andTt is the thermal time constant.

It is also assumed that changes to the panel material prope
are negligible within the operational temperature range. With r
erence to Fig. 1 the dynamics of the system are described with
aid of: an inertial frame located atO with the dexteral orthogona
basis vectors@ n̂1 ,n̂2 ,n̂3#; a hub body-fixed rotating frame with
dexteral basis vectors@ â1 ,â2 ,â3# also located atO; and a curvi-
linear panel-fixed frame with dexteral basis vectors@ êx ,êb ,êr #.
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.
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art-
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Fig. 1 Cantilevered cylindrical panel
.

r
s

e
f

The â2 basis vector is orientated such that it always pas
through the point of attachmentA of the panel to the hub. It is
rotated from the inertial basis vectorn̂2 by angleu. It is also
assumed that the radial line from the center of curvature of
AB, or midsurface, to the point of attachment, i.e.,AOc , is always
perpendicular toâ2 . The basis vectorsâ1 and n̂1 are coincident
and are always parallel to the geometric axis of the rigid hub

If the position vector fromO to a differential mass element o
the panel is denoted byRW . This vector may be expressed by a
suming that the arc length distance measured fromA along the
curved edgeAB ~or midsurface! is sayy5Rcb. A local curvilin-
ear panel-fixed frame is then attached at the point such thatêb is
a tangential basis vector whileêr is an inward radial basis vecto
The position of the differential mass element from this frame ix
units along theêx basis vector. HenceRW may be written as
y

n
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RW 5~Rh1Rc sinb!â21Rc~12cosb!â32~x1ū!êx1 v̄êb1w̄êr
(2)

whereRc andRh are the radii of the cylindrical panel and of th
hub, respectively, andū, v̄, andw̄ are the elastic deformations o
the panel expressed in the curvilinear frame@ êx ,êb ,êr #.

By denoting a first derivative with respect to time by (•) and
the panel volume mass density byr, the kinetic energy of the
systemT is given as

T5
1

2
I hu̇21

1

2
rE

vp

RẆ •RẆ dVp . (3)

The first term is due to the rotational inertiaI h of the rigid hub and
the second term is the contribution of the panel. The velocityRẆ is
expanded in the hub body-fixed rotating frame as
RẆ 5H â1

â2

â3

J TH uG

vG cosb2wG sinb2 u̇~Rc~12cosb!1~ v̄ sinb1w̄ cosb!!

vG sinb1wG cosb2 u̇~Rh1Rc sinb1~ v̄ cosb2w̄ sinb!!
J . (4)
on

The system potential energyU is due solely to the strain energ

of the panel. This is written as

U5
1

2 EVp

~ beI T2eI T
TcsI 1gI

TtI !dVp (5)

whereeI and eI T are vectors of the total in-plane and the therm
strains, respectively,sI is the vector of the in-plane stresses, a
the transverse shear strains and stresses are, respectively, de
by gI andtI . The Reissner-Mindlin plate theory displacement fie
is expressed as

ū~x,y,z,t !5u~x,y,t !2zcx~x,y,t !, (6)

v̄~x,y,z,t !5v~x,y,t !2zcy~x,y,t !, (7)

and w̄~x,y,z,t !5w~x,y,t ! (8)
al
d
noted
ld

wherex and y are as defined earlier, andz is the position of the
differential element along the normal to the midsurface. The v
Kármán strain-displacement relations become

Table 1 Material properties of graphite Õepoxy

Parameter Parameter Values

E11 181.0 GPa
E22 103.0 GPa
G12 7.7 GPa
G13 7.7 GPa
G23 2.87 GPa
r 1.563103 Kgm23

n12 0.28
a11 2.0831028 K21

a22 22.531026 K21
Transactions of the ASME
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Fig. 3 Effect of nonlinearity on hub angular rotation „0Õ90Õ0Õ90Õ0…s
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gI 5 Hgyz
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J H ]w

]y
2cy2

v
Rc

]w

]x
2cx

J . (9)

With the direct correspondence to Eq.~9!, the total in-plane strain
vectoreI is rewritten as

eI 5eI L1zkI 1kI N

where the first term is the linear strain component, the sec
term denotes curvatures and the third term represents the no
ear strains. The constitutive law relating the stresses and strain
@9#,

sI 5Q̄~eI 2eI T! and tI 5Q̄sgI , (10)

where all the components are referenced to the geometric or s
tural axes. Equation~10! is substituted into Eq.~5! and the expres-
sion resulting, after some algebra, can be written as

U5
1

2 EVp
H eI L

kI
gI
J TF A B 0

B D 0

0 0 As

G H eI L

kI
gI
J dVp

2E
Vp

H eI L

kI J TH NI T

MI T
J dVp

1
1

2 EVp
H eI L

kI
eI N

J TF 0 0 A

0 0 B

A B A
G H eI L

kI
eI N

J dVp (11)

where the thermal resultant forces and moments are denote
NI T and MI T , respectively.~Consult the Appendix for any matrix
that is undefined in the text.! The component of the potentia
energy expression that is quadratic in the thermal strains is
nored since it does not contribute to the final variational form. T
vector product of the nonlinear components of the total in-pla
strains and the thermal strains is also ignored.

In anticipation of a finite element based formulation, the fie
variables of the system are identified as the rigid-body rotatiou,
and the displacements due to the panel flexibilityu, v, w, cx , cy .
A 16-node isoparametric Lagrange bicubic element is imp
mented,@10,11#. The variables are interpolated as
52 Õ Vol. 71, JANUARY 2004
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u~e!

v ~e!

w~e!

cx
~e!

cy
~e!

6 53
1 0 0 0 0 0

0 NI T 0 0 0 0

0 0 NI T 0 0 0

0 0 0 NI T 0 0

0 0 0 0 NI T 0

0 0 0 0 0 NI T

4 5
u
uI e

vI ~e!

wI ~e!

cI x
~e!

cI y
~e!

6 (12)

whereuI (e) is a column vector of an element nodal axial displac
ments and the other entries are identified accordingly;NI
is a column vector of shape interpolation functions. In the seq
the row vector of element nodal displacemen

buI (e)T
vI (e)T

wI (e)T
cI x

(e)T
cI y

(e)Tc is denoted byqI
(e)T

.

Fig. 4 Effect of hub inertia on elastic displacements
„0Õ90Õ0Õ90Õ0…s
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Fig. 5 Effect of hub inertia on hub angular rotation „0Õ90Õ0Õ90Õ0…s
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The kinetic energy of a finite elementT(e) is obtained by sub-
stituting the field variables approximations Eq.~12! into Eq. ~4!,
and using the resulting expression in Eq.~3!, where the rotatory
inertia contribution of the hub is ignored for now, to obtain

T ~e!5
1

2
q̇I

~e!T
Mqq

~e!q̇I
~e!1q̇I

~e!T
MI uq

~e!u̇ (13)

with

MI uq

~e!5rE
Vp

~e!5
0I

NI ~Rh sinb1Rc~12cosb!!

NI ~Rh cosb1Rc sinb!

0I
0I

6 dVp
~e! .

Note that only terms that are quadratic in the field variables
their derivatives are retained in the kinetic energy express
Hence terms involvingu̇2v̄, u̇2w̄, u̇2v̄2, u̇2w̄2 are ignored. This
ensures a time-independent inertia matrix.

The potential energy of an elementU(e) is derived by substitut-
ing Eq. ~12! into Eq. ~5!. The nonlinear contributions are the
expanded using the technique of Rajeskaran and Murray@12#. The
method provides consistent matrices and is more general than
suggested by Mallet and Marcal@13,14#. The resulting potential
energy of an element may be written as

U~e!5
1

2
qI

~e!TS K ~e!1
1

3
K1

~e!1
1

6
K2

~e!DqI
~e!T

2qI
~e!T

FI T
~e! (14)

whereK (e) is the usual displacement independent stiffness ma
obtained in a linear analysis,K1

(e) is a component of the overa
stiffness matrix that is linearly dependent upon displaceme
K2

(e) is the component that is quadratic in the displacements,
FI T

(e) is the vector of consistent thermal loads.
The governing equations for a typical element are obtained

Hamilton’s principle by using the kinetic and potential energi
Eqs.~13! and ~14!. These are expressed in matrix notational f
mat as
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F M uu
~e! MI uq

~e!T

MI uq

~e! Mqq
~e! G H ü

q̈I
~e!J 1F0 0I T

0I Kqq
~e!G H u

qI
~e!J 5H 0

FI T
~e!J (15)

where

Kqq
~e!5K ~e!1

1

2
K1

~e!1
1

3
K2

~e! .

The above elemental governing equations are assembled in
usual finite element method manner~see Bathe@10#! to obtain the
global system of governing equations which can be written as

MGp̈O G1KGpO G5FO G (16)

whereMG and KG are the global inertia and stiffness matrice
respectively,FO G is the global force vector, andpO G is the vector of
global nodal field variables. The expanded form of the glo
equation Eq.~16! is identical to the governing equations for
finite element, Eq.~15!. The difference is that theM uu term of the
global inertia matrix includes the hub inertia. Hence

M uu5I h1(
~e!

M uu
~e!

The scenario in which the rotational motion of the hub is fu
restrained is governed by an identical system of equations with
exclusion of rotation (u,ü) contributions.

3 Numerical Simulation and Discussion
The numerical simulations are based on 10-ply laminates c

posed of graphite/epoxy laminae. The thickness of each lamin
0.125 mm. The mechanical and thermal properties are give
Table 1. A typical system comprises a cylindrical panel of rad
Rc510 m and heightHc510 m, a hub radiusRh51 m, with an
exponential time varying temperature profile with thermal tim
constantTt520 secs and steady-state temperatureDTss520 K.
The hub inertia is related to the inertia of the panel about
rotating axis of the hub~i.e., hub center! by a constant of propor-
JANUARY 2004, Vol. 71 Õ 53
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tionality I f . The midspan linear~nonlinear! deformations are nor-
malized with respect to the steady-state linear~nonlinear! quasi-
static deformation.

Effect of Geometric Nonlinearity and Hub Rotation. The
effects of hub rotation and geometric nonlinearity are investiga
for a system with a cylindrical panel that has a subtended a
2a560° and a hub inertia constant of proportionalityI f51.0.
The ply stacking sequence is (0/90/0/90/0)s . Figure 2 depicts the
normalized midspan~this location is identified on Fig. 1! defor-
mation of the cylindrical panel for the fixed and rotating hub ca
for both linear and nonlinear formulations. The linear plots sh
that the peak-to-peak steady-state deformation in the fixed
case is higher than that of the rotating hub scenario. This ob
vation is explained by the transfer of energy between the

Fig. 6 Effect of panel shallowness on elastic displacements
„0Õ90Õ0Õ90Õ0…s
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motion and the panel deformation. An FFT analysis of the fix
hub data reveals a dominant frequency of 1.27031022 Hz, which
is equivalent to the first mode of the panel. A similar analysis
the rotating hub data indicates a dominant rigid-body motion t
is followed by a frequency of 7.71431022 Hz. This frequency is
the same as that of the second most dominant mode in the fi
hub scenario. The steady-state quasi-static deformation is
mm.

The inclusion of the geometric nonlinearity yields reduced d
formation and increased frequency—0.951 Hz for the fixed h
scenario and 0.823 Hz for the rotating hub case—the higher
quencies are indicative of stiffening. The frequencies are provi
to facilitate a more quantitative analysis even though an FFT
not advisable for nonlinear processes. The steady-state quasi-
deformation is 14.5mm. Unlike the linear scenario, a higher pea
to-peak steady-state deformation is observed with the rota
hub. This is in accord with the FFT analysis results which show
lower frequency for the nonlinear rotating case; hence the fi
hub case is a stiffer scenario.

By defining dynamic amplification as the ratio of the maximu
steady-state transient deformation to the steady-state quasi
deformation, the linear fixed hub case is observed to yield
most amplification while the nonlinear fixed hub provides t
least amplification. The amplification with the nonlinear rotati
hub case is comparable to that of linear rotating hub. This imp
that, for the present configuration, inertia effect is more p
nounced in the fixed hub case.

The profile of the hub angle of rotation is depicted in Fig.
The hub rotation decreases while its frequency increases in
presence of the nonlinear formulation.

In summary, the inclusion of the geometric nonlinearity has
noticeable effect on the system vibration irrespective of whet
the rotation motion of the hub is fully or partially restraine
Given that the hub may never really be fixed in the literal sense
is advisable to use the rotating hub model. Based on these o
vations, the subsequent simulations are for a nonlinear analy

Effect of Hub Inertia. The influence of the magnitude of th
hub inertia relative to the inertia of the panel about the hub axi
examined by varyingI f over 0.5, 1.0, and 1.5, respectively. Th
nondimensional midspan deformation and the hub rotation an
are depicted in Figs. 4 and 5, respectively. These results ar
excellent agreement with intuition and it is imperative that th
are reflected by the analysis.

In particular, the higher the inertia factor, the better the chan
that the hub motion can indeed be adequately modeled as fi
This is because the rotation of the hub tends to zero. It is there
expected that the effect on the elastic deformation is such tha
elastic response approaches that of the fixed hub, as can b
ferred from from the results withI f51.0 and 1.5~see Fig. 4!.
These observations on the role of the relative magnitude of
inertia of the hub on the overall system response are also
firmed by Johnston and Thornton@8#.

Effect of Panel Shallowness. In order to examine the effec
of the panel shallowness, the subtended angle of the cylindr
panel is varied as 2a530 deg, 45 deg, and 60 deg, respective
while the hub inertia factorI f51.0. The respective steady-sta
quasi-static displacements are 110.1mm, 54.3mm, and 14.5mm.
The elastic response is depicted in Fig. 6 and the rigid-body
gular rotation is depicted in Fig. 7. The shallowest panel exhib
both the least dynamic amplification and the least angular rotat

4 Conclusion
The response of laminated symmetric cross-ply cylindrical p

els that are suddenly exposed to heat flux is examined. Struc
nonlinearity in the form of geometric nonlinearity is consider
and is modeled via the von Ka´rmń strain-displacement formula
The nonlinear governing equations are solved via the use of N
mark time-integration scheme and the Newton-Raphson meth
Transactions of the ASME
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Fig. 7 Effect of panel shallowness on hub angular rotation „0Õ90Õ0Õ90Õ0…s
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It is observed that even though the angles rotated by the hub
small, the allowance for hub rotation significantly affects the
sponse of the panel. The importance of this extra degree
freedom decreases, as expected, with increasing ratio of hub
tia to panel inertia. The shallowest panel investigated yields b
the least dynamic amplification and the least hub rotation. I
instructive to implement nonlinear analysis in light of the en
mous differences in response compared to the correspondin
sponse from a linear analysis.

Finally, it is acknowledged that the results presented in t
study are dependent upon laminate sequence. However, the i
tigation of this dependency is beyond the scope of this paper.
is primarily due to the numerous combinations of laminate
quence. The problem is perhaps best addressed in the conte
optimization. To this end, an optimal laminate sequence is sou
for appropriately defined objective function and constraints. Wh
the (0/90/0/90/0)s laminate sequence is selected in this study
order to explore the simplifications associated with a symme
cross-ply laminate, it is easily manufactured with fabric.
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Thermoelastic Instability of
Two-Conductor Friction System
Including Surface Roughness
A model is developed to investigate the mechanism of thermoelastic instability (TE
tribological components. The model consists of two thermally conducting bodies of
thickness undergoing sliding contact. Appropriate governing equations are derive
predict the critical speed beyond which the TEI is likely to occur. This model takes
account the surface roughness characteristics of the contacting bodies as well a
thermal contact conductance at the interface. Analytical expressions are provided fo
special cases neglecting the disk thickness and the thermal contact conductanc
extensive series of parametric simulations and discussion of the implication of the re
are also presented. The simulations show that the difference in material properties
geometry of the two conducting bodies has a pronounced influence on the critical s
A special case of the model shows that the threshold of TEI critical speed is pushe
much higher level when the conducting bodies have identical material properties an
geometrically symmetric. It is also shown that the perturbed wave generally tends to
with the body with higher thermal conductivity.@DOI: 10.1115/1.1629756#
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1 Introduction
High-speed sliding contact between nominally flat surface

associated with thermoelastic instability~TEI! where pressure per
turbation appears in the contact area. Such instability may lea
the formation of hot spots which are thought to be a conseque
of local thermoelastic expansion and high contact pressures.
is commonly observed in mechanical seals, brakes, and clutc

There is a rich volume of archival research publications dea
with TEI. Barber@1,2# first explained the thermoelastic instabilit
and the formation of hot spots in railway brakes. Dow and Bur
@3# used the perturbation method to determine the critical sp
for TEI. Their work was extended by Burton et al.@4#, Kilaparti
and Burton@5#, Banerjee and Burton@6#, Lebeck@7#, Barber et al.
@8#, Lee and Barber@9#, Du et al.@10#, Jang and Khonsari@11–
13#, and Yi et al.@14# in applications involving mechanical seal
braking systems, and wet clutch assemblies. In all of these a
cations, TEI manifests itself in the form of macroscopic hot spo

Many applications are classified as the so-called conduc
insulator system where the stationary component~brake pad, mat-
ing ring in seals, and friction disk in clutches! has a low enough
thermal conductivity to be classified as an insulator. In contr
the rotating component~separator in wet clutches and prima
ring in seals! possesses a much greater thermal conductivity.
conductor-insulator model simplifies the analysis because a
the heat generated goes directly into the conductor and not
into the insulator.

Burton et al.@4# showed that the predicted critical speed bas
on the insulator-conductor assumption is in good agreement
that of the two-conductor system only for the case that one of
friction pair is made of glass. According to Lee and Barber@9# the
critical speed based on Burton’s semi-infinite analysis with pla
strain hypothesis yields a critical speed that is beyond wha

1To whom correspondence should be addressed.
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
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California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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observed experimentally in automotive disk brake systems. T
attributed this phenomenon, in part, to neglecting the finite thi
ness of the conducting body.

Another important factor is surface roughness. Jang and Kh
sari @11# showed that the critical speed is dependent upon the l
applied on the system by considering the surface roughness.
sideration of surface roughness with proper thermal analysis
ables one to account for the real area of contact between
surfaces. Therefore, to predict the realistic critical speed, a t
conductor system of finite thickness considering the surf
roughness and the thermal contact resistance should be taken
account.

In this paper, we develop a TEI model for a friction pair co
sisting of two conducting bodies with rough surfaces. Each bo
has a finite thickness. The model is a two-dimensional prob
where the lateral dimension is neglected. This paper concentr
on the theoretical development of a generalized TEI formulat
of the problem. The appropriate governing equations are der
and solved for the critical speed and the wave speed. This p
also presents an extensive series of parametric simulations
gether with the implications of the results.

2 Theory
A schematic of the model is shown in Fig. 1. The model co

sists of two finite conducting bodies with rough surfaces. Bo
bodies are of finite thickness with isotropic surface roughness
cause most engineering surfaces are isotropic. The nominal
face separation between two bodies isho . The lower surface is
stationary and the upper surface undergoes a sliding motion
constant speed,U. It is assumed that the system is operating un
the steady state condition. We seek to determine the critical sp
Ucr , beyond which TEI occurs. For this purpose, a small surfa
wave representing a disturbance is imposed to the system. I
resultant surface deformation is smaller than the imposed sur
disturbance, the system will be thermoelastically stable. Assum
that the disturbance wave has an absolute speedc in the moving
direction, the relative wave speeds with respect to the upper
lower bodies arecH andcL , respectively. Since the lower body i
stationary, its relative wave speed is equal to the absolute w
speed, i.e.,cL5c. It follows thatcH5cL2U.

When two rough surfaces are brought into contact, they to
only a small fraction of the nominal area. The remaining gap
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us-
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filled with an interstitial fluid such as air with relatively low the
mal conductivity, which tends to reduce the rate of heat cond
tion between the bodies. Because of this thermal resistance
magnitude of the perturbed wave is changed and the wave is
layed at the interface. To characterize the behavior of the in
face, a constant resistance is used.

2.1 Temperature Distributions. Let T8 denote the tem-
perature perturbation brought about as a result of the impo
surface disturbance. To assess the effect of temperature d
bance on the thermoelastic behavior of the system, one must
sider the transient heat conduction equation for each conduc
body given below.

]2Ti8

]xi
2

1
]2Ti8

]zi
2

5
1

k i

]Ti8

]t
, i 5H,L (1)

wherek i is the thermal diffusivity. The prime represents the p
turbation. The subscripti 5H represents the upper body and t
subscript i 5L represents lower body, respectively. Coordina
system (xi ,zi) is affixed in the midsection of bodyi. The proper
boundary conditions for the temperature in each body are,@9#:

]Ti8

]zi
50 at zi50

(2)

Ti85Im@u ie
btej V~xi2ci t1D i !# at the interface.

The theory is based on the assumption of the symmetric m
and this is particularly appropriate for a pair of disks in the m
tidisk clutch pack. Therefore, all properties are symmetric at
midplane of the disk thickness. Hence, adiabatic boundary co
tion at the midplane~at zi50) is used in this analysis. In th
circumferential direction, the periodic boundary condition is us
Parameteru i denotes the amplitude of the temperature disturba
at the surface of bodyi. ParameterV represents the wave numbe
in the x direction. ParameterD i is the wave phase shift of tem
perature between surfaces due to the thermal contact conduc
Ic . The moving body has a phase shift ofDH5D and that of the
stationary body isDL50. Parameterb represents the time expo
nent of growth of the temperature wave and is essentially
defining eigenvalue of the problem. Ifb,0, the disturbance de
cays to zero and the system is stable, while forb.0, the instabil-
ity grows with time. The threshold of instability is defined b
b50. The first adiabatic boundary condition in~2! takes advan-
tage of the symmetry atzi50. Therefore, inserting Eq.~2! into
Eq. ~1!, the perturbed temperature distribution in each body is

Ti85ImFu i

coshbizi

coshbi l i
ebtej V~xi2ci t1D i !G (3)

where

Fig. 1 Schematic of the model
58 Õ Vol. 71, JANUARY 2004
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bi5j i1 jai5AS V21
b

k i
D2 j

Vci

k i
. (4)

2.2 Heat Generation at the Interface. The frictional heat
flux qi8 at the interface entering either the upper or the lower bo
is given by

qi85ImF7ki

]Ti8

]zi
U

zi57 l i
G5Vkiu i@R2i cosV~xi2ci t1D i !

1R1i sinV~xi2ci t1D i !#e
bt (5)

whereki represents the thermal conductivity andl i represents the
half thickness of the body. In Eq.~5!, the negative sign is for the
upper body and the positive sign is for the lower body. The s
script 1i represents the amplitude of sine component, and
subscript 2i represents the amplitude of cosine component
body i, respectively. Dimensionless parametersR1i andR2i in Eq.
~5! are

R1i5
j i sinh 2j i l i2ai sin 2ai l i

V~cosh 2j i l i1cos 2ai l i !

R2i5
ai sinh 2j i l i1j i sin 2ai l i

V~cosh 2j i l i1cos 2ai l i !
. (6)

Note that as discussed before the phase shift for the statio
body DL50. The total perturbed frictional heat generated due
the asperity contact pressure is

q85qH8 1qL85 f PH8 U5 f PL8U (7)

wheref is a friction coefficient, andPH8 andPL8 are the perturbed
contact pressure acting on the upper and lower surfaces, res
tively. Equation~7! representsPH8 5PL8 to satisfy equilibrium. In-
serting Eq.~5! into ~7!, and solving for the sine and cosine am
plitudes of the contact pressure acting on the lower surface,P1L
andP2L , yields

f UP1L5@VkHuH~R1H cosVD2R2H sinVD!1VkLuLR1L#ebt

f UP2L5@VkHuH~R1H sinVD1R2H cosVD!1VkLuLR2L#ebt.
(8)

For the special case that the thermal contact conductance is
considered, the phase shift becomes nil~D50!.

2.3 Thermoelastic Deformations. The particular solution
of the thermoelastic problem for the plane strain can be obtai
using the strain potentialc i8 . To obtain a general solution tha
satisfies the boundary conditions, the isothermal solution sho
be superimposed on the particular solution,@15#. The isothermal
solution can be obtained from the isothermal potentialsf i8 and
v i8 . The boundary conditions for the elastic problem are

uziuzi5050

uziuzi57 l i
5hi8

sziuzi57 l i
52Pi8

txziuzi57 l i
5 f Pi8 (9)

wherehi85h1i sinV(xi2cit1Di)1h2i cosV(xi2cit1Di) is the sur-
face displacement perturbation of the each body. The functio
form of hi8 is assumed to have the amplitude of sine compone
h1i , and the amplitude of cosine component,h2i . Using the
boundary conditions~9! together with the functional form of the
surface displacements, the displacements of the upper and l
surfaces are obtained. Combining all the equations above, th
sults of the displacement amplitudes of the upper and lower
faces are
Transactions of the ASME
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2GHVh1H5lH~12S2H!G2HuHebt1lHS1HG4HuHebt1S1HP1H

1 f S2HP2H

2GHVh2H52lH~12S2H!G1HuHebt1lHS1HG3HuHebt

1S1HP2H2 f S2HP1H

2GLVh1L52lL~12S2L!G2LuLebt2lLS1LG4LuLebt2S1LP1L

1 f S2LP2L

2GLVh2L5lL~12S2L!G1LuLebt2lLS1LG3LuLebt2S1LP2L

2 f S2LP1L (10)

where

l i5
a iEi

12n i
; S1i5

2~12n i !sinh2 V l i

V l i1sinhV l i coshV l i
;

S2i5
V l i2~122n i !sinhV l i coshV l i

V l i1sinhV l i coshV l i
;

G1i5Vk i

~bai1j iVci !sinh 2j i l i2~aiVci2bj i !sin 2ai l i

~b21V2ci
2!~cosh 2j i l i1cos 2ai l i !

;

(11)

G2i5Vk i

~aiVci2bj i !sinh 2j i l i1~bai1j iVci !sin 2ai l i

~b21V2ci
2!~cosh 2j i l i1cos 2ai l i !

;

G3i5
V3k ici

b21V2ci
2

; G4i5
V2k ib

b21V2ci
2

.

The parameterGi represents the rigidity of the disks, and it
defined asGi5Ei /2(11n i). a i is the coefficient of thermal ex
pansion,Ei is the elastic modulus, andn i is the Poisson’s ratio,
respectively.

2.4 Asperity Contact Pressure. The total surface separa
tion therefore satisfies the following condition:

h5ho1hH8 2hL8 (12)

where hH8 and hL8 are the imposed surface disturbances on
upper and lower bodies, respectively. According to Natsum
and Miyoshi@16#, the mean pressure associated with an aspe
contactPc is proportional to the ratio of the real area of contact
the nominal area, namely,Pc5EcAc whereEc is a proportionality
constant, which we shall refer to as the ‘‘elastic modulus for c
tact.’’ The real area of contact for two rough surfaces can
determined using the Greenwood-Tripp’s theory,@17#. In this
analysis, it is assumed that the model remains valid during slid
with presence of heat generation, and the asperities are distrib
evenly leading to a uniform heat generation and surface defor
tion. Many engineering surfaces have a Gaussian or near-Gau
height distribution. Using the polynomial density function, t
real area of contact forH<3 can be evaluated from

Ac5
1

128
~phgs!2F12S H

3 D G6F64169S H

3 D130S H

3 D 2

15S H

3 D 3G
(13)

whereH is the dimensionless surface separation,H5h/s. For the
case ofH.3 the real area of contact becomes nil. The perturb
real area of contact,Ac8 , is determined by inserting Eq.~12! into
Eq. ~13! and neglecting higher order terms. The result, usingHo
5ho /s, is

Ac85~phgs!2wc

hH8 2hL8

ho
(14)

where
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s

-

he
da

rity
to

n-
be

ing
uted
ma-
sian
e

ed

wc5
1

128S Ho

3 D F12S Ho

3 D G5F3151423S Ho

3 D1225S Ho

3 D 2

145S Ho

3 D 3G . (15)

The perturbed asperity contact pressure is obtained from Eq.~14!.
The result is

Pc85xwc

hH8 2hL8

ho
(16)

where the surface characteristic parameter is defined as

x5~phgs!2Ec (17)

whereh is the asperity density,g is the asperity tip radius, ands
is the surface roughness (rms). Equilibrium requires thatPc8
5PL85PH8 . The relationships between the amplitudes of pressu
and surface deformations are obtained.

P1H52
xwc

ho
@h1H2h1L cosVD2h2L sinVD#

P2H52
xwc

ho
@h2H1h1L sinVD2h2L cosVD# (18)

In the coordinate system (x,z) moving with the perturbed field,
PH8 andPL8 obey the following relationship:

P1H sinV~x1D!1P2H cosV~x1D!5P1L sinVx1P2L cosVx.
(19)

After separating the sine and cosine components in Eq.~19!, we
obtain the following expressions for the amplitudes ofPH8 and
PL8 .

P1H5P1L cosVD1P2L sinVD

P2H52P1L sinVD1P2L cosVD (20)

Note that if the two bodies were in perfect contact, then the th
mal contact conductance would be nil and the corresponding t
perature lag would vanish, i.e.,D50. Equations~20! would reduce
to simply P1L5P1H andP2L5P2H , as expected.

2.5 Thermal Contact Conductance. It is assumed that all
the heat generated is conducted into both surfaces by the the
contact conductance,Ic . This parameter is simply the inverse o
the thermal contact resistance. The relationship between the
tional heat and the temperature is

Ic~TH8 2TL8 !5qL82qH8 . (21)

Inserting Eqs.~3! and ~5! into Eq. ~21! and separating sine an
cosine terms, the following expressions are obtained:

uL

uH
5

Ic cosVD1VkH~R1H cosVD2R2H sinVD!

Ic1VkLR1L

tanVD5
VkLR2L~Ic1VkHR1H!2VkHR2H~Ic1VkLR1L!

~Ic1VkLR1L!~Ic1VkHR1H!1V2kLkHR2LR2H

.

(22)

Equations~22! represent the ratio of surface temperature am
tudes and the phase shift of the wave at the interface. IfIc→`,
then the two bodies are in ‘‘perfect’’ contact, and there is
thermal contact resistance. Therefore, the ratio of temperature
plitudesuL /uH51 and the phase shiftD50 leading toTH8 5TL8 .
Contact resistance is indeed a difficult parameter to measure
this paper, we present simulations over a wide range of con
resistance values in an attempt to cover different applications
one may be interested in. The results presented are also use
JANUARY 2004, Vol. 71 Õ 59
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analyzing the limiting case, for example whenD→0 andu*→1.
Typically, for the seal the contact resistance is estimated
104 W/m2 K, @7#.

2.6 Thermoelastic Instability. Combining Eqs.~8!, ~10!,
~20!, and ~18! and separating the sine and cosine terms, we
obtain two equations to be solved for the critical speed and
wave speed. Before processing, we begin by defining the foll
ing set of dimensionless parameters:

Ū5
U

VkH
; c̄i5

ci

Vk i
; b̄5

b

V2kH

; j̄ i5
j i

V
; āi5

ai

V
.

(23)

Using these dimensionless parameters, the following coup
equations are obtained:

LTH @~G1H sinVD1G2H cosVD!~12S2H!2~G3H sinVD

2G4H cosVD!S1H#
1

12nH
1

uL

uH
@G2L~12S2L!

1G4LS1L#
11nL

11nH

aL

aH

1

12nL
J Ū

52@~cosVD1Ls sinVD!#R1H

1@~sinVD2Ls cosVD!#R2H2
uL

uH

kL

kH
~R1L1LsR2L!

(24)

LTH @~G1H cosVD2G2H sinVD!~12S2H!2~G3H cosVD

1G4H sinVD!S1H#
1

12nH
1

uL

uH
@G1L~12S2L!

2G3LS1L#
11nL

11nH

aL

aH

1

12nL
J Ū

5@~sinVD2Ls cosVD!#R1H

1@~cosVD1Ls sinVD!#R2H2
uL

uH

kL

kH
~LsR1L2R2L!

where

LS5 fD* 5
f

FS1H

GH
1

S1L

GL
1

2Vho

xwc
G FS2H

GH
2

S2L

GL
G

LT5 fH* 5
f

FS1H

GH
1

S1L

GL
1

2Vho

xwc
G F2aHkH~11nH!

kH
G . (25)

The parameterLS represents the coupling between the tangen
and normal loading and we will refer to it as theshear parameter.
ParameterD* is a modified Dundurs’ constant. At a high she
parameter, the effect of shear stress at the interface plays an
portant role and can not be neglected. When the surfaces
smooth and the bodies are treated as semi-infinite solids, the s
parameter reduces to the Dundurs’ constant,D, multiplied by the
friction coefficient, i.e.,Ls5 fD. The material parameterLT is
related to the thermal deformation due to the frictional heat
we refer to it as thematerial parameter. Consider the special cas
where the upper body is semi-infinite, the lower body is rigid, a
surfaces are both smooth, the material parameter reduces t
thermomechanical material parameter,H, multiplied by the fric-
tion coefficient, i.e.,LT5 fH, @18#. Note that the thickness effec
and the roughness effect are included in both the shear param
LS and the material parameterLT .
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Mathematically, the stability parameterb.0 means that insta-
bility will grow unbounded with time and TEI is imminent. There
fore, the threshold of instability~i.e., the critical speed! is obtained
by setting b50 in the governing equations. This leads toG1i
5R1i / c̄i , G2i5R2i / c̄i , G3i51/c̄i andG4i50. Therefore, the fol-
lowing two dimensionless equations emerge from~24!:

LTH @~R1H sinVD1R2H cosVD!cothV l H2sinVD#
SH*

j̄HāH

1u* a* R2L cothV l L

SL*

j̄LāL
J Ūcr

5@~cosVD1Ls sinVD!#R1H

2@~sinVD2Ls cosVD!#R2H1u* k* ~R1L1LsR2L!
(26)

LTH @~R1H cosVD2R2H sinVD!cothV l H2cosVD#
SH*

j̄HāH

1u* a* ~R1L cothV l L21!
SL*

j̄LāL
J Ūcr

52@~sinVD2Ls cosVD!#R1H

2@~cosVD1Ls sinVD!#R2H1u* k* ~LsR1L2R2L!

where we have used the relationshipsc̄i522āi j̄ i and 12S2i
5S1i cothVli and

a* 5
11nL

11nH

aL

aH
; u* 5

uL

uH
; k* 5

kL

kH
;

k* 5
kL

kH
and S i* 5

sinh2 V l i

V l i1sinhV l i coshV l i
. (27)

There are three unknowns in~26!: the critical speedŪcr and the
wave speedsc̄H and c̄L . Note that the third equation to solv
unknowns isc̄H5k* c̄L2Ūcr . Equations~26! are derived based
on the assumption that the problem is posed as a plane st
Plane stress solutions can be obtained using the following con
sions:

n→ n

11n
; a→ 11n

112n
a and E→ 112n

~11n!2
E. (28)

Examination of the governing equations reveals that the dim
sionless critical speed is governed by eight independent dim
sionless parameters. They are:LT , LS , a* , k* , k* , V l H , V l L ,
and Ic* . The parameterIc* is the dimensionless thermal conta
conductance defined asIc* 5Ic /VkH . If both conducting bodies
qualify as ~a semi-infinite! half-space, the parametersV l H and
V l L disappear in the governing equations. In the following s
tions, a series of special cases will be treated.

2.7 Special Cases

2.7.1 System Without Thermal Contact Conductance.The
temperature ratiou* and phase shiftD at the interface depend
upon the thermal conductanceIc* . Under an ‘‘ideal contact’’ con-
dition the thermal conductance goes to infinity~zero resistance!
and at the interface the temperature of both bodies match,
u*51 andD50. Therefore, the governing equations for the sy
tem neglecting the thermal contact conductance become

LTH SH* R2H cothV l H

j̄HāH

1a*
SL* R2L cothV l L

j̄LāL
J Ūcr

5~R1H1k* R1L!1Ls~R2H1k* R2L!
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LTH SH* ~R1H cothV l H21!

j̄HāH

1a*
SL* ~R1L cothV l L21!

j̄LāL
J Ūcr

5Ls~R1H1k* R1L!2~R2H1k* R2L!. (29)

2.7.2 System With Semi-Infinite Bodies.Consider a system
whose conducting members are thick enough so that the pertu
temperature penetrates a finite depth into body. For such a sy
it is reasonable to assume that the thickness of the conduc
disks is semi-infinite. This would best describe a thick rotor.

Letting the half thicknessl i→`, the dimensionless paramete
are modified as follows:

lim
l i→`

S i* 51; lim
l i→`

S1i52~12n i !; lim
l i→`

S2i52~122n i !;

(30)

lim
l i→`

cothV l i51; lim
l i→`

R1i5 j̄ i and lim
l i→`

R2i5āi .

Equations~26! in conjunction with the modified parameters~30!
give the critical speed for the system with semi-infinite dis
Moreover, if the thermal contact conductance is not conside
the governing equations reduce to

LTS 1

j̄H

1a*
1

j̄L
D Ūcr5~ j̄H1k* j̄L!1Ls~ āH1k* āL!

LTS j̄H21

j̄HāH

1a*
j̄L21

j̄LāL
D Ūcr5Ls~ j̄H1k* j̄L!2~ āH1k* āL!.

(31)

If surface roughness is neglected, Eqs.~31! reduce to the govern
ing equations derived by Lee and Barber@18# for two semi-infinite
bodies in contact, in the absence of a contact conductance.
thermore, neglecting the shear stress effect (Ls50), and convert-
ing equations for plane stress, the governing Eqs.~31! are identi-
cal to those derived by Burton et al.@4#. ReplacingL andH by 1
and 2 in~31!, the dimensional governing equations are

k1j11k2j25~c11uc2u!
f E1E2

E11E2
Fa1k1ua1u

c1
1

a2k2a2

uc2u G
2k1ua1u1k2a25~c11uc2u!

f E1E2

E11E2

3F2
a1k1~V2j1!

c1
1

a2k2~V2j2!

uc2u G .
(32)

Note thatuc2u is used since the moving direction ofc2 in Burton’s
equations is opposite to that defined in this analysis.

2.7.3 Insulator-Conductor System.The so-called insulator-
conductor system is an idealized model for treating TEI proble
in a variety of engineering applications where all the heat gen
ated at the interface is transferred to one of the bodies only.
stationary body is an insulator. For example, the friction pad in
automotive brake system may be represented as an insulat
contact with a conducting body, i.e., the rotor. Note that the th
mal contact conductance is not needed. Taking the insulator p
tioned as the lower body, the governing Eqs.~26! reduce to

LT8
SH* R2H cothV l H

j̄HāH

Ūcr5R1H1Ls8R2H

LT8
SH* ~R1H cothV l H21!

j̄HāH

Ūcr5Ls8R1H2R2H (33)

where
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LT85
2 f aHkH~11nH!

kHFS1H

GH
1

2Vho

xwc
G

LS85
f S2H

S1H1
2VhoGH

xwc

. (34)

If the conductor is semi-infinite, Eqs.~33! become

LT8

j̄H

Ūcr5 j̄H1Ls8āH

LT8
~ j̄H21!

j̄HāH

Ūcr5Ls8j̄H2āH . (35)

If the shear stress at the interface is neglected, then the s
parameterLs disappears in the governing equations and the w
speed becomes zero,c̄H50. Therefore, the governing Eqs.~35!
reduce to the simple solution as follows:

Ūcr5
1

LT8
5

kH

2 f aHkH~11nH! FS1H

GH
1

2Vho

xwc
G . (36)

For the plane stress with semi-infinite conductor, Eq.~36! be-
comes,@11#:

Ūcr5
2kH

f aHkHEH
F11

2VEHho

xwc
G . (37)

Neglecting the surface roughness, the most conservative cri
speed for the insulator-conductor system is derived as follo
@4#:

Ūcr5
2kH

f aHkHEH
. (38)

Comparison between the results of the prediction of the crit
speed for the smooth surface model is much lower than that of
present theory, which includes provision for surface roughne
This is akin to the effect of a compliant layer. In the smoo
surface model, the applied load does not appear as a direct pa
eter of the model and the model tacitly assumes that bodies a
perfect contact. In this paper, the critical speed is determined
the surface separation, which is a function of the applied load
the surface roughness. The critical speed increases with dec
ing surface separation due to a heavy load or a largex. Accord-
ingly, in this theory, it is assumed that there always exists surf
separation and two surfaces are not under perfect contact.

3 Results and Discussion
We shall first focus our attention to a combination of differe

materials as shown in Table 1,@4#. Aluminum is a good conduct-
ing material and glass is an example of the insulator. A fricti
pair of graphite and cast iron is commonly used in seals as we
dry bearings.

Shown in Table 2 are the predictions of the critical speeds
the wave speeds corresponding to Table 1 based on the ass
tion of the plane stress. Roughness effect is not considered h
but will be covered in the next section. Case I is simulated ba
on the assumption that the effect of shear stress at the interfa
nil. Therefore, Case I is governed by Eqs.~32! which are identical
to those derived by Burton et al.@4#. The results in Table 2 match
with Burton’s critical speeds. It is shown that in Case I the wa
speedscH are very small and negative with comparison to t
critical speed, which means that the perturbed wave is mov
with the body with a high thermal conductivity, but at a slight
lower speed. An interesting material is the graphite for which
predictions of the critical speeds are very high. The reason is
the elastic modulus for graphite is much smaller than that of
JANUARY 2004, Vol. 71 Õ 61
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Table 1 Material properties, †4‡

Materials 1 2 3 4 5

Properties Aluminum Cast Iron Silicon Carbide Graphite Gla

Elastic modulus,E @GPa# 68.9 124.1 89.6 6.9 89.6
Poisson’s ratio,n 0.33 0.3 0.15 0.3 0.16
Coefficient of expansion,a @1025 K21# 1.69 1.08 0.47 0.47 0.54
Thermal diffusivity,k @1025 m2/s# 8.58 1.16 0.61 0.81 0.03
Thermal conductivity,k @W/mK# 202 45 16 12 0.8
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mating body. The low elastic modulus greatly reduces the pres
for a given amount of heat transferred into the body, thereby
proving the thermoelastic behavior of the system. In fact, the c
cal speed for the pair of silicon carbide and graphite is far bey
the practical operating conditions and the system is thermoel
cally stable.

Case II takes the effect of the shear stress at the interface
consideration. The critical speed does not vary much when on
the friction pairs has a low thermal conductivity. For example,
pair of aluminum and glass can be treated as an insula
conductor system. For this friction pair, Table 2 shows the criti
speed does not vary whetherLS50 or not. Therefore, in an
insulator-conductor system, the effect of the shear paramet
very small and can be neglected. However, the critical speeds
significantly when the friction pair includes the graphite with
very low elastic modulus. Therefore, the elastic modulus plays
important role whenLSÞ0. In addition to the significant chang
in the critical speed, the elastic modulus influences the w
speedcH . As mentioned above, the wave is likely to move wi
the conducting body. Moreover, the wave tends to move with
body with a lower elastic modulus. This effect is turned on wh
LSÞ0. For graphite this effect of elastic modulus is more dom
nant than the effect of the thermal conductivity, and the wa
speed is moving with the body made of graphite.

Case III shows the effect of the disk thickness. Compared
semi-infinite body, a finite disk thickness tends to reduce the ef
of the elastic modulus, thereby causing a significant change in
critical speed as well as the wave speed. In this case, the wa
moving with the conducting body even though the friction pair
made of graphite. Case IV shows the effect of the thermal con
conductance. It is shown that the thermal contact conducta
does not significantly influence the critical speed for a friction p
when one member is made of glass. It should be mentioned
further investigation of thermal contact conductance shows th
also reduces the effect of the elastic modulus on the wave sp
At a small enough thermal contact conductance, the wave is m
ing with the conducting body. Case V shows the combined ef
of the disk thickness and the thermal contact conductance. In m
62 Õ Vol. 71, JANUARY 2004
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cases, the critical speed for Case V is similar to that for Case
However, the critical speed for the pair of silicon carbide a
graphite drops significantly due to the effect of the thermal con
conductance.

Results show that near the asymptote, the critical speed va
significantly even by a small change of the material properties
the disk thickness. For example, since the critical speed for
pair of silicon carbide and graphite changes significantly depe
ing on the conditions, it is expected that the critical speed is
cated near the asymptote.

Secondly, in addition to comparing with Burton’s prediction
we compare theoretical results with the experimental data by D
and Stockwell@19#. Their experimental instrument consists of
rotating drum in contact with a stationary blade. The drum ma
rial is made of Al2O3-Ti and the blade materials are aluminum
brass and steel. The applied load is 44.5 N. The correspon
friction coefficient aref 50.38, 0.16 and 0.26, respectively. Th
experimentally observed critical speeds are 7.11 m/s, 8.13 m/s
5.08 m/s for each friction pair, respectively. Their theoretical cr
cal speeds are 0.66 m/s, 1.07 m/s and 0.4 m/s. Note that
theory is based on the simplified TEI model for the smooth s
face, and their predicted critical speeds are roughly ten tim
lower than the observed critical speeds. Figure 2 shows the t
retical predictions of the critical speed as a function of the surf
roughness for each friction pair. The observed critical speeds
also marked in the figure. Since all the input data is not giv
some parameters are assumed in the simulations. The ass
parameters arex53 MPa andIc553104 W/m2 K.

Figure 2 shows that TEI model for the rough surface predict
higher critical speed than that for the smooth surface model.
surface roughness plays an important role, and for the rang
surface roughness of 2–6mm the results are close to experimen
Specially, the critical speeds ats55.39 mm for the aluminum
blade,s52.79 mm for the brass blade, ands52.14 mm for the
steel blade mach the observed critical speeds. The expected
face roughness is in the reasonable range in practice. Howe
Table 2 Critical speed for plane stress „fÄ0.5 and VÄ39.37Õm…

Condition CASE I CASE II CASE III CASE IV CASE V

Friction
Pair

Semi-Infinite
Ls50
Ic5`

Semi-Infinite
LsÞ0
Ic5`

V l H5V l L51
LsÞ0
Ic5`

Semi-Infinite
LsÞ0

Ic5106 W/m2 K

V l H5V l L51
LsÞ0

Ic5105 W/m2 K

Upper
Body

Lower
Body Ucr @m/s# cH @m/s# Ucr @m/s# cH @m/s# Ucr @m/s# cH @m/s# Ucr @m/s# cH @m/s# Ucr @m/s# cH @m/s#

1 2 0.659 20.025 0.550 20.019 0.134 20.009 0.457 20.015 0.104 20.005
3 0.143 20.005 0.143 20.005 0.055 20.004 0.143 20.005 0.057 20.003
4 2.524 20.013 4.245 20.028 0.676 20.006 3.521 20.022 0.606 20.004
5 0.058 20.001 0.058 20.001 0.028 20.001 0.058 20.001 0.028 20.001

2 3 0.421 20.006 0.625 20.010 0.079 20.002 0.490 20.007 0.059 20.001
4 62.113 20.043 910.819 2910.812 10.929 20.012 68.643 268.643 1.142 20.001
5 0.020 20.001 0.021 20.001 0.009 20.000 0.021 20.000 0.009 20.000

3 4 139080 210 235.823 2235.815 2520.861 20.329 47.508 247.506 4.169 20.001
5 0.072 20.001 0.072 20.001 0.021 20.000 0.072 20.001 0.021 20.000

4 5 41.402 20.031 6.590 20.004 9.568 20.012 5.679 20.003 1.492 20.002
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Fig. 2 Comparison with experimental data
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the critical speed is very sensitive to some properties and ge
etry of the system and, therefore, the accurate input data is
quired.

3.1 Effect of Surface Characteristic Parameterx. The
critical speed as a function of the film gap for a series of surf
characteristics parameterx is plotted in Fig. 3. This parameter ca
vary significantly depending on the application. For examp
x50.5 MPa for a mechanical face seal where the surfaces
polished within two helium light band. For a friction material in
clutch disk,x is typically 9 MPa,@16#. The simulations presente
are for a wide rangex of values to cover these applications. Th
parameter is directly proportional to the asperity radiusg, density
h and the surface roughnesss.

The critical speed decreases with increasing surface chara
istic parameter since more frictional heat is generated at the in
face for a relatively largex. Based on Greenwood and Tripp
theory, the surface separation increases as the applied load
creases. The surfaces are completely separated whenho>3s, im-
plying that the load on the system is removed and the system i
longer susceptible to TEI. Therefore, the critical speed increa
chanics
om-
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n
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with increasing surface separation, and tends to infinity when
gap approaches three standard deviations of the combined su
roughness.

3.2 Effect of Material Parameter LT. Figure 4 shows the
effect of material parameterLT on the critical speed for20.5
,LS,0.5. This figure pertains to ‘‘perfect contact’’ between tw
bodies. It is also assumed that both bodies have identical dim
sions and material properties, except their elastic modulus is
ferent, i.e.,a* 5k* 5k* 51, V l H5V l L51 and Ic5`. Physi-
cally, LT is directly proportional to the friction coefficient,f, and
thermal expansion coefficient,aH . Therefore, asLT is reduced,
the system’s critical speed is pushed to a higher value. As m
tioned above, the shear parameterLS represents the effect of th
shear stresses at the interface. Figure 4 shows that neglectin
shear stress at the interface~i.e., LS50) results in a large error in
prediction of the critical speed. Therefore when dealing with t
conducting bodies in contact, the shear stress at the interface
not be neglected.

The shear parameterLS is nil when both conducting bodie
Fig. 3 Effect of surface characteristic parameter on the critical speeds
JANUARY 2004, Vol. 71 Õ 63
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Fig. 4 Critical speeds as a function of LS „a*Äk*Äk *Ä1; V l HÄV l LÄ1; IcÄ`…
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have the same elastic modulus and Poisson’s ratio. Therefor
this simulationLS50 represents that the material properties a
geometry of the upper disk are identical to those of the lower d
The maximum critical speed occurs atLS50 due to the symmetry
of the problem. Note that effect of the surface roughness app
in the definition of parametersLT and LS . When LT is small
enough (LT,0.4), the critical speed approaches infinity asLs
→0. In other words, a system consisted of two identical condu
ing bodies~same material properties and dimensions! would be
immune from TEI provided thatLT is less than a certain value
This finding is in agreement with the results of Burton et al.@4#.

It is also worthwhile to note that the sign of shear parameterLS
does not affect on the critical speed and, therefore, the crit
speed is symmetric aboutLS50. However, the wave speed
influenced by the sign ofLS . WhenLS is negative, the wave is
moving at nearly the same speed of the moving disk. WhenLS is
ARY 2004
, in
nd
sk.

ears

ct-

.

ical
s

positive, the absolute wave speed is very small. In other wo
the wave is likely to move together with the disk having a sma
elastic modulus when Poisson’s ratios are the same and the ro
ness effect is neglected.

3.3 Effect of Disk Thickness. Figure 5 shows the effect o
disk thickness whena* 5k* 5k* 51, LT50.2 andIc5`. The
simulations show that when both of the disks are of identi
thickness the critical speed tends to infinity atLS50, indicating
that TEI does not occur. The asymptote atLS50 occurs because
both disks have the same material properties and geometry. H
ever, if the thickness of the disks are different, the asymptot
shifted. When the upper disk is thicker than the lower disk,
asymptote is shifted toward positiveLS where the elastic modulus
of the lower disk is relatively small. When the lower disk
thicker than the upper disk, the asymptote is shifted to the ne
Fig. 5 Effect of disk thickness on the critical speeds „a*Äk*Äk *Ä1; LTÄ0.2;
IcÄ`…
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Fig. 6 Effect of thermal conductivity ratio on the critical speeds „a*Äk*Ä1; LT
Ä0.2; V l HÄV l LÄIcÄ`…
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tive LS where the elastic modulus of the upper disk is relativ
small. According to Fig. 4, if the elastic moduli of both bodies a
identical, then the critical speed goes to the infinity. Figure
shows that to improve thermoelastic performance, it is adva
geous to have a thicker disk with a higher elastic modulus.

Figure 5 shows that the dimensionless critical speed forV l H
5V l L51 is higher than the critical speed forV l H5V l L5` for
specifiedLT andLS. Note that parametersLT andLS are func-
tions of the disks’ thickness parametersV l H andV l L and, there-
fore, in order to fix parametersLT andLS other material proper-
ties should be changed. If all material properties are fixed,
critical speed for the finite thickness is lower than the critic
speed for the semi-infinite thickness,@9#.

3.4 Effect of Thermal Conductivity Ratio. Figure 6 shows
the effect of thermal conductivity ratiok* when a*5k*51, LT
50.2 andIc5`. The thick lines represent the critical speed f
V l H5V l L51 and the thin lines represent the critical speed
V l H5V l L5`. The critical speed fork* 51 goes to the infinity at
LS50 since the material properties and the geometry of two b
ies are identical. The simulations show that the asymptote atLS

50 is shifted to negativeLS whenk* .1, and to positiveLS for
k* ,1 since relatively large amount of frictional heat is tran
ferred into the disk with higher thermal conductivity.

The simulations also show that at a givenLT the critical speed
has two different asymptotes fork* Þ1 due to the lack of sym-
metry in the thermal conductivity. Note that two asymptotes
duce to one as the material parameterLT becomes large,@18#.
Whenk* Þ1, the system always has a finite value of critical spe
and, therefore, an unconditionally stable condition does not e
At a large positiveLS , the effect ofk* on the critical speed is
reduced.

3.5 Effect of Thermal Diffusivity Ratio. Figure 7 shows
the effect of thermal diffusivity ratiok* when a* 5k* 51, LT
50.2 andIc5`. The thick lines represent the critical speed f
V l H5V l L51 and the thin lines represent the critical speed
V l H5V l L5`. This plot is useful for determining the critica
speed for a range ofLs values. Note that in general the thresho
of critical speed increases with decreasing thermal diffusivity ra
k* . Furthermore, the critical speed is sensitive to a range ofLS
from 0 to 60.3 after which it does not change appreciably. R
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gardless ofk* , in the range ofLS.0.3, the dimensionless critica
speed forV l H5V l L5` is predicted to be about 40. Note tha
parameterk* appears in the relationship between the critic
speed and the wave speedc̄H5k* c̄L2Ū. At a positiveLS, the
wave speedc̄L tends to move with the lower body. AsLS in-
creases,c̄L decreases. Therefore, at a largerLS, the effect ofk*
becomes very small. This effect is more significant for the syst
of V l H5V l L51 and, therefore, the variation of the critical spe
with the diffusivity ratio is small forLS.0.

For k*Þ1, the critical speed is not symmetric aboutLS50. The
simulations show that for all thermal diffusivity ratios o
k*<1.57, the critical speed forV l H5V l L5` goes to infinity at
LS50, implying that TEI does not occur whenLS50. Sincec̄H

5k* c̄L2Ū, the asymptote remains atLS50. However, under the
conditions simulated fork*>1.57, the critical speed has a finit
value at anyLS . WhenLT decreases, this limiting value ofk*
becomes larger thank*51.57. Below the limiting value ofk* ,
there exists a condition that makes the system immune from
depending upon the ratio of the elastic modulus. Ask* increases,
the thermal expansion increases, and after the limiting value ok*
the thermal expansion is dominant over the role of the con
pressure to reduce TEI. As a result, the critical speed always h
finite value. However, simulation shows that the critical speed
V l H5V l L51 goes to infinity atk*52. It implies that the limit-
ing value ofk* is much higher for the finite disk thickness.

3.6 Effect of Thermal Expansion Coefficient Ratio. Fig-
ure 8 shows the effect of thermal expansion coefficient ratioa* on
the critical speed. These results were obtained by settingk*
5k* 51, LT50.2 andIc5`. The thick lines represent the criti
cal speed forV l H5V l L51 and the thin lines represent the crit
cal speed forV l H5V l L5`. Consistent with previous results, th
simulations show that the critical speed fora*51 goes to infinity
at LS50 due to the symmetry of the material properties and
ometry. The asymptote is shifted to the negativeLS for a*51.5,
and at the positiveLS for a*50.5. The simulations show that fo
a*>1.56 the critical speed forV l H5V l L5` has a finite value at
any LS and, therefore, can not be unconditionally stable. Sim
to the thermal diffusivity case, asa* increases, the thermal ex
pansion increases and overwhelms the role of the contact pres
to reduce TEI. Whena* exceeds the limiting value, the critica
JANUARY 2004, Vol. 71 Õ 65
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Fig. 7 Effect of thermal diffusivity ratio on the critical speeds „a*Äk *Ä1; LT
Ä0.2; V l HÄV l LÄIcÄ`…
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speed always has a finite value. However, for the case ofV l H
5V l L51, the critical speed has an asymptote ata*52.

3.7 Effect of Thermal Contact Conductance. Figure 9
shows the effect of thermal contact conductanceIc* when a*
5k* 5k* 51, V l H5V l L5`, LT50.2. The simulations show
that the critical speed is maximum atLS50 for anyIc* due to the
symmetry of material properties and geometry. The sign of
shear parameterLS does not affect the critical speed. The critic
speed increases with increasing thermal contact conducta
When the thermal contact conductance has a finite value, the
face temperature of the upper disk is different from that of
lower disk and the temperature wave is shifted at the interface
ARY 2004
the
l

nce.
sur-
he
. As

the thermal contact conductance decreases, the temperature
becomes more asymmetric, resulting in lowering the threshold
the critical speed.

Figure 10 shows the variation of surface temperature ratiou*
and the temperature phase shiftVD corresponding to Figure 9
Note that the temperature ratiou*51 andVD50 for Ic* 5` since
there is no thermal resistance. The simulations show that forIc*
Þ` the temperature ratiou*,1 at the negativeLS , andu*.1 for
the positiveLS . In other words, the surface temperature of t
disk with a small elastic modulus is higher than that of the surf
with a large elastic modulus. The temperature difference betw
two disks increases as the thermal contact conductance decr
Fig. 8 Effect of expansion coefficient ratio on the critical speeds „k*Äk *Ä1; LT
Ä0.2; V l HÄV l LÄIcÄ`…
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Fig. 9 Effect of thermal contact conductance on the critical speeds „a*Äk*Äk *
Ä1; LTÄ0.2; V l HÄV l LÄ`…
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and the shear parameterLS goes to zero. ForIc* Þ` the phase
shift has a negative value at anyLS , which implies that the wave
of the moving body is delayed compared to the stationary bo
The phase shift is symmetric aboutLS50. The minimum value of
the phase shift occurs atLS50. In other words, when the elasti
moduli of two bodies are identical, the phase shift become
maximum at a givenIc* . The absolute value of the phase sh
decreases with increasing thermal contact conductance, and
comes nil whenIc* →` ~no thermal resistance!, as expected.

4 Concluding Remarks
An idealized model is developed to understand the mechan

of thermoelastic instability in a system consisting of two bodies
finite thickness and thermal conductivity. Appropriate govern
equations are derived to solve the critical speed beyond which
echanics
dy.

s a
ft
be-

ism
of

ng
the

TEI is likely to occur. This model takes into account the surfa
roughness characteristics of the contacting bodies, the influenc
the disk thickness on the critical speed, and the effect of ther
contact conductance at the interface. Simple analytical exp
sions are provided for the special cases neglecting the disk th
ness and the thermal contact conductance. The derived equa
show that TEI is governed by eight dimensionless independ
parameters. Three parameters are the ratios of thermal prope
one parameter is the thermal contact conductance, and two pa
eters are related to the thickness. The other two parameters ar
shear parameterLS and the material parameterLT . Roughness
effect is included in the shear parameter and the material par
eter. The shear parameter reduces to the Dundurs’ constant m
plied by the friction coefficient for the simple case of the sem
Fig. 10 Effect of thermal contact conductance on the phase shift and the temperature ratio
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infinite bodies with smooth surfaces. The critical speed decre
with increasing material parameter since the material paramet
directly proportional to the friction coefficient.

The results of a series of simulations show that the criti
speed increases when two bodies have identical properties
geometry. Ratios of material properties and geometry of two c
ducting bodies affect significantly the critical speed. The wa
speed is strongly influenced by thermal conductivity and the e
tic modulus. The wave is likely to move with the body of high
thermal conductivity or the lower elastic modulus. However, if t
finite thickness of the body is considered, the effect of the ela
modulus on the wave speed is reduced considerably. The sim
tions show that critical speed increases with decreasing app
load leading to increasing surface separation. In most cases,
exist an asymptote where the critical speed goes to infinity.
the identical bodies, this asymptote is located atLS50. This as-
ymptote is shifted depending upon the ratios of thermal cond
tivities, thermal diffusivities and thermal expansion coefficien
The critical speed increases with increasing the thermal con
conductance~decreasing thermal resistance!. At a small thermal
contact conductance, the phase shift and the surface temper
ratio become larger. The results show that when parametersk* or
a* exceeds a certain limiting value, the asymptote of the criti
speed disappears and, therefore, cannot be unconditionally s
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Direct Computational Simulations
for Internal Condensing Flows and
Results on Attainability/Stability
of Steady Solutions, Their
Intrinsic Waviness, and Their
Noise Sensitivity
The paper presents a new two-dimensional computational approach and result
laminar/laminar internal condensing flows. Accurate numerical solutions of the full g
erning equations are presented for steady and unsteady film condensation flows
sidewall inside a vertical channel. It is found that exit conditions and noise sensitivity
important. Even for stable steady solutions obtained for nearly incompressible v
phase flows associated with unconstrained exit conditions, the noise sensitivity t
condensing surface’s minuscule transverse vibrations is high. The structure of wave
underlying characteristics, and the ‘‘growth/damping rates’’ for the disturbances are
cussed. A resonance condition for high ‘‘growth rates’’ is proposed and its efficac
significantly enhancing wave motion and heat transfer rates is computationally de
strated. For the unconstrained exit cases, the results make possible a separately re
study of the effects of shear, gravity, and surface tension on noise sensitive
solutions.@DOI: 10.1115/1.1641063#
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1 Introduction
Accurate numerical solutions of the full governing equatio

are presented for steady and unsteady laminar/laminar film
densation flows on a sidewall inside a vertical channel. This
also a good geometry for addressing~see Liang et al.@1# and
Liang @2#! the influence of shear over gravity—either by changi
the channel inclination from vertical to horizontal~see Fig. 1! or
by studying the flow in the absence of gravity~space applica-
tions!. Such results are important in understanding qualitat
phenomena and obtaining quantitative results~after suitable ex-
perimental validations of the computational tool for quasi-stea
annular/stratified internal condensing flows! that are relevant to
good design and performance of condensers in applications~see
Krotiuk @3# and Faghri@4#! such as looped heat pipes, capilla
pumped loops, thermal management systems, and electr
cooling devices. These applications often involve pure vap
with none to negligible presence of noncondensable gases.
damental results reported in this paper address issues of ann
stratified condensing flows’ heat transfer rates, flow realizabi
stability, resonant and nonresonant noise sensitivity, and exit
dition sensitivity.

This channel flow geometry is also a simple modification of
classical flat plate geometry associated with classicalexternalfilm
condensation flow studies over vertical, horizontal, and til
walls ~Nusselt@5#, Rohsenow@6#, Sparrow and Gregg@7#, Koh

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, December
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accepted until four months after final publication of this paper in the ASME JOUR-
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et al. @8#, Dhir and Lienhard@9#, Rose@10#, Tanasawa@11#, Cess
@12#, Koh @13#, etc.!. Heat transfer correlations for laminar an
wavy condensate situations for the vertical/inclined plate geo
etry are given by Kutateladze@14# and correlations for turbulen
condensate, as proposed by Labuntsov@15#, are given in Incropera
and DeWitt@16#. For smooth-interface laminar/laminar conden
ing flows over a flat plate in vertical, horizontal, and tilted co
figurations; the computational approach developed in this pa
yields results~see Yu@17#! in agreement with the relevant solu
tions of Nusselt@5# and Koh@14#.

With regard tointernal condensing flows, some qualitative un
derstanding exists in papers by Chow and Parish@18#, Narain
et al. @19#, etc. These analyses/predictions rely on integral con
volume formulations that employmodels for interfacial shear
~e.g., Henstock and Hanratty@20#! and are typically available only
for fast vapor motions requiring no exit condition specificati
~i.e., the vapor flow in Fig. 1 is ‘‘parabolic’’!. To address laminar/
laminar flow issues that cannot be addressed by the above
proach, direct numerical simulations are undertaken here to b
understand the wave phenomena and associated effects. St
speaking the results presented here are valid only for laminar
por flows ~i.e., inlet vapor Reynolds number based on chan
height as characteristic length should be approximately less
1400–2000! and laminar condensate flows~i.e., film Reynolds
number as defined in Incropera and DeWitt@16# should be ap-
proximately less than 1400–1800!. In practice, inlet vapor Rey-
nolds number up to 7000 is allowed because of sufficiently th
laminar sub-layer in the vicinity of the interface. This is becau
vapor streamlines, as they approach the interface, are almost
pendicular to it~see Liang et al.@1#! and the velocity along the
streamlines are very small. This allows the vapor streamline
pierce the interface and drift downstream as liquid streamline
an even slower motion of thelaminar condensate. As a result, it i
found that computational predictions of film thickness, heat tra
fer rates, etc. under laminar/laminar assumptions~though perhaps

2,
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al of
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l be
004 by ASME JANUARY 2004, Vol. 71 Õ 69
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not the predictions of vapor velocity profile outside the lamin
sublayer of the vapor surrounding the interface!! are in good
agreement~see Liang et al.@1#! up to inlet Reynolds number a
high as 8000, with relevant experimental results of Lu@21#.

This paper proposes a novel and direct computational techn
for steady and unsteady internal condensing flows in the annu
stratified regime. The unsteady laminar/laminar simulations e
ploy a suitable adaptive grid and numerical solution of the app
priate hyperbolicinterface tracking equationwhich is the same as
the one used in level-set method~see Sussman et al.@22# and Son
and Dhir @23#!, VOF method~see Hirt and Nichols@24#!, and

Fig. 1 Flow geometry for simulations
70 Õ Vol. 71, JANUARY 2004
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other methods~Tezduyar@25#, etc.!. The numerical scheme use
in this paper for theinterface tracking equationexploits existing
mathematical knowledge and experience for this equation~see
Abbott and Basco@26#! to sidetrack the inaccuracy problems a
sociated with reconstructing interface location within and arou
the interface cellspredicted by VOF or related interfacecapturing
techniques~see Tezduyar@25#, Li and Renardy@27#, etc.!. The
scheme used here ensures convergence and accuracy of bo
amplitude and the phase of the interfacial waves. At each t
step, the scheme locates the interface, solves the Navier-St
equation in each phase, satisfies the full nonlinear condition
the phase-change interface, and satisfies the relevant inlet, o
and wall conditions. Since vapor in internal condensing flo
slow down by the exit, the steady vapor flow equations are ‘‘
liptic’’ in the exit region ~i.e., downstream points affect a flow
variable’s value at a representative point P in Fig. 1! and exit
condition needs to be specified for a solution. Note that any c
denser section of the type shown in Fig. 1 is, typically, just apart
of a flow loop. A flow loop which maintains a constant pressu
p0 and constant flow rate of saturated vapor at the inlet may a
be designed~see, e.g., Fig. 2! to provide:~a! an unconstrained exi
condition ~which is very often the case when exit pressure,
equivalently, exit vapor flow rate is free to adjust to any value
seeks! that allows the vapor to flow at nearly constant density~its
density at the inlet!, or ~b! a constrained exit condition~this situ-
ation arises, when further downstream of the exit, there are na
constraints in the flow loop or, as in Fig. 2, there are active fl
control devices! that forces non-negligible vapor density vari
tions between the inlet and the outlet of the condenser section
the constrained exit case not considered in this paper, the ‘
steady’’ equations are also spatially ‘‘elliptic’’ near the exit and
exit condition can be prescribed if a nonconstant vapor den
and an equation of state—of the typer25r2(p2 ,T2)— is incor-
Fig. 2 The solenoid valve V1 „actively controlled by flow meter F1… and constant heat input Q̇inÉṀin "h fg „p B… to the
boiler fixes inlet pressure p 0 and inlet flow rate to the test section. The mass flow rate through pump P is adjusted to
a value that matches the corresponding value at F1. A high flow rate of the coolant „water … flow around the test section
fixes condensing surface temperature at a nearly uniform value of Tw while it still allows for different heat removed
rates for different exit qualities Ze.
Transactions of the ASME
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porated in the governing equations for the vapor phase. The
constrained exit case, for which vapor compressibility is unimp
tant, is the focus of steady and unsteady simulations in this pa
For these simulations the ‘‘unsteady’’ equations for the unc
strained exit case arenot spatially ‘‘elliptic’’ and an exit condition
cannot be prescribed if a constant inlet vapor densityr25r20 is
assumed in the governing equations. Constant vapor density
sumption is valid for conditions involvingDr2/r20!1 or, say,
Dr2/r20 is less than 5% —this being the typical criteria for a
suming incompressibility for gases that flow inside a duct a
have Mach number values less than 0.3. For the unconstra
exit cases involving an assumed constant density for the va
phase, it is shown in this paper that, if att50, one starts atany
steady solution of the steady ‘‘elliptic’’ problem in Fig. 1~under
any reasonable and well-defined exit condition!, then, over time
~utilizing unconstrained unsteady simulation fort>0), a natural
steady solution and an associated natural exit condition is
tained at large times. This naturally determined value of the
condition for prescribed inlet condition is very similar to the we
known behavior of other incompressible duct flows~single phase
or air/water flows! which also exhibit well-defined pressure di
ference for given inlet pressure and flow rate. In fact, in Lia
et al.@1#, it is shown that the naturally selected quasi-steady co
putational solutions that are obtained for flow cases considere
the experimental runs of Lu@21# and Lu and Suryanarayana@28#
yield values of film thickness, heat transfer rates, etc., that ar
good agreement with experimentally obtained values. While
generates confidence in the proposed method of identifying st
steady solutions, these stable solutions are shown here to be
sitive to minuscule bottom plate noise that are typically alm
always present. This makes the interface wavy for most situati
The reported determination of phase speeds andcharacteristics
curves ~along which disturbances propagate! for the waves im-
prove our understanding of these flows and leads to a propos
a new hitherto unknown resonance condition whose efficac
also demonstrated in this paper. It is shown that specifically
signed noise sources placed at suitably specified locations
specified variations in frequency satisfy the resonance criteria
enhance the wave energy and heat transfer rates significantly

Unsteady simulations starting from steady solutions for the c
strained exit cases are not considered here. In this case, comp
ibility effects on the stability and noise-sensitivity are expected
be important and these effects are one of the underlying ca
behind various interesting experimental results~see Bhatt et al.
@29#, etc.! dealing with experiments whose exit conditions a
constrained. The stability and flow oscillations issues associ
with this case are also believed to arise in applications such
Looped Heat Pipes~Faghri @4#! where limits on the power of
passive pumping~wicks, etc.! cause pressure variation constrain
at the condenser exit while approximately constant values of p
sure and flow rate is retained at the condenser inlet.

This paper restricts itself to consideration of single but arbitr
Fourier components of bottom plate noise~standing waves! and
avoids discussions of wave interactions resulting from more c
plex random noises made up of several Fourier compone
Within this limited context, we find that the front-steepening so
tary wave patterns that are experimentally observed on air/w
type vertical liquid films ~see Liu and Gollub@30# and Alek-
seenko, et al.@31#! or the ones that are obtained by Miyara@32# in
the reported computational simulations for the Nusslet@5# prob-
lem that deals with condensation on a vertical plate, occur m
more gradually for the gravity dominated internal condensing fl
cases considered here. Categorization oftypical noise levels~with
a random mix of amplitude, frequency, and wavelengths! andtypi-
cal responses~or strange attractorsas termed by Liu and Gollub
@30#! requires separate study and is outside the scope of this p
Furthermore, unlike gravity driven shallow or deep water wav
Journal of Applied Mechanics
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~see Lighthill@33#!, the reported waves, in their linearized limit
are nondispersive~i.e., phase speeds do not depend on the
quency or wavelengths of the disturbance!. For the above reasons
neither a survey of results nor comparisons with results from
vast literature on noncondensing air/water type film flows~Alek-
seenko et al.@31#! is considered to be within the scope of th
paper.

The results presented here underscore the importance of inc
ing the role of exit conditions and noise sensitivity in categorizi
heat transfer correlations and flow regime maps. Therefore
rently available heat transfer correlations~Traviss et al.@34#; Shah
@35#; etc.! and flow regime maps~see Hewitt et al.@36#, Carey
@37#, etc.! can be improved to address their reported deficienc
~see Palen et al.@38#!. Therefore the reported results on exit co
ditions, noise sensitivity, and flow regime boundaries—in co
junction with proper experiments and use of computational t
such as the one proposed here—will eventually be of value
better categorization and development of relevant heat-tran
correlations and flow regime maps.

2 Governing Equations
The liquid and vapor phases in the flow~e.g., see Fig. 1! are

denoted by a subscriptI: I 51 for liquid andI 52 for vapor. The
fluid properties~densityr, viscositym, specific heatCp , and ther-
mal conductivityk! with subscriptI are assumed to take the
representative constant values for each phase (I 51 or 2!. Let TI
be the temperature fields,pI be the pressure fields,Ts(p) be the
saturation temperature of the vapor as a function of local pres
p, D be the film thickness,ṁ be the local interfacial mass flux
Tw ~x! (,Ts(p)) be aknowntemperature variation of the coole
bottom plate, andvI5uI î1v I ĵ be the velocity fields. Further-
more, let h be the channel height,gx andgy be the components o
gravity alongx andy-axes,p0 be the inlet pressure,DT[Ts(p0)
2Tw(0) be a representative controlling temperature difference
tween the vapor and the bottom plate,hf g be the heat of vapor-
ization at temperatureTs(p), and U be theaverageinlet vapor
speed determined by the inlet mass flux. Witht representing the
actual time and~x, y! representing physical distances of a po
with respect to the axes in Fig. 1 (x50 is at the inlet andy50 is
at the condensing surface!, we introduce a new list of fundamenta
nondimensional variables—viz. (x,y,t,d,uI ,v I ,p I ,u I ,ṁ)
—through the following definitions:

$x ,y,D,uI ,ṁ%[$hIx,h•y,h•d,U•uI ,r I•U•ṁ%

$v I ,TI ,pI ,t%[$U•v I ,~DT !•u I ,p01r IU
2
•p I ,~h/U !•t%.

(1)

Interior Equations. The nondimensional differential form
of mass, momentum~x andy components!, and energy equations
for incompressible flow in the interior of either of the phases
the well-known equations:

]uI

]x
1

]v I

]y
50

]uI

]t
1uI

]uI

]x
1v I

]uI

]y
52S ]p I

]x D1Frx
211

1

ReI
S ]2uI

]x2 1
]2uI

]y2 D
]v I

]t
1uI

]v I

]x
1v I

]v I

]y
52S ]p I

]y D1Fry
211

1

ReI
S ]2v I

]x2 1
]2v I

]y2 D
]u I

]t
1uI

]u I

]x
1v I

]u I

]y
'

1

ReI PrI
S ]2u I

]x2 1
]2u I

]y2 D , (2)

where ReI[rIUh/mI , PrI[m ICpI /kI , Frx
21[gxh/U2 and Fry

21

[gyh/U2.
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Interface Conditions. The nearly exact interface condition
~see Delhaye@39#, etc.! for condensing flows are given in th
Appendix ~see Eqs.~A1!–~A8!!. Utilizing a superscript ‘‘i’’ for
values of flow variables at the interfaceH5y2D(x,t)50, non-
dimensional forms of the interface conditions in the Appendix
as given below.

• The nondimensional form of the requirement of continuity
tangential component of velocities, as given by Eq.~A2!,
becomes

u2
i 5u1

i 2dx~v2
i 2v1

i !, (3)

wheredx[]d/]x.
• The nondimensional form of the normal component of m

mentum balance at the interface, as given by Eq.~A3!,
becomes

p1
i 5

r2

r1

p2
i 2

1

WeS dxx

@11dx
2#3/2D 1ṁ2S r1

r2

21D , (4)

where We[r1U2h/s, and surface tensions is assumed to
be nearly constant because of the nearly constant inter
temperature. As reported elsewhere, results fors
5s(Ts(p2

i )) in Eqs. ~A3!–~A4!, are nearly the same as th
ones reported here for constants.

• The tangential component of momentum balance at the in
face, as given by Eq.~A4!, becomes

]u1

]y U i

5
m2

m1

]u2

]y U i

1@ t#, (5)

where the term@t# in Eq. ~5! is defined in Eq.~A9! of the
Appendix.

• The nondimensional form of mass fluxesṁLK andṁVK in Eq.
~A5! become

ṁLK[@u1
i ~]d/]x!2~v1

i 2]d/]t!#/A11~]d/]x!2, and

ṁVK[~r2 /r1!@u2
i ~]d/]x!2~v2

i 2]d/]t !#/A11~]d/]x!2

(6)

• The nondimensional form ofṁEnergy in Eq. ~A6! becomes

ṁEnergy[Ja/~Re1 Pr1!$]u1 /]nu i2~k2 /k1!]u2 /]nu i%, (7)

where Ja[Cp1DT/hf g
0 , andhf g

0 [hf g(Ts(po)).
• Nondimensional form of interfacial mass balance in Eq.~A7!

becomes
ṁLK5ṁVK5ṁEnergy[ṁ. (8)

• The nondimensional thermodynamic restriction on interfac
temperatures, as given by Eq.~A8!, becomes

u1
i >u2

i 5Ts~p2
i !/DT[us~p2

i !. (9)

Within the vapor phase, for the refrigerants considered h
changes in absolute pressure relative to the inlet pressure are
cally small to affect temperatures. Thereforeus(p2

i )>us(0).

Boundary Conditions. The problem posed by Eqs.~2!–~9!
are computationally solved subject to boundary conditions that

• at the inlet (x50,0<y<1) at any timet:

u2~0,y,t !51 v2~0,y,t !50

p2~0,y,t !50 u2~0,y,t !5us~0!. (10)

• at the bottom wall (y50,0<x<xe) at any timet:

u1~x,0,t !50, v1~x,0,t !50, u1~x,0,t !5uw , (11)

whereuw[Tw(x)/DT is a constant unless it is otherwise spe
fied. In case of flow in Fig. 2, this situation arises whenever, fo
given heat load, the coolant flow rate is high enough to make
coolant its temperature rise negligible as it flows past the
section.
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• at the top wall (y51,0<x<xe) at any timet:

u2~x,1,t !50, v~x,l ,t !50, u2~x,1,t !5us~0!. (12)

Furthermore, because of the nature of boundary conditions in
~10!–~12!, u2(x,y,t)>us(0) is assumed/prescribed to limit th
discussions in this paper to the flow of saturated vapor. Thi
done because, for thepure vapor flows considered here, it is eas
to verify the well-known fact that the effects of superheat~com-
monly in the 5–10°C range! are negligible.

Exit Conditions. Any condenser section of the type shown
Fig. 1 is typically apart of a closed flow loop. A flow loop~see,
e.g., Fig. 2!, which maintains a constant flow rate and consta
pressurepo ~i.e. p250) at the inlet, may also be designed
provide: ~a! an unconstrained exit condition~which is very often
the case!, or ~b! a constrained exit condition~this may arise from
downstream constraints in the flow loop or active flow control
the downstream flow!. An exit condition, at any timet, is specified
by either specifying the value of the average cross-sectional p
sure of the vapor at the exit or, equivalently~as seen later from
results such as the one in Fig. 6!, by specifying the exit vapor
quality Ze(t). Exit vapor qualityZe(t) is the ratio of vapor mass
flow rate at exit (x5xe) to vapor mass flow rate at inlet.

For the case ofconstrainedexit conditions, vapor compressibil
ity effects cannot be ignored for unsteady simulations, and he
one cannot treat vapor densityr2(x,y,t) to be a constant equal to
its inlet valuer20. For these compressible cases, the ‘‘elliptic
equations for the vapor would require specification of the e
vapor qualityZe(t) defined as

Ze~ t !5E
d~xe ,t !

1

$r2~xe ,y,t !/r20%u2~xe ,y,t !•dy, (13)

while allowing for nonconstant unsteady/steady vapor density
ues. This constrained exit case, though important in some c
because of the interesting compressibility effects on flow stab
and noise sensitivity~see Bhatt et al.@27#, etc.!, is not considered
here.

For the ‘‘elliptic’’ steady cases considered here fort<0, the
vapor density is assumed to be a constant withr25r20 and exit
condition is specified here by assigning a fixed value for the e
vapor qualityZe given by

Ze5E
dsteady~xe!

1

u2 steady~xe ,y!•dy. (14)

For unsteady cases under the assumption of constant vapor
sitiesr2(x,y,t)5r20, the ‘‘unsteady’’ equations are not ‘‘elliptic’’
near the exit and unsteady exit vapor qualityZe(t) in Eq. ~13!
cannot be specified.

Initial Conditions. If t50 is chosen to be the time whe
saturated vapor first comes in contact and condenses on a
subcooled (Tw(x),Ts(p0)) bottom plate, the above describe
continuumequations do not apply at early times (t;0) because
they do not model and incorporate relevant intermolecular for
into the governing equations. These intermolecular forces are
portant in determining the evolution of very thin~approximately
over 10–100 nm of film thickness! condensate filmd(x,t). Be-
cause of the above modeling limitations, the strategy here i
start at t50, with any sufficiently thick steadysolution of the
continuumequations where all the governing equations clea
apply. That is, iff(x,y,t) is any variable~such asuI , v I , p I , u I ,
etc.!, the initial values off and film thicknessd(x,t) are such that

f~x,y,0!5fsteady~x,y! and d~x,0!5dsteady~x!, (15)

wherefsteadyanddsteadyare solutions of the governing equation
obtained by dropping all time dependencies in Eqs.~2!–~12! and
solving the resulting steady equations~which areelliptic near exit!
for any arbitrarily prescribed value ofZe(0)5Ze , whereZe is
given by Eq. ~14!. The prescription ofZe within 0,Ze,1 is
Transactions of the ASME



Journal of Applied
Fig. 3 Computational grids for flow simulation. For chosen xu i lines, yv j lines in grid
A are first generated by points Pi on d„x ,t …. Above the ‘‘highest’’ yv j line thus obtained,
the remaining yv j lines are independently generated with suitable unequal spacings.
Grid B lines at xÄxud i are different from xu i lines and are used for tracking the inter-
face d„x ,t ….
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arbitrary except that it should be such that it should allow a ste
computational solution in the stratified/annular regime indica
in Fig. 1. It is shown later that there exists a naturally selec
value ofZe ~denoted asZeuNa) which allows the steady solution t
be stable and consistent with the chosen constant vapor den

An inspection of all the non-dimensional governing equatio
interface conditions, and boundary conditions reveal the fact
the flows considered here are affected by the following set
nondimensional parameters:

H Rein ,Ja,Frx
21,

r2

r1
,
m2

m1
,Pr1 ,xe ,Ze~0!,We,Fry

21J , (16)

where Rein[r2Uh/m2[Re2. Here Rein , Frx
21, and Ja are contro

parameters associated with inlet speedU, inclinationa, and tem-
perature differenceDT. For unconstrainedexit conditions consid-
ered here, it is seen later thatZe(0) is not important because
does not affect the naturally selected steady solution and its a
ciated exit vapor qualityZeuNa. For constrainedexit conditions
not studied here, e.g., a prescription of time-averagedZe(t)
5Ze(0) or Ze(t)5Ze(0) for all t>0, the value of the paramete
Ze(0) becomes important. The density ratior2 /r1 , viscosity ratio
m2 /m1 , and Prandtl number Pr1 are passive fluid parameter
Also, for unsteady or quasi-steady wavy-interface situations,
above equations imply additional dependences on a surface
sion parameter, Weber number We[r1U2h/s, and a transverse
gravity parameter Fry

21[gyh/U2. For superheated vapors, there
a very weak dependence, through Eq.~7!, on the thermal conduc
tivity ratio k2 /k1 .

3 Computational Approach for Steady and Unsteady
Solutions

For readers not interested in algorithm or code developm
only a cursory reading of this section is recommended.

Adaptive Grid and Computational Approach. At each in-
terface configuration, while solving the steady or unsteady pr
Mechanics
dy
ed
ted

ity.
s,
hat
of

t
sso-

r

.
the
ten-

is

nt,

ob-

lem, the fluid flow computational domains for each phase (I 51 or
2! are defined by grid A in Fig. 3. A finite number of discre
pointsPi on the interface define a stair-step geometrical appro
mation for the interfaced(x,t). Use of this stair-step approxima
tion still allows second-order (O(Dx2) and O(Dt2)) accurate
physical values ofd(xPi

,t) because these values are used to g
erate higher order approximations to estimate intermediate ph
cal values ofd(x,t) for discretization of the interface condition
~e.g., piecewise linear approximations for evaluation of the slo
terms and cubic splines for evaluation of]2d/]x2 term appearing
in the surface tension term of Eq.~4!!. Each interface pointPi , at
x5xu ( i ), are marked by a tagging function ‘‘xx ( i )’’ to identify
whether the point belongs to an increasing (xx ( i )51), flat
(xx ( i )50), or decreasing (xx ( i )521) section of the interface
These points are also used to generate and define thexu and yv
lines that are parallel to the coordinate axes~see Section 4.3 of
Liang @2# for details!. These lines also form the faces of the rec
angular finite volume cells in the interior of each of the tw
phases.

For the interiors of the two fluid phases defined by grid A i
Fig. 3, the chosen CFD approach is same as the SIMPLER
proach of Patankar@40#. This makes the computations in the in
terior quite conservative because all balance laws are satis
even for the coarser control volumes. However, at any timet and
location ~x, y! where the control volume~say of sizeDxc3Dyc)
are near the interface cells, the truncation errorsDdT andDfT in
the discretizations for film thicknessd and any other flow variable
f are given by the relations

DwT'ADwx
21Dwy

21Dw t
2 and DdT'ADdx

21Dd t
2,

(17)

where Dwx[]w/]x•Dxc , Dwy[]w/]y•Dyc , Dw t[]w/]t
•Dtc , Ddx[]2d/]x2

•(Dxc)
2, and Dd t[]2d/]t2

•(Dtc)
2. The

first order accuracy inf above is due to second order discretiz
tion of d and a mixed second-order and first-order discretizati
for the remaining terms appearing in the interface conditio
JANUARY 2004, Vol. 71 Õ 73
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Fig. 4 „a… The liquid domain calculations underneath dshift „x ,t … with prescribed values of
„u 1s

i ,v 1s
i ,u1s

i
… on dshift „x ,t … satisfy the shear and pressure condition on d„x ,t …. „b… The vapor

domain calculations above d„x ,t … with prescribed values of „u 2
i ,v 2

i ,u2
i
… on d„x ,t … satisfy ṁ VK

Äṁ Energy and the requirement of continuity of tangential velocities.
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While consistent higher order discretizations of all the interfa
conditions can enhance accuracy, it is important to recall that
overall discretization errors in the solutions is best estimated
the convergence trends observed during refinement of the g
~see Section 3.10 of Ferziger and Peric@41#!. Since the nonuni-
form grid A is very refined in they-direction near the interface
~i.e., small Dyc

i ) and acceptably coarse along thex-direction
(Dxc

i ), the overall convergence trends~discussed in Section 6! are
found to be good without excessive computational penalties
terms of memory and speed requirements~see Liang@2#!.

With the help of known inlet and boundary conditions and st
dard CFD approach for single fluid flows, separate solutions
each domain is easy to obtain provided one has a correct gue
the interfaced(x,t) and correct values of$u1

i ,v1
i ,u1

i % on the in-
terface in Fig. 4~a! ~or, as depicted in the inset of Fig. 3, on
representative liquid interface cell in grid A!, and, also, correct
values of$u2

i ,v2
i ,u2

i % on the interface in Fig. 4~b! ~or, as depicted
in the inset of Fig. 3, on a representative vapor interface cel
grid A!. In reality though, one has to make tentative guesse
these seven variables—viz:$u1

i ,v1
i ,u1

i ,u2
i ,v2

i ,u2
i ,d%—and then

iteratively arrive at their correct values by repeatedly updat
them with the help of the interface conditions, vapor domain
lutions, and liquid domain solutions. Disregarding the two kno
ANUARY 2004
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and nearly constant temperaturesu1
i andu2

i obtained through Eq.
~9!, the remainingfive guesses are updated to their correct valu
with the help offive interface conditions—three from Eqs.~3!–~5!
and two from Eq.~8!. However, on use of the above describ
approach for obtaining a steady solution of the ‘‘elliptic’’ stead
problem, it is found that such steady solutions are notuniqueand
many liquid/vapor interface configurations are possible unles
suitable exit condition is specified. That is steady solutions ca
the signature of the well-known degeneracy associated with s
rated vapor’s quality~i.e., any liquid/vapor interference configu
ration or all vapor or all liquid! under quiescent and equilibrium
thermodynamic conditions. To find a unique steady solution,
exit vapor qualityZe is specified~this is equivalent to specifying
exit pressure or the amount of heat removed! and only then a
unique solution is obtained~this is accomplished by ‘‘creating’ a
fictitious interface type condition described later in Eq.~19!!. For
unsteady simulations, if the exit conditions are unconstrained
the vapor flow is incompressible, one can start from one of th
steady solutions at timet50 and ascertain the real time evolutio
of this solution att.0 without specifying the exit qualityZe(t).
As t→`, these unsteady solutions naturally seek out the right
conditions that are consistent with the assumed constant valu
the vapor density. For these unsteady solutions, the five value
Transactions of the ASME
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$u1
i ,v1

i ,u2
i ,v2

i ,d% at any time ‘‘t1Dt ’’ are obtained from the
known values of these variables at time ‘‘t’’ and the five interface
conditions~three from Eqs.~3!–~5! and two from Eq.~8!! dis-
cussed earlier. For the constrained exit case not considered in
paper, prescription of the value ofZe(t) at all times ‘‘t’’ ~with the
help of an equation of the type given in Eq.~19!! requires non-
constant vapor densityr2 and this changes the list of interfacia
unknowns to eight: viz.$u1

i ,v1
i ,u1

i ,u2
i ,v2

i ,u2
i ,d,r2

i %. Again this
compressible case becomes solvable with eight conditions~the
earlier seven interface conditions plus the eighth condition aris
from the specified exit condition! for eight interfacial unknowns
that need to be guessed for the unsteady equations governing
densing flows with compressible vapor.

To obtain separate calculations for the vapor domain in F
4~b!, the temporarily guessed values of$u2

i ,v2
i ,u2

i % on the inter-
face are temporarily held fixed along the interface and the en
vapor flow field on grid A of Fig. 3 is obtained with the help of th
inlet and the top wall conditions. After obtaining the full solutio
the flow field values underneath the interface~the liquid domain!!
is discarded because these values are neither sought nor do
affect the vapor domain values obtained for the well-posed va
domain problem. The temporary fixing of$u2

i ,v2
i ,u2

i % on the in-
terfaced(x,t) in Fig. 4~b! is accomplished by, respectively, ad
ing terms calledt12, t22, and t32 to the right sides of the
x-momentum,y-momentum, and the energy equations in Eq.~2!
with I 52. These terms are defined as

t12[u2* A1~xSI !* d̆~ ux2xSI u!2u2
i
* A1~xSI !* d̆~ ux2xSI u!

t22[v2* A2~xSI !* d̆~ ux2xSI u!2v2
i
* A2~xSI !* d̆~ ux2xSI u!

t32[u2* A3~xSI !* d̆~ ux2xSI u!2u2
i
* A3~xSI !* d̆~ ux2xSI u!.

(18)

In Eq. ~18! above,d̆ is a ‘‘delta function’’ ~see Greenberg@42#!
with x being the vectorial distance of any point from the orig
Also, in Eq.~18!, xSI is the position vector from the origin to an
point on the interface. With the additional terms in Eq.~18! added
to the appropriate equations on the right side of Eq.~2!, the modi-
fied equations are discretized. The resulting equations and
treatment, with appropriate choices of the interfacial-cell co
stantsAI (I 51,2,3), lead~see Section 3.3 of Liang@2#! to the
‘‘source term method’’ and its results given in Eqs.~7.11!–~7.13!
of Patankar@40#. The result of the above modifications is that t
original equations in Eq.~2! continue to hold in the interior while
the chosen values of$u2

i ,v2
i ,u2

i % get fixed on the interfaced(x,t).
To obtain separate calculations for the liquid domain in Fig.a

and to keep the interface sensitive to the pressure and shear
ditions ~as given by Eqs.~4!–~5!! at the interface, instead o
guessing and temporarily fixing values of$u1

i ,v1
i ,u1

i % on the in-
terfaced(x,t) of Fig. 4~a!, a scheme~described and termed the
t-p’’ method in Yu @17# and Liang @2#! is employed where
$u1s

i ,v1s
i ,u1

i % are guessed and fixed on the shifted interfa
dshift(x,t) of Fig. 4~b!. This extension of the liquid domain into
the vapor domain by a single liquidinterface cell~as depicted in
the inset of Fig. 3 and shown as the gray region in Fig. 4~a!! is
only for temporary computational convenience of fixin
$u1s

i ,v1s
i ,u1

i % on dshift(x,t) by the ‘‘source term method.’’ This
method is identical to the one described earlier for fixi
$u2

i ,v2
i ,u2

i % on d(x,t) for the vapor domain calculations in Fig
4~b!. In this ‘‘t-p’’ method ~see Liang@2#!, the values ofu1s

i are
adjusted to ensure that the appropriate relationship between
tangential stresses, i.e., Eq.~5!, is satisfied. Similarlyv1s

i values
are adjusted to ensure that the appropriate relationship betw
the normal stressesp1

i and p2
i , i.e., Eq. ~4!, is satisfied. The

values ofu1
i are presented to satisfy Eq.~9!. After the satisfaction

of the pressure, shear, and temperature conditions on the a
interfaced(x,t), the entire solution underneath the actual liqu
Journal of Applied Mechanics
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domaind(x,t) is retained and the solution for the ‘‘ghost’’ liquid
of Fig. 4~a! and the solution abovedshift(x,t) are discarded. In
short this method of fixing and adjusting$u1s

i ,v1s
i ,u1

i % on
dshift(x,t) of Fig. 4~a! allows one to find and adjust$u1

i ,v1
i ,u1

i %
on the actual interfaced(x,t) of Fig. 4~a! while concurrently sat-
isfying the pressure~Eq. ~4!!, shear~Eq. ~5!!, and temperature
~Eq. ~9!! conditions on the actual interface.

It is important to note that the liquid and the vapor interfa
cells depicted in the inset of Fig. 3 are not used toexplicitlysatisfy
mass, momentum~normal and tangential!, energy, etc. restrictions
on this cell. In this sense this approach is unlike some of
interface capturingand interface trackingapproaches where bal
ance laws areexplicitly invoked for the interface cells. The inter
face cells~see insets in Fig. 3! are only indirectly used here to
come up with a computational procedure where the val
$u1

i ,v1
i ,u1

i ,u2
i ,v2

i ,u2
i ,d% are so adjusted that their converged va

ues satisfy thediscretized form of all the seven interface
conditions—viz. two for temperature~Eq. ~9!!, two for momen-
tum ~Eqs.~4!–~5!!, two for mass~Eq. ~8!!, and one for continuity
of tangential velocities~Eq. ~3!!. Recall that the aforementione
equations that are used were independently and analytically
tained to represent the restrictions imposed by various phys
requirements at a sharp interface.

Between times ‘‘t’’ and ‘‘ t1Dt, ’’ adaptive grids~termed grid A
and grid B! are employed. At timet, grid A ~as in Fig. 3! is based
on the geometrical features ofd(x,t) as a function ofx, and it
changes whenever the liquid and the vapor flow variables nee
be recomputed for a changed interfacial configurationd(x,t).
However, to make the best changes ind(x,t) which leads to ac-
curate prediction ofd at time ‘‘t1Dt, ’’ a different grid ~grid B! is
generally required for the variables (d(x,t), etc.! appearing in the
interface tracking equation~which results from one of the inter
face conditions and has one less spatial dimension as in Eq.~21!
below! for this problem. Thus relevant variable values on grid
are mapped onto grid B, and the best predictions for change
d(x,t) are obtained on grid B. These predicted values ofd(x,t)
are then interpolated back to obtain corresponding values on
A. At any time t, linear interpolations are employed for the e
change of relevant flow variable values between grid A and g
B.

Procedural Steps. The final solution is obtained by solving
the liquid and vapor domainsseparatelyand iteratively under re-
peated modifications of the interface configurationd(x,t). The
iterations modify, intimately connect, and converge the two so
tions with the help of all the interface and boundary conditio
This convergence is accomplished through the following subst

~a! As described earlier, obtain grid A with the help of suitab
selected pointsPi on an initial guess or a tentative intermedia
prediction of the interface location.

~b! First extend the liquid domain by a singleinterface cell
~depicted in Fig. 3 and shown as the gray region in Fig. 4~a!! to
definedshift(x,t) as ashifted extensionof d(x,t). Utilizing the ‘‘
t-p’’ method described above and using guessed values
$u1s

i ,v1s
i ,u1

i % on the estimate for shifted interfacedshift(x,t) of
Fig. 4~a!, obtain a finite volume solution~SIMPLER technique of
Patankar@40#! for the liquid domain underneathd(x,t).

If unsteady solutions fort.0 are being sought, one skips th
remaining operations described here in this paragraph and m
on to the next substep~c!. However, for obtaining the steady so
lution at t50, another liquid domain problem underneath the a
tual interfaced(x,t) is solved toincorporate the exit-condition
prescription necessary for obtaining auniquesteady solution. For
this, the just obtained values of liquid velocity componen
(u1

i ,v1
i ) and temperatureu1

i from the ‘‘t-p’’ method ~which in-
volves dshift(x,t)) are now temporarily fixed on the actual inte
face locationd(x,t). The values ofx-component of interfacial
velocity u1

i and temperatureu1
i are retained as they are while th
JANUARY 2004, Vol. 71 Õ 75
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y-component of interfacial velocityv1
i is modified to satisfy the

current status of the equationṁLK5ṁEnergy. This is in preparation
to achieve closure with the subsequent chain of mass flux eq
ties viz.:ṁVK5ṁEnergyin substep~c! below, and the exit condition
restriction imposed as (ṁVK)modified5ṁEnergy in substeps~d!–~e!
below.

~c! Making use of the vapor domain calculation method d
scribed earlier, obtain guesses for$u2

i ,v2
i ,u2

i % on the interface
d(x,t) in Fig. 4~b! and then solve the vapor domain flow proble
by a finite volume technique~SIMPLER technique of Patanka
@40#!. Utilizing the liquid domain solution in substep~a! above;
values ofu2

i are obtained from a first order discretization of t
continuity of tangential velocitiescondition in Eq.~3!, values of
v2

i are obtained from a discretization of the requirementṁVK

5ṁEnergy in Eq. ~8!, and values ofu2
i are obtained from the ther

modynamic restriction in Eq.~9!.

~d! While obtaining unsteady solutions fort.0, this substep is
skipped, and one moves on to the next substep~e!. However, to
obtain a steady solution att50, it is necessary to prescribe an ex
vapor qualityZe at x5xe . For this, a modified vapor mass flu
(ṁVK)modified[b•ṁVK is introduced. The parameterb is then ex-
plicitly determined so as to make the total vapor mass transfer
across the entire interface~computed as*0

xer1 /r2•(ṁVK)modified

•A11dx
2
•dx) consistent with the given value of exit qualityZe

~i.e., it is made equal to 12Ze). To account for changing vapo
control volume and moving interface, suitable modifications
this approach is needed to specify exit conditions for compress
unsteady cases not considered in this paper. Onceb is obtained,
the interfacial values of liquid velocityv1 ~denoted asv1

i ) are
updated so as to satisfy, for steady flows, the additional exit c
straint:

ṁLK5~ṁVK!modified. (19)

The steady solution procedure then moves to the next subste~e!
to updated(x) values from Eq.~22! given below at the end o
substep~e!.

(e). The only remaining interface conditionṁLK5ṁEnergy in
Eq. ~8! ~which, for steady flow computations, because of Eq.~19!
above, becomes (ṁVK)modified5ṁEnergy) is satisfied in this substep
It should be noted that the physical variable formṁLK5ṁEnergyof
this equation arises from Eq.~A7! in the Appendix, and can be
written in the following popular form fortracking the interface
H(x,y,t)50:

]H
]t

1v1
i
•¹H>

2k1

r1•hf g

]T1

]n U i

•u¹Hu. (20)

Focusing on locating the interface prior to any break up or pin
off, the interfaceH in Eq. ~20! is represented by a simple sing
valued form given byH5y2D(x,t)50. Nondimensionalizing
the resulting Eq.~20! under Eq.~1!, the following nonlinear and
hyperbolic interface tracking equation is obtained:

]d

]t
1ū~x,t !

]d

]x
5 v̄~x,t !, (21)

where ū[u1
i 1$Ja/(Re1•Pr1)%]u1 /]xu i and v̄[v1

i 1$Ja/(Re1
•Pr1)%]u1 /]yu i typically depend strongly, but indirectly, ond.
While obtaining the steady solution att50, however, all time
derivatives are set equal to zero, and the interface is updated
simple numerical integration~trapezoid rule! of thesteady formof
Eq. ~21!, which is

dd/dx5 v̄~x!/ū~x! for x.0. (22)

In this substep, Eq.~21! or Eq. ~22! is solved to obtain new
values ofd. For the steady case, Eq.~22! yields newdsteady(x) and
for the unsteady case, Eq.~21! is solved to obtain new values ofd
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for the next time step ‘‘t1Dt ’’ or is used merely to improve the
existing estimates ofd and other flow variables for time ‘‘t
1Dt. ’’ Whatever be the case, at each relevantx, all liquid and
vapor flow variables are linearly mapped to the new liquid a
vapor domains defined by each new prediction of the interf
location.

Repetition of the steps~a!–~e! above with a starting gues
dguess(x) for the interface location leads first to a convergent s
lution dsteady(x) of the steady equations. This solution is consiste
with the prescribed exit qualityZe becauseb introduced and com-
puted in substep~d! above satisfies the requirement ofb→1.
Starting from this converged steady solution att50, steps~a!–~e!
above are repeated a suitable number of times for each new
step, viz.t5Dt, t52Dt, etc. This leads to a convergent unstea
solution consistent with the choice of initial and boundary da
The ability to improve the results at any time step by dwelling
that time step for repeated iterations between the time step u
consideration and the previous time step makes the proces
forward time marchingimplicit ~or, more appropriately,semi-
explicit!.

The solution obtained by the above procedure not only satis
the pressure, shear, temperature, and continuity of tangentia
locity conditions at the interface, but also satisfies the various fl
field restrictions that arise from having a nonzero interfacial m
flux ṁ. Thesteady solutionsat t50 satisfyṁLK5ṁEnergy in sub-
step ~a!, ṁVK5ṁEnergy in substep~b!, and the exit condition re-
striction imposed as (ṁVK)modified5ṁEnergy in substeps~d!–~e!.
Theunsteady solutionsat t.0 satisfyṁVK5ṁEnergyin substep~b!
andṁLK5ṁEnergy in substep~d!.

Discussions for the Interface Tracking Equation and Its So-
lution. When the right side of Eq.~20! is zero, spatial extension
of Eq. ~20! leads to a color functionH whose initial valuesH
50 andH51 within each of the phases are retained for all tim
t.0, and this forms the basis of the popular VOF~volume of
fluids! techniques~see Hirt and Nicholas@24#, etc.! for air/water
type flows. Similarly, a suitable spatial extension of Eq.~20!, in
conjunction with some other techniques, is used in the level
method ~Sussman et al.@22#, etc.! for capturing the interface
through iterative single domain~consisting of both the phases!
calculations. For boiling related phase change flows, the leve
technique has recently been used by Son and Dhir@23#. In order to
better understand and sidetrack some of the problems~see, e.g., Li
and Renardy@27#! associated with interfacecapturing techniques
~be it level-set, VOF, etc.! that utilize Eq.~20!, we look at the
existing knowledge base for the reduced form of Eq.~20! given in
Eq. ~21!. Equation~21! is the interface tracking equationwhich,
for t.0, defines the followinginterface tracking problem:

]d

]t
1ū~x,t !

]d

]x
5 v̄~x,t !

d~0,t !50

d~x,0!5dsteady~x! or other prescriptions. (23)

The computational issues for discretization and numerical s
tion of Eq. ~23! are well understood and extensively discussed
Abbott and Basco@26# with regard to various algorithms’ stability
and accuracy in determining both the amplitude and the phas
its often-wavy numerical solutions. It is known from there th
among various possible discretizations for Eq.~23!, the one that
gives best results in marching from (x,t) to (x1Dx,t1Dt) has a
Courant number Cr (Cr[ū(x,t)•Dt/Dx) equal to 1~i.e., Cr>1)
and the following discretizations:

d~x1Dx,t1Dt !5d~x,t !1 v̄~x,t!•Dt

]d/]t5@d~x1Dx,t1Dt !2d~x1Dx,t !#/Dt

]d/]x5@d~x1Dx,t !2d~x,t !#/Dx. (24)
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Fig. 5 The above predictions are for vertical channel flows of saturated R-113 vapor. The
flow cases are specified in Table 1 with aÄ90 deg, x eÄ50 and two different exit condi-
tions, viz. Ze1

Ä0.5 and Ze2
Ä0.38.
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The intermediate timet (t<t<t1Dt) in Eq. ~24! above~appear-
ing in the definition of Cr throughū and in the first equation
through v̄) is chosen such that, by the end of iterations for t
time interval, ū and v̄ satisfy ū(x,t)5$ū(x,t)1ū(x,t1Dt)%/2
andv̄(x,t)5$v̄(x,t)1 v̄(x,t1Dt)%/2. It should be noted that on
can tentatively use any convenient and stable discretization
]d/]x and]d/]t in substeps~a!–~d! above, as long as the optima
discretizations in Eq.~24! are employed and satisfiedby the endof
repeated iterations of substeps~a!–~e! for any given time step.

The above requirement of Cr[ūDt/Dx'1 in Eq. ~24! is
handled by mapping thexu( i ) locations in grid A toxud( i ) loca-
tions in grid B~see Fig. 3!. This is accomplished by setting, at an
time t, xud(3)5xu(3)5«.0 and sequentially finding all subse
quent xud( i ) for i>4 by the relation: xud( i 11)5xud( i )
1ū(xud( i ),t)•Dt whereū(xud( i ),t) values are also sequentiall
obtained from linear interpolations within the known set of valu
Table 1 Specification of reported flow situat
of the inlet. Properties of R-113 are taken fro

Mechanics
is

for
l

y
-

es

of ū at xu( i ) locations. Thed values thus obtained from Eqs
~23!–~24! on grid B are then mapped back to grid A with the he
of linear interpolations.

It is further noted that the discretizations in Eq.~24! are the
same as the discretizations for themethod of characteristics~see,
e.g., Greenberg@42#!. That is, evolution ofd(x,t) as a solution of
Eq. ~21! takes place alongcharacteristic curves x5xc(t) given by

dxc

dt
5ū~xc~ t !,t !

xc~0!5x* or xc~ t* !50, (25)

wherex* is any given value ofx between the inlet and the outle
ions involving saturated R-113 vapor
m ASHRAE Handbook, †45‡.
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in Fig. 1 andt* .0. Equations~23! and ~25! together imply that
the evolution ofd(x,t) along thecharacteristic curvesis gov-
erned by

dd̂~ t !

dt
5vC ~ t !

d̂~0!5dsteady~x* ! or other prescriptions, (26)

whered̂(t)[d(xc(t),t) andvC (t)[ v̄(xc(t),t).
It is found that the integrable singularity atx;0 is such that

replacement of the conditiond(0,t)50 in Eq.~23! by a condition
of the typed(«1 ,t)5«2 for any suitably chosen«1.0 and «2
.0 does not affect the solutions atx@«1 . Therefore, unless one
is interested in the singularity atx50, the proposed approac
works rather well for all cells except the first two to three cells
the leading edge corner~i.e., left corner of Fig. 2!. This is because
solution obtained away from the leading edge remains larg
unaffected by changes in specific reasonable choices made f«1
and«2 . Thus, as expected, integrability of this singularity in tw
or three-dimensional calculations poses no problem. Howe
resolution of the same singularity becomes more challenging
one-dimensional approaches~see Narain et al.@19#! that employ
semi-empirical interfacial shear models.

Fig. 6 For the flow situations specified in Table 1 with aÄ90
deg, x eÄ50, the figure shows the equivalence of specifying exit
vapor quality Ze or exit pressure p̄eÆ1Õ„1Àd…*d

1p2dy to
specify exit conditions. It is computationally more convenient
to specify exit condition Ze .

Fig. 7 With all remaining flow parameters specified as in Table
1 with aÄ90 deg, the above figure shows that exit condition
specified by the number Ze at a given x e must lie within two
well-defined values, viz. Zezmin „xe…ÏZeÏZezmax„xe…. This restric-
tion, presumably, arises from the fact „see Carey †37‡… that the
assumed annular Õstratified flows only occur within certain pa-
rameter ranges.
78 Õ Vol. 71, JANUARY 2004
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4 Stability of Steady Solutions and the Role of Exit
Conditions

For slow laminar/laminar internal condensing flows conside
here, it is computationally shown in Fig. 5 that, for different ex
conditions~i.e., exit vapor qualityZe5Ze(0)), oneobtains differ-
ent steady solutions for any given inlet pressure and inlet m
flow rate. In Fig. 6, we see that the prescription of a different e
vapor qualityZe is equivalent to a prescription of a different ex
pressurep̄2e[1/(12d)*d

1p2dy. Because of the nonuniquenes
of steadysolutions in the absence of prescribed exit conditio
the following questions arise with regard to different solutio
associated with differentZe values: ~i! all else remaining the
same, is there a range ofZe values that can be prescribed at
givenx5xe for which a range of steady solutions can be obtain
~ii ! is a particular steady solution for a givenZe stable or unstable
in the absenceof exit constraints fort.0 ~i.e., if Ze(0)5Ze but
Ze(t) can take any value fort.0); and~iii ! is a particular steady
solution for a givenZe stable or unstable in thepresenceof exit
constraints fort.0 ~e.g.,Ze(t)5Ze for t>0)?

Representative answer to question~i! above is given in Fig. 7
which computationally demarcates a range ofZe(0)5Ze values
for eachxe while all other nondimensional parameters determ
ing the flow are held fixed. The demarcation in Fig. 7 is of t
type Zeumin<Ze<Zeumax where the lower and upper bounds a
rather well defined. The parameter range shown in Fig. 7 chan
as the remaining significant parameters~viz. Rein , Ja,a, r2 /r1 ,
m2 /m1 , and Pr1) are changed.

Answer to question~ii ! regarding stability of solutions for the
unconstrained exit case follows from results given in Figs. 8
Based on two-dimensionalunsteadysimulations results shown in
Fig. 8~a! for the idealized noise-free case and its noise-sensi
quasi-steady counterpart in Fig. 8~b!, it is found that, for uncon-
strained exit conditions, ast→`, there is anattractive solution
~see Fig. 9! while the remaining steady solutions areunstable. All
else being given, the finalZe value obtained for the attractive
solution in Fig. 8~a!, is denoted asZeuNa to indicate that it isthe
naturally selected value ofZe in the absence of exit constraints
This naturally selected attractive steady solution for unconstrai
exit conditions is found to bestable~see definition ofstability in
Joseph@43#! becauseinitial two-dimensional disturbances dam
out over time. It should be noted that a solution might bestable
and yet be difficult to realize in practice because ofsensitivityto
certain minuscule noises that are commonly present. To un
stand the stability and noise sensitivity issues, the problem in
~23! and its solution along characteristics, as defined by E
~25!–~26!, is best rewritten in terms of the evolution of a distu
bance d8(x,t)[d(x,t)2dsteady(x). Under this change of vari-
ables, the characteristics continue to be defined by Eq.~25! while
Eq. ~23! changes to

]d8

]t
1ū~x,t !

]d8

]x
5v% ~x,t !

d8~0,t !50

d8~x,0! or other prescriptions, (27)

where v% (x,t)[@ v̄(x,t)2 v̄steady(x)2$ū2ūsteady%(ddsteady/dx)#
and Eq.~26! changes to

dd̂8~ t !

dt
5v%̂ ~ t !

d̂8~0!50 or other prescriptions, (28)

where d̂8(t)[d8(xc(t),t) and v%̂ (t)[v% (xc(t),t). It should be
noted thatuū2ūsteadyu and uv% (x,t)u are identically zero for steady
solutions withd850 and are small for disturbances with smalld8.
The attractive solution in Figs. 8–9 is such that disturban
d8(x,t) again propagate along characteristics curves given by
Transactions of the ASME
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Fig. 8 „a… For flow situation specified in Table 1 with aÄ90 deg and x eÄ30, the figure
depicts two sets of d„x ,t … predictions for tÌ0. One curve C1 starts at ZeÄ0.51 at t
Ä0, and tends, as t\`, to the solution for ZezNaÄ0.47. The other curve C2 starts at
ZeÄ0.44 at tÄ0 and tends, as t\`, to the same steady ZezNa solution. „b… For flow
situations considered in Fig. 7 „a…, the above predictions for tÌ0 starts at tÄ0 from the
same curves C1 and C2 in Fig. 7 „a…. However, at tÌ0, there is a condensing surface
noise given by v 1„x ,0,t …Ä«" sin „2pxÕl…" sin „2pt ÕT…, with «Ä0.3E-6, lÄ10, and TÄ24. As
t\`, the mean part of wavy quasi-steady solutions coincides with the smooth solu-
tion, shown in Fig. 8 „a… for ZeÄZezNaÄ0.47.
t

c
-

~25!. For the steady solution in Fig. 10, representative charac
istics curvesC1 , C2 , etc. are shown in Fig. 11~a!. These curves
are generated by numerical integration~fourth-order Runge Kutta!
of Eq. ~25! with the characteristic speedū(x,t)5ūsteady(x). Figure
11~b! shows that the characteristics speed for small initial dis
bances~which, because of the nature and form of Eq.~27!, is the
same as phase speed! satisfiesū(x,t)>ūsteady(x). For intrinsic
waves induced by small initial disturbances, unlike gravity wav
on water~see Lighthill @31#!, the waves are nondispersive~i.e.,
wave speeds are nearly independent of wavelengths! and become
somewhat dispersive only for large amplitude initial disturban
~seeū for this case in Fig. 11~b!!. For the steady and initial dis
Mechanics
ter-

ur-

es

esFig. 9 Qualitative nature of the stable, steady Õquasi-steady
solutions
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Fig. 10 For flow situations specified in Table 1 with aÄ90 deg and x eÄ20, the
above d„x ,t … predictions „DtÄ2.5… are for initial data d„x ,0…Ädsteady „x …¿d8„x ,0…,
where a nonzero disturbance d8„x ,0… has been superposed at tÄ0 on the steady
solution dsteady „shown as curve C1 above for tË0…. The steady solution corre-
sponds to ZeÄZezNaÄ0.5. Here d8„x ,0…Ä0 except in the interval x *ËxËx *¿10,
where x *Ä3.5 and d8„x ,0…Ä0.5"dsteady „x …" sin „2pxÕ5…. It is clear that even this large
a disturbance damps at later times.
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turbance cases shown in Fig. 10, Fig. 11~c! shows values of the
‘‘growth/damping’’ factorv%̂ (t) along a representative character
tic curve~such asC1 in Fig. 11~a!!. The initial disturbance in Fig.
10 typically damps because, in Fig. 11~c!, we have a typical re-
sponse ofv%̂ (t),0 for all sufficiently large t and d8(xc(t),t)
5d8(x* ,0)1*0

t v%̂ (t)•dt tends to zero ast→` along characteris-
tics originating on thet50 line. Furthermore, besides damping
initial disturbances along the characteristics curves, disturba
leave the computational domain (0<x<xe) with a forward phase
speed ofū.0. As a result, in Fig. 11~a!!, at a fixedx ast→`, one
would leave the solid line initial disturbance characteristics or
nating on thet50 line and get on the characteristics originati
on thex50 line ~these curves are overt>t* for any t* .0). The
values ofd8 on these characteristics~over t>t* and t* .0) are
not affected by the nonzero initial disturbances since these c
acteristics only carry the nearly zero-noise information
d8(0,t)'0 for all t>t* . This stability of a natural steady solutio
associated with the exit conditionZe5ZeuNa is typically true for
any initial disturbance~not just the large initial disturbance ex
ample used in Fig. 10! under unconstrained exit conditions. Whi
the small intrinsic initial disturbance waves damp out as th
propagate downstream with increasing wavelengths and incr
ing speedū'ūsteady(x). For the initial disturbance cases with in
tial wavelength l, at later times t the wavelengthsl̄(x,t)
5l̄(xc(t),t) with l̄(xc(0),0)5l. Here reciprocal ofl̄(x,t), as
in Lighthill @33#, is in terms ofx-derivative of phase angles tha
are constant as they propagate along the characteristics cu
Since these derivatives get smaller with increasingx because of
the increasingx-separation among incrementally apart charac
istics ~this is also the case with finitely spaced characteristicsC1 ,
C2 , etc. shown in Fig. 11~a! the wavelengthsl̄(x,t) increase as
the disturbances propagate forward under continued damping

Earlier, in Fig. 5, it was shown that different steady solutio
are possible for different exit constraints~i.e., different values of
Ze). With regard to stability of such steady solutions to initi
disturbances whileexit conditionsare constrained to keep value
of Ze fixed in the immediate vicinityof ZeuNa, stability, like the
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Ze5ZeuNa solutions, are expected. However, unsteady simulati
for initial disturbances while retaining exit constraint at all tim
are outside the scope of this paper as such simulations req
allowance of density fluctuations in the vapor phase and acco
ing for their interactions with fluctuations in other variables. It
however, easily conjectured that many steady solutions with c
strained the values~at all times! sufficiently farfrom ZeuNa, such
asZe50.26 case shown in Fig. 12~with its unlikely liquid veloc-
ity profiles resulting from the inappropriate constant density
sumptions!, will have oscillatoryinstability in response to initial
disturbances. This is because sustained density and o
fluctuations/waves are expected.

5 Effects of Noise and Resonance Condition

The natural and stable solutions described in Fig. 9 and ob
tained in Fig. 8 were shown, in Fig. 10, to beintrinsically wavyto
initial disturbances. It is shown in Fig. 13~a! that, despite the
stability, the interface is quite sensitive to even minuscule vib
tions of the bottom plate. This is because transverse conden
velocity componentv1 is very small~e.g., if axial vapor velocity
is O(1), axial condensate velocity is often aboutO(1023), and
transverse condensate velocity is often aboutO(1025)) and yet it
is a significant player in the forcing term on the right side of t
interface tracking equation in Eq.~23!. The small bottom plate
noises considered in this paper correspond to a velo
v1(x,0,t)5«• sin(2px/l)• sin(2pt/T) whose amplitude« is in the
range of 1310252331025. For the representative cases cons
ered here~e.g.,T512, l55, h5.004 m, andU50.41 m/s), the
maximum displacement amplitude of the vibrations is about 0
mm, the maximum velocity amplitude is about 0.12mm/s, and the
maximum acceleration amplitude is about 6.2531024 m/s2

~which is less than 1024 g, g>10 m/s2). Such transverse con
densing surface vibrations are typically induced by structura
coolant noise sources and are indeed commonly present in
0–30 Hz range considered here. Thus these noise-induced w
Transactions of the ASME
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Fig. 11 „a… For flow situation specified in Table 1 with aÄ90 deg and x eÄ40, the charac-
teristics curve C1 denote curves along which infinitesimal initial disturbances naturally
propagate on the stable steady solution. Curve C18 denotes characteristics along which
finite disturbance arising from forced bottom wall noise actually propagate. On character-
istics originating at xÄ0, d„0,t …·0 implies d8·0. „b… For flow situations defined in Table 1
with aÄ90 deg and x eÄ48, the above ū „x ,t … predictions for tÐ0 are for „i… steady flow with
ZezNaÄ0.524, „ii … resonant case in Fig. 13, „iii … nonresonant case in Fig. 13, „iv … large initial
disturbance of Fig. 10 and „v… small initial disturbance d8„x ,0… which is one-fifth of d8„x ,0…
in Fig. 10. „c… For flow situations defined in Table 1 with aÄ90 deg and x eÄ50, the above
v% „t … values are along actual characteristics curves like C18 in Fig. 11 „a…. The predictions are
for „ i … the steady and stable flow with ZezNaÄ0.578, „ i i … the resonant case of Fig. 13, „ i i i …
the nonresonant case of Fig. 13, and „iv … the small initial disturbance case „scaled up and
shown in the lower figure … in Fig. 11 „c….
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discussed/studied here are the waves that appear as wavy in
cial oscillations in laminar/laminar condensing flows under u
constrained exit conditions.

The Fourier component of the standing-wave disturba
v1(x,0,t) used in Fig. 13~a! is equivalently written as the sum o
two traveling waves. Denoting the forward traveling wave’s pha
angle asa1[2p$x/l2t/T% and the backward traveling wave
phase angle asa2[2p$x/l1t/T%, the bottom plate noise is
given as

v1~x,0,t !5
«

2
@Re$exp~ ia1~x,t !!2exp~ ia2~x,t !!%#, (29)
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where ‘‘i’’ in the arguments of the exponential functions appeari
in Eq. ~29! denotes the complex numberA21 and ‘‘Re$ %’’ in Eq.
~29! denotes real part of the expression within ‘‘$ %.’’

Furthermore, results in Figs. 13~a! are in accord with the ex-
pectation~see Miyara@32# for the Nusselt problem! that noise
amplification is either sustained or increased with increas
downstream distances and film thickness values. For resona
nonresonant condensing surface vibration considered in Fig.
the corresponding oscillatory ‘‘growth/damping’’ factorv%̂ (t) val-
ues in Fig. 11~c! ~computed along the actual unsteady charac
istics such asC18 of Fig. 11~a!! are also, on average, either su
tained or amplified. In Fig. 11~b!, at large times, the noise-induce
JANUARY 2004, Vol. 71 Õ 81



Fig. 11 „continued …
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waves’ characteristics speedū(x,t) has a meanūmean(x) ~with
ūmean(x)>ūsteady(x)) and superposed oscillations/waves
ūmean(x). It is seen in Fig. 11~a! that theintegration involved in
obtaining the characteristicsC18 ,C28 , etc. smooth out the effects o
the fluctuating part ofū(x,t) while its meanūmean(x) mainly af-
fects thecharacteristicsat largex-locations where the noise ef
fects are large and nonlinear effects associated with the siz
ud8(x,t)u play a role. For the nonresonant wall noise case in F
13~a!, both the ‘‘growth/damping’’ factorv% (x,t) values~shown in
Fig. 11~c! asv%̂ (t) alongC1) andd8(x,t) values have been com
putationally verified to sustain waves with approximately t
same wavelengthl and frequencyf ext51/T as that of the externa
forcing noise. Thus the phase angles associated with these
facial waves are same as those associated with the forcing noi
Eq. ~29!. To better understand the connection between these
variables in terms of the resulting phase speeds and the intr
phase speed for the flow, analytical implications of Eq.~23! are
presented next for the case of small amplitude bottom wall no

For the purpose of identification of resonance conditions, i
assumed, as is the case in Fig. 11~b!, that an amplitude ‘‘«’’ for
bottom wall noise can be found up to which~i.e., small to mod-
erate values of«! the approximationū(x,t)>ūsteady(x) holds. The
82 Õ Vol. 71, JANUARY 2004
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above discussions for the bottom plate noise in Eq.~29! allow us
to assume that the form ofv% (x,t) and the form of the associate
d8(x,t) are given by

v% ~x,t !5Re$vg1~x,t !exp~ ia1~x,t !1vg2~x,t !exp~ ia2~x,t !%

d8~x,t !5Re$§g1~x,t !exp~ ia1~x,t !1§g2~x,t !exp~ ia2~x,t !%,
(30)

where the phase anglesa1 anda2 are same as in Eq.~29!. Fur-
thermorecomplex-valuedgrowth ratesvg1 andvg2 for v% (x,t) and
§g1 and§g2 for d8(x,t) are assumed to be non-oscillatory. Und
this assumption of nonoscillatoryū(x,t)>ūmean(x), the relation-
ships among the growth rates forv% (x,t) andd8(x,t) are found by
substituting Eq.~30! in Eq. ~27! and equating coefficients of th
two exponentials. This gives

d§g1

dt
1 i ~DD1!§g15vg1

d§g2

dt
1 i ~DD2!§g25vg2 , (31)
Transactions of the ASME
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Fig. 12 For the above flow situation specified in Table 1 with aÄ90 deg and x eÄ50, the
steady solutions are obtained for ZeÄZezminÄ0.26 and ZezNaÄ0.36
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where DD1[(2pū/l2 f ext), DD2[(2pū/l1 f ext), f ext[1/T,
and theordinary time derivatives in Eq.~31! are taken along the
characteristicsx5xc(t) defined in Eq.~25!. With J51 or 2 de-
noting the numerical subscripts in Eq.~31!, the solutions of the
two equations in Eq.~31! subjected to the requirement of ze
growth rates up tot<0 are given by

§gJ5exp~2 i ~DDJ!t !E
0

t

vgJ~t!exp~ i ~DDJ!t!•dt. (32)

From Eq. ~32! it is easily inferred that, ifuDDJu values are
significantly nonzero forJ51 and 2~as in nonresonant cases!, the
growth ratesvgJ for v% (x,t) and §gJ for d8(x,t) are of the same
order of magnitude. Thus the physical mechanisms inherent in
~27! do not affect these growth rates in anyspecialway. However,
for uDD1u>0 in Eq. ~32!, §g1 significantly starts growing as
u§g1u>u*0

t vg1(t)dtu'tuvg1(xc(t),t)uav>O(«•t). Therefore by
choosing frequencyf ext5 f ext(x)[1/T(x) to satisfy the resonanc
condition uDD1u>0, i.e.,

l f ext~x!5ū~x,t !>ūsteady~x!>ūmean~x!, (33)

one can match the phase speedl f ext(x) of the bottom wall noise
to the phase speedūsteady(x) of the intrinsic initial disturbance
waves. It should be noted that, even for this case,uDD2u is non-
zero. Indeed, under these conditions, this resonance phenom
is seen in Fig. 13~a!. The fact that, in Fig. 13~a!, interfacial waves’
wavelengths only approximately equal wall-noise wavelengthl
and ū(x,t) only approximately equalūsteady(x) is due to the fact
that the amplitude ofd8(x,t) are not infinitesimal~as was as-
sumed in the above analysis!. All else being the same in Fig
13~a!, it is clear that the resonant case has significantly more w
energy than the same amplitude non-resonant noise. Thus w
ever resonance condition in Eq.~33! is satisfied, the mechanism
represented by Eq.~27! imply that the forward moving componen
of the noise and the small amplitudeintrinsic interfacial waves
have the same phase speeds and this leads to phase reinforce
and significant increase in the amplitude ofd8.

Although the results shown in Fig. 13 are for a sinusoidal sta
ing wave on the condensing surface aty50, more complex two-
dimensional or three-dimensional patterns will arise from a m
general noise that wouldtypically be present. Furthermore, even
the noise itself is two-dimensional any three-dimensional imp
fection in the geometry may cause the wave to become th
dimensional further downstream, and this is perhaps the rea
why two-dimensional waves become three-dimensional in so
of the known experiments~see, e.g., Lu@21#!.
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Although it is not presented here, effects of anygeneral two-
dimensional noise~as measured experimentally by accelero
eters! can also be estimated by looking at the power density fu
tion of v1(x,0,t), through FFT, in thek-v space~wave number
k[2p/l and angular frequencyv[2p f ) and representing the
disturbancev1(x,0,t) by a representative sum of Fourier comp
nents of wavelengthsl and frequenciesf.

The CFD simulation restrictions on wavelengthsl that can be
investigated is:Dx* /2,l,xe/2, whereDx* is of the order of
magnitude of the largestx-width in grid A and grid B andxe is the
distance between the inlet and the outlet. The smallest time
Dt* is the minimum of (Dx/ū) values due to Cr>1 restriction in
Eq. ~24!. This restricts the maximum frequencyf 5 f max that can
be computationally studied to those that satisfy the Nyquist cr
ria f max,1/(2•Dt* ). Despite these restrictions on nois
sensitivity analyses, thestability results in Section 5 are true fo
all wavelengthsl. This is because the resulting interfacial wav
lengths are increasing in nature and they increase to a value w
it can be resolved by the refined grids employed in this paper

With regard to noise sources other than the bottom plate no
it was found that noise or fluctuations in the inlet velocity profi
only leads to fluctuations in the vapor profile and haslittle impact
on the interfacial waviness. In other words, under unconstrai
exit conditions, only fluctuations in flow variables that signi
cantly influence fluctuations in transverse liquid veloc
v1(x,y,t) cause significant interfacial waviness. However, this p
per can not account for density fluctuations that necessarily ap
in the study of effects of superposed fluctuations in the exit c
ditions while the inlet conditions are being held fixed.

6 Convergence, Accuracy, and Other Regularities of
the Solutions

For a computational solution to be accurate, it needs to sat
the following criteria:~i! the convergence criteria in the interior o
each fluid~i.e., smallness of ‘‘b’’ defined on p. 125 of Patanka
@40#!, ~ii ! the satisfaction of all the interface conditions,~iii ! grid
independent solutions for grids that are sufficiently refined, a
~iv! unsteady simulation results for the sensitive interface lo
tions should be free of computational noise in the absence
physical noise. The simulations presented here satisfy all
above criteria.

The satisfaction of the governing equations in the interior a
all the conditions at the interface is demonstrated in Liang@2#. For
sufficiently refined grid~i.e., both grid A and grid B described in
Section 3! and sufficiently large~but not too large! number of
JANUARY 2004, Vol. 71 Õ 83
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Fig. 13 „a… For the flow situations specified in Table 1 with aÄ90 deg, x eÄ50 and
ZeÄ0.578; the above d„x ,t … predictions compare the nonresonant noise with a
resonant noise of the same amplitude „«Ä0.9E-4…. The noise is given by:
v 1„x ,0,t …Ä«" sin „2pxÕl…" sin „2pt ÕT…, where „i… lÄ10 and TÄ24 for the nonresonant
case, and „ii … lÄ10 and TÄT„x …ÄlÕū steady „x …. „b… For the flow situations consid-
ered in Fig. 13 „a…, the above depicts the wall heat flux q w9 „x ,t …, in W, at tÄ25 for
the resonant case, and its time-averaged values q̄ w9 „x …, in W, for all other cases.
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iterations, the combined sum of decreasing truncation and incr
ing roundoff errors are minimized to a plateau level and the so
tions in Fig. 14~a! are grid independent to within 1–2%. Th
number of grid linesni3nj uL3nj uv given in Fig. 14, respectively
indicate the number of grid lines over 0<x<xe , 0<y
<dsteady(x), and dsteady(x)<y<1 for the interface location att
50. These numbers somewhat change with time. For grid I
Fig. 14~a!, (Dx)av[xe /ni50.77, (Dy)avL[d(xe)/nj uL55.77
31024, (Dy)avV[$12d(xe)%/nj uv50.015, andDt55. The cor-
responding representative grid spacing values in physical v
ables are (Dx)av53.08 mm, (Dy)avL52.31mm, (Dy)avV
50.06 mm, andDt50.049 s. For a technical estimate of tot
discretization error—Section 3.10 in Ferziger and Peric@41# is
used for estimating error on a representative flow variable~say,
film thickness in Fig. 14~b!! due to the coarseness ofx-grid. On
successive refinement of thex-grid, the results in Fig. 14~b! yield
the error to be within 3%. Considering this and the refinem
used in the time and in they-direction, the total error of all re-
ported results in this paper is about 6%.

Smooth interfaceunsteady solutions reported earlier in Fig. 8~a!
establish that the highly sensitive interface predictions are fre
computational noise whenever there is an absence of phy
RY 2004
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nt

of
ical

noise. In fact, in Liang@2#, it is shown that inappropriate discret
zation schemes for the interface tracking equation or unsuita
choice of splines for mapping variable values between grid A a
grid B can lead to wavy interface solutions even in the absenc
physical noise. Such waves that are entirely due to computati
noise have been eliminated from the present study.

Another regularity of the proposed computational approach
its ability to make steady predictions for the classical Nusselt@5#
problem in agreement with its classical solution while allowi
for improvements in it. This is shown in Fig. 15. The unstea
predictions for this classical problem will be discussed in a se
rate paper.

7 Trends of the Steady, Stable and Noise-Sensitive
Solutions

The steady and stable solution~associated withZe5ZeuNa) in
Fig. 8 for the vertical-channel case was found to be sensitive
noise in Fig. 13. Despite the waves, as seen in Fig. 13~b!, there are
no significant enhancements in heat transfer rates for the nonr
nant case. This is because the oscillations around the mean
thickness are small and nearly symmetric, and temperature
Transactions of the ASME
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Fig. 14 „a… The above d„x ,t … predictions for tÌ0 are for the steady solution curve
C1ÄC2 at tÄ0 and initial noise specified in Fig. 10. The tÄ0 solutions are obtained on
two grids I and II with „n iÃn j zLÃn j zV… IÄ„30Ã30Ã20… and „n iÃn j zLÃn j zV… IIÄ„50Ã50
Ã30…. The tÌ0 solution are shown as curves C1 and C2 and are, respectively, ob-
tained on grids that have: „n iÃn j zLÃn j zV… IÃDtÄ„30Ã30Ã20…Ã2.5 and „n iÃn j zL
Ãn j zV… IIÃDtÄ„50Ã50Ã30…Ã5. At tÌ0, the number of grid lines „n iÃn j zLÃn j zV…

changes somewhat from their value at tÄ0.
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files are nearly linear. This yields heat fluxqw9 (x,t);DT/d(x,t)
whose time-averaged values show no significant enhancemen
less the wave amplitudes are large. As a result, for the la
amplitude resonant case in Fig. 13, there is a significant h
transfer enhancement of 10% or more in the downstream ha
the channel. Therefore these stable and quasi-steadyZe5ZeuNa
solutions obtained in Fig. 8 are important in their own right for t
purpose of estimatingtypical heat flux values. Hence it is good t
ascertain the trends of thesenatural steady solutions as the inle
Reynolds number Rein and the temperature differenceDT ~or,
equivalently, the parameter Ja! are changed. Figure 16 shows th
effect of these changes onZe5ZeuNa, Fig. 17 shows the effects o
wall heat fluxq̄w9 (x), and Fig. 18 shows the effects on flow field
(dsteady(x), etc.!. Since the vertical channel configuration studi
here is gravity-dominated, vapor motion does not significan
affect the condensate motion and, as expected, changes in
Reynolds number Rein has no effects on mean film thicknes
dsteady(x) or wall heat fluxq̄w9 (x). However, in Fig. 18, a thicken
ing of dsteady(x) occurs due to an increase in temperature diff
echanics
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Fig. 15 For the vertical plate situation specified in Table 1 with
aÄ90 deg, x eÄ48 and L cÄ0.004 m, Curve 1 is a plot of the
analytical solution of d„x … as given in Nusselt †5‡. Curve 2 is
the computational solution under the Nusselt assumption for
stagnant vapor and zero liquid inertia. Curve 3 is the computa-
tional solution under the assumptions of stagnant vapor while
allowing for liquid inertia. Curve 4 is the computational solution
that allows vapor motion and liquid inertia „the vapor Õliquid ve-
locity profiles are shown only for this case …. Though not shown
above, vapor velocity tends to zero as y\`.
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Fig. 16 The above is a plot of natural values of ZezNa for different x e values
for a representative flow situation specified in Table 1 with aÄ90 deg and
x eÄ48. The ‘‘Increased Re in’’ case just changes Re in to a new value of 1300.
The ‘‘Increased Ja’’ case just changes Ja to a new value of 0.0443 „i.e., DT
Ä65°C….

Fig. 17 For the flow situations described in Fig. 16 and x eÄ25.0, the above
figure reports the representative wall heat flux values q̄ w9 „x …, in W, as a func-
tion of x with 0 ÏxÏx e

Fig. 18 For the flow situations described in Figs. 16–17 and x eÄ30.0, the
above figure reports the values of dsteady „x …
Y 2004 Transactions of the ASME
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enceDT. This thickening occurs in a way so as to concurren
meet the requirements of increased heat flux values~see Fig. 17!
and increased liquid flow rates.

Streamline patterns for the flow, effect of shear over gravity
tilt angle a is reduced from its 90 deg value, comparisons w
experimental results for condensing flow simulations for a ho
zontal channel, effects of surface tension, effects of micrograv
negligible Marangoni effects, effects of fluctuations on the me
etc., are not discussed here but are reported in Liang et al.@1#.

8 Conclusions

• An algorithm for a successful computational approach
pable of accurate simulation of unsteady wavy interface c
densing flows has been presented.

• The ‘‘ellipticity’’ of the steady vapor flow equations and th
role of exit conditions for steady and unsteady simulatio
have been discussed.

• For unconstrained exit conditions and nearly incompress
vapor flows, an unsteady noise-free simulation method
identifying and obtaining thenatural andstablesteady solu-
tions has been presented and successfully used.

• The noise sensitivity of thestablesteady or quasi-steady so
lutions to ubiquitous minuscule bottom plate vibrations h
been demonstrated. To assist in quantitative noise-sensit
studies, a method for obtaining the underlyingcharacteristics
curvesand estimating ‘‘growth/damping’’ factors for interfa
cial disturbances has been presented.

• For design of smart condensers with actuators imbedded
the condensing surface, a new and hitherto unknown re
nance condition has been proposed, and its efficacy in
hancing wave energy and heat transfer rates~up to 10% or
more! has been demonstrated.

• For unconstrained exit situations, some trends of thestable
steady or quasi-steady solutions have been discussed.
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Appendix
The interface conditions that apply atH(x,y,t)5y2D(x,t)

50, involve values of flow variables at the interface that are
noted by a superscript ‘‘i.’’ The unit normal at any point on the
interface, directed from the liquid towards the vapor, is denoted
n̂ and is equal to¹H/u¹Hu. The unit tangent at any point on th
interface, directed towards increasingx, is denoted byt̂. Each
phase is modeled as a viscous and incompressible Newtonian
with stress tensorT52pI11SI whereSI5m I$(grad•vI)1(grad
•vI)

T%/2 and1 is the identity tensor.

• The surface velocityvs
i of a point on the interface (H50) at

time t is associated with this point’s movement to a ne
mapped position on the interface at timet1Dt. All such
mappings must be such that the normal component of thivs

i

is given by
vs

i
•n̂52~]H/]t !/u¹Hu. (A1)

• The tangential component of the vapor and liquid velocit
at the interface must be continuous, i.e.,

v1
i "t̂5v2

i "t̂. (A2)

• Ignoring normal component of¹ss and viscous stresses, th
normal component of momentum balance at a point on
interface is given by

p1
i 5p2

i 1ṁ2~1/r221/r1!1s¹s"n̂2¹ss"n̂1~S1
i 2S2

i !n̂"n̂

>p2
i 1ṁ2~1/r221/r1!2~sDxx!/@11Dx

2#2/3. (A3)
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• The tangential component of momentum balance at any p
on the interface, for nearly constant surface tensions, re-
duces to

S1
i n̂"t̂5S2

i n̂"t̂1¹ss"t̂>S2
i n̂"t̂. (A4)

• The mass fluxesṁVK and ṁLK as determined by kinematic
restrictions imposed by interfacial values of vapor and liqu
velocities are

ṁVK[2r2~v2
i 2vs

i !"n̂ and ṁLK[2r1~v1
i 2vs

i !"n̂. (A5)

• The energy balance at a point on the interface impose
restriction on the interfacial mass fluxṁEnergy, and this is
given by

ṁEnergy51/hf gF $k1¹T1u i "n̂2k2¹T2u i "n̂%1
ds

dt U
s

1
1

2
ṁ$uv1

i 2vs
i u22uv2

i 2vs
i u2%

1$S1
i n̂"~v1

i 2vs
i !2S2

i n̂"~v2
i 2vs

i !%G
>1/hf gFk1

]T1

]n U i

2k2

]T2

]n U i G . (A6)

• Mass balance at any point on the interface requires sin
valuedness of the interfacial mass flux. That is

ṁLK5ṁVK5ṁEnergy[ṁ. (A7)

• To account for the effects of nonzero interfacial mass fluxṁ,
the interfacial pressuresp1

i and p2
i ~along with their differ-

enceDpi[p1
i 2p2

i ! that appear in Eq.~A3! are often consid-
ered to be controlled by nonequilibrium thermodynamic
fects that are represented by the functions:p1

i [p1 n-eq
i (T_1

i )
and p2

i [p2 n-eq
i (T 2

i ), whereT 1
i is the liquid side interfacial

temperature andT 2
i is the vapor side interfacial temperatur

In the limit of zero mass fluxṁ, these thermodynamic pres
sures reach their equilibrium thermodynamic values and
denoted asp1

i [psat(T 1
i ) andp2

i [psat(T 2
i ), wherepsat is the

inverse function of the saturation temperatureTs(p). Respec-
tively denoting the non-equilibrium and equilibrium values
the interfacial pressure differences as (Dpi)n-eq and (Dpi)sat,
it is common to seek or model a function f such that
(Dpi)n-eq5 f $(Dpi)sat,ṁ%, wheref, be it explicit or implicit
in form, allows the two pressure differences to become
same for zero mass fluxṁ. It is common tomodel f by
considerations~see, e.g., Plesset and Prosperetti@44# and Sec-
tion 4.5 of Carey@37#! involving kinetic theory of gas for the
vapor phase, the concept of accommodation coefficients,
The assumption that use of either (Dpi)n-eq or (Dpi)satdo not
significantly affect the value ofDT i[Ts(p2

i 1Dpi)2Ts(p2
i )

is well known and well justified in the present context whe
significantly larger thermal resistance is offered by the th
condensate at points away fromx;0 ~see Section 4.5 of
Carey@37# and Son and Dhir@22#!. Furthermore, the compu
tations in this paper also show that the solution further dow
stream is not affected by the nature of the singular solution
x;0 and computed values in this zone always satisfyDT i

[Ts(p2
i 1Dpi)2Ts(p2

i )>0— in the sense thatDT i!DT,
whereDT is the number defined in Eq.~1!. Therefore, under
negligible interfacial resistance approximation, the interfac
temperature values satisfy:

T 1
i >T 2

i 5Ts~p2
i !. (A8)

• The term@t# on the right side of Eq.~5! is given by
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@ t#5H m2

m1

]v2

]x U i

2
]v1

]x U i J 1
2dx

@12dx
2#

H ]u1

]x U i

2
]v1

]y U i J
2

2dx

@12dx
2#

m2

m1
H ]u2

]x U i

2
]v2

]y U i J . (A9)
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Three-Dimensional Instabilities in
Flow Past a Rotating Cylinder
Flow past a spinning circular cylinder placed in a uniform stream is investigated
three-dimensional computations. A stabilized finite element method is utilized to solv
incompressible Navier-Stokes equations in the primitive variables formulation. The
nolds number based on the cylinder diameter and freestream speed of the flow is 20
nondimensional rotation rate,a, (ratio of the surface speed and freestream speed) is 5
is found that although the two-dimensional flow fora55 is stable, centrifugal instabili-
ties exist along the entire span in a three-dimensional set-up. In addition, a ‘‘no-s
side-wall can result in separation of flow near the cylinder ends. Both these effects le
a loss in lift and increase in drag. The end conditions and aspect ratio of the cylinder
an important role in the flow past a spinning cylinder. It is shown that the Prandtl’s li
on the maximum lift generated by a spinning cylinder in a uniform flow does
hold. @DOI: 10.1115/1.1631032#
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1 Introduction
One of the earliest experiments for flow past a rotating cylin

were carried out by Prandtl@1#. He argued that the maximum lif
generated by a spinning cylinder in a uniform flow is limited
4p (;12.6). He also studied the effect of end conditions a
aspect ratio. An increase in the overall lift coefficient was o
served by utilizing end plates and using cylinders of higher asp
ratio. Since then, various studies have been conducted.

Recently, two-dimensional simulations for flow past a rotati
cylinder have been presented by Mittal and Kumar@2#. The Rey-
nolds number based on the cylinder diameter and freestr
speed is 200 and various spin rates (0<a<5) are considered
Here,a is the nondimensional rotation rate of the cylinder and
given asa5av/U whereU is the freestream speed andv is the
angular velocity of the cylinder about its own axis. For 0<a
<1.9 a von Karman street is seen in the wake behind the cylin
For nonzeroa the vortex street is deflected away from the cen
line. The wake becomes narrower and the Strouhal number
vortex shedding decreases with increase in rotation rate. Vo
shedding ceases beyonda;1.9. At high rotation rates it is see
that the lift for purely two-dimensional flows can be very larg
The values of the lift coefficient obtained in the present wo
exceed the maximum limit based on the arguments of Prandtl.
flow remains stable for 1.91<a<4.34 but looses its stability
again, fora;4.35. For this rotation rate, unlike the shedding f
lower a, the cylinder sheds vortices of counterclockwise se
only from its lower surface. Vortex shedding continues for high
spin rates and the flow becomes stable, yet again, fora>4.8. This
was confirmed by carrying out a linear stability analysis of t
flow. A possible cause for this interesting behavior of flow stab
ity was also proposed.

One of the issues that remains unresolved is the maximum
that can be generated by a rotating cylinder placed in a unif
flow. Researchers in the past have reported varied results on
magnitude of lift that can be generated via the Magnus eff
Goldstein@3#, based on intuitive arguments by Prandtl, sugge
that the maximum value of the lift coefficient that can be gen
ated by a spinning cylinder is 4p (;12.6). The measurement o

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, December
2002; final revision, April 21, 2003. Associate Editor: T. E. Tezduyar. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, C
Department of Mechanics and Environmental Engineering, University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication in the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
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lift on a rotating cylinder is quite difficult due to the limitation
posed by the rotation of the cylinder. Tokumaru and Dimotakis@4#
devised a method to estimate the mean lift acting on a rota
cylinder in uniform flow. It is based on an inviscid point-vorte
model and the transverse velocity that is measured, experim
tally, ahead of the cylinder. Their results for Re53.83103 show
that Prandtl’s limit on lift coefficient (CLmax

54p) can be ex-
ceeded. For example, fora510 and a cylinder with span to di
ameter ratio of 18.7, they report an estimated lift coefficient tha
more than 20% larger than this limit. Further, the trend of resu
suggests thatCL can made larger for higher rotation rates and
taking cylinders of larger aspect ratio. They have suggested
perhaps it is the unsteady effects that weaken Prandtl’s hypoth
and that the three-dimensional/end effects are responsible for
ering the value of lift coefficient that could be achieved in a pur
two-dimensional flow. However, Chew et al.@5# have reported
that their two-dimensional computations are in agreement w
Prandtl’s postulate. They find that for Re51000, the estimated
mean lift coefficient approaches asymptotic values with incre
in a. At a56 they predict a mean lift coefficient of 9.1. Glaue
@6# proposed a solution for a cylinder spinning at high rotati
rates where the separation is suppressed. The solution of the
in the boundary layer is obtained in the form of a power series
an expression for the circulation on the cylinder is obtain
Glauert found that Prandtl’s limit can be exceeded and that
circulation increases indefinitely witha. The assumed model fo
the flow is valid only for those values ofa when the flow sepa-
ration is suppressed.

Most of the other investigations have been limited toa
<3.25. Chen et al.@7# computed flow for Re5200 and a
<3.25. Their computation fora53.25 does showCL whose in-
stantaneous value exceeds 4p, marginally. However, they repor
results only fort<24. Computations by Badr et al.@8# for a53
and Re51000 are limited tot<22. At t522 CL is 8.8, approxi-
mately, and the trend of their results suggest higherCL for larger
times. The drag coefficient,CD , reaches almost a steady-sta
value of 5.2. The mean values forCD andCL for the fully devel-
oped flow reported by Chew et al.@5#, for a53, are 2.8 and 8.7,
respectively. Recently, Chou@9# has also reported computation
results for this flow problem. The time histories ofCD and CL
from his computations, for Re51000 anda53, match quite well
with those from Badr et al.@8# for early times. However, fort
.5, he reports much larger values ofCL and smaller values of
CD . It is interesting to observe that the streamline patterns fr
all the three sets of computations are quite similar and are in g
agreement with the flow visualization results. Yet, the discrepa
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in the time histories of the aerodynamic coefficients is quite lar
Our results fora55 for various Re, reported in earlier article
Mittal @10,11# result in large values ofCL . Recently, Stansby and
Rainey@12# have reported computational results for Re5200 and
0<a<5. They observe an unsteady flow for lower rotation rat
For high rotation rates a steady flow with very largeCL is real-
ized.
90 Õ Vol. 71, JANUARY 2004
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Results are presented for three-dimensional computations p
finite cylinder for various aspect ratios and with different e
conditions. One of the objectives of the computations is to inv
tigate the existence of three-dimensional instabilities in the fl
for a55. We also wish to study the effect of end conditions. It h
been observed in experiments that the use of end plates can le
a substantial increase in lift generated by the cylinder. The pre
Fig. 1 ReÄ200, aÄ5 flow past a rotating cylinder: closeup view of the vor-
ticity „left … and magnitude of velocity „right … for the fully developed two-
dimensional flow. The freestream flow is from left to right and the cylinder is
rotating in a counterclockwise sense. Solid lines denote positive while the
broken lines show negative vorticity.

Fig. 2 ReÄ200, aÄ5 flow past a rotating cylinder: time histories of the lift
and drag coefficients for two-dimensional and three-dimensional computa-
tions with cylinders of various aspect ratios „AR …
Transactions of the ASME
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Fig. 3 ReÄ200, aÄ5 flow past a rotating cylinder for various aspect ratios:
variation of the spanwise averaged pressure coefficient on the surface of
cylinder
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computations show that flow for Re5200 anda55 is associated
with centrifugal instabilities that exist along the span of the sp
ning cylinder. Further, in the presence of a ‘‘no-slip’’ side wall th
flow near the wall separates leading to unsteadiness in the w
As expected, the effect is more drastic for low aspect-ratio cy
ders. It is the end wall and aspect-ratio effects that limit the
generated via Magnus effect.

The outline of the rest of the article is as follows. We begin
reviewing the governing equations for incompressible fluid fl
in Section 2. The problem setup is defined along with the bou
ary and initial conditions. The SUPG~streamline-upwind/Petrov
Galerkin! and PSPG~pressure-stabilizing/Petrov-Galerkin! stabi-
lization technique,@13#, is employed to stabilize our computation
against spurious numerical oscillations and to enable us to
equal-order-interpolation velocity-pressure elements. Sectio
describes the finite element formulation incorporating these st
lizing terms. In Section 4 computational results for flows invo
ing rotating cylinder are presented and discussed. In Section
few concluding remarks are made.

2 The Governing Equations

Let V,Rnsd and (0,T) be the spatial and temporal domain
respectively, wherensd is the number of space dimensions, and
anics
in-
e
ake.
in-
lift

y
w

nd-

s
use

3
bi-

v-
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s
et

G denote the boundary ofV. The spatial and temporal coordinate
are denoted byx and t. The Navier-Stokes equations governin
incompressible fluid flow are

rS ]u

]t
1u"“u2fD2“"s50 on V for ~0,T!, (1)

“"u50 on V for ~0,T!. (2)

Herer, u, f, ands are the density, velocity, body force, and th
stress tensor, respectively. The stress tensor is written as the
of its isotropic and deviatoric parts:

s52pI1T, T52m«~u!, «~u!5
1

2
~~“u!1~“u!T!,

(3)

wherep and m are the pressure and coefficient of dynamic v
cosity. Both the Dirichlet and Neumann-type boundary conditio
are accounted for, represented as
JANUARY 2004, Vol. 71 Õ 91
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Fig. 4 ReÄ200, aÄ5 flow past a rotating cylinder: isosurfaces of the spanwise com-
ponent of vorticity „Ä0.4… for various aspect ratios. The top frame corresponds to the
simulation with slip walls as the end condition. For the other three frames, the upper
wall is a no-slip wall.
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u5g on Gg , n"s5h on Gh , (4)

whereGg andGh are complementary subsets of the boundaryG.
The initial condition on the velocity is specified onV:

u~x,0!5u0 on V, (5)

whereu0 is divergence-free.
The force and moment coefficients are computed by carrying

integration, that involves the pressure and viscous stresses, ar
the circumference of the cylinder:

CD5
1

1

2
rU22aL

E
Gcyl

~sn!•nxdG, (6)

CL5
1

1

2
rU22aL

E
Gcyl

~sn!•nydG. (7)

Herenx andny are the Cartesian components of the unit vecton
that is normal to the cylinder boundaryGcyl , a is the radius of the
cylinder, L its spanwise length,U the freestream speed, andCD
andCL are the drag and lift coefficients, respectively.

The various parameters that influence this flow are Re,a, AR
and end conditions. The Reynolds number is defined as
52Ua/n wherea is the radius of cylinder,U the freestream spee
and n is the coefficient of kinematic viscosity of the fluid. Th
rotation rate of the cylinder is nondimensionalized with respec
the freestream speed and is given asa5av/U where v is the
angular velocity of the cylinder about its own axis. The asp
ratio, AR, of the cylinder is the ratio of its spanwise length a
diameter. All the results presented in this article are with respec
the non dimensional timet5Ut/a, wheret is the actual time.
UARY 2004
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3 Finite Element Formulation
Consider a finite element discretization ofV into subdomains

Ve, e51,2,. . . ,nel , wherenel is the number of elements. Base
on this discretization for velocity and pressure, we define the fin
element trial function spacesS u

h andS p
h , and weighting function

spacesV u
h andV p

h . These function spaces are selected, by tak
the Dirichlet boundary conditions into account, as subsets
@H1h(V)#nsd and H1h(V), where H1h(V) is the finite-
dimensional function space overV. The stabilized finite elemen
formulation of Eqs.~1!–~2! is written as follows: finduhPS u

h and
phPS p

h such that;whPV u
h , qhPV p

h

E
V

wh
•rS ]uh

]t
1uh

•“uh2fDdV1E
V

«~wh!:s~ph,uh!dV

1E
V

qh
“"uhdV1(

e51

nel E
Ve

1

r
~tSUPGruh

•“wh1tPSPG“qh!.

FrS ]uh

]t
1uh

•“uh2fD2“"s~ph,uh!GdVe

1(
e51

nel E
Ve

tLSIC“"whr“"uhdVe5E
Gh

wh
•hhdG. (8)

The variational formulation given by Eq.~8!, includes certain
stabilization terms added to the basic Galerkin formulation to
hance its numerical stability. the first three terms and the rig
hand side constitute the Galerkin formulation of the problem. D
Transactions of the ASME
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Fig. 5 ReÄ200, aÄ5, ARÄ15 flow past a rotating cylinder with a no-slip end
wall: isosurfaces of the spanwise component of vorticity „Ä0.4… at various time
instants following an impulsive start
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tails on the formulation can be found in references@13,14#. The
stabilization terms involve the use of a characteristic ‘‘elem
length.’’ In the present computations this length is defined as
minimum edge length of an element,@13#.

4 Results and Discussions
All the results in this article are for the Re5200 anda55 flow.

4.1 Two-Dimensional Computations. The cylinder resides
in a rectangular domain and a flow velocity corresponding to
rotation rate,a is specified on the cylinder surface. The rotation
in the counterclockwise direction. A freestream value is assig
for the velocity at the upstream boundary while, at the dow
stream boundary, a Neumann-type boundary condition for the
locity is specified that corresponds to zero viscous stress ve
On the upper and lower boundaries, the component of velo
hanics
nt
the

the
is
ed
n-
ve-
tor.
ity

normal to and the component of stress vector along these bo
aries is prescribed zero value. The initial condition for all t
computations is an impulsive start, i.e., att50 the velocity is
assigned value that corresponds to potential flow past a statio
cylinder. The outer boundaries are located at 100D from the cen-
ter of the cylinder.

Figure 1 shows the fully developed solution obtained from
two-dimensional computations. Clockwise vorticity~negative! on
the upper surface and counterclockwise vorticity~positive! on
lower surface of the cylinder is generated. The high rotation r
of the cylinder causes this vorticity to move outward as tigh
wound spirals. The stability of this flow has been ascertained
linear stability analysis,@2#, and also by computing the flow for a
eccentric cylinder@10#. Detailed results fora55 and other rota-
tion rates have been presented in Mittal and Kumar@2#.
JANUARY 2004, Vol. 71 Õ 93
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4.2 Three-Dimensional Computations. Very large lift co-
efficients can be obtained for two-dimensional flows past a cy
der for high rotation rates. Tokumaru and Dimotakis@4# have
reported a strong dependence of the lift coefficient on the as
ratio of the cylinder~ratio of spanwise length to diameter! and its
end conditions. To study the same, three-dimensional comp
tions for flow past a rotating cylinder with an impulsive start a
carried out for various end conditions and cylinder span-
diameter ratio. Kalro and Tezduyar@15# used a very similar finite
element formulation to study flow past a nonspinning cylinder

In the three-dimensional simulations the cylinder extends al
the entire span of the computational domain. One of the s
boundaries, that intersects with the cylinder, is assumed to
‘‘no-slip’’ wall for the velocity while symmetry conditions are
imposed on the other side wall. These boundary conditions si
late a rotating cylinder, without end plates, placed in a tunn
Only one half of the tunnel is simulated. Mittal@16# investigated
the flow past low aspect-ratio nonspinning cylinders in the pr
ence of wall. The aspect ratios considered in the present work
5, 10, and 15. A computation forAR55 with ‘‘slip’’ side walls is
also carried out to assess the effect of end conditions. The fi
element mesh for the computation withAR515 consists of
284,199 nodes and 270,000 hexahedral elements. At each
step approximately 1.1 million nonlinear equations are solved
eratively. The time histories of the lift and drag coefficients f
these simulations are shown in Fig. 2 along with the results fr
two-dimensional computations. It is observed that both the
conditions and the cylinder aspect ratio have a significant imp
on the aerodynamic coefficients. Compared to the steady-s
two-dimensional flow, the ‘‘no-slip’’ side wall results in lower lif
and higher drag. The lift coefficient reduces with the decreas
aspect ratio of the cylinder. An increase in the aspect ratio of
cylinder reduces the effect of the ‘‘no-slip’’ wall. With the ‘‘slip’
end conditions on the velocity on side walls, fairly high lift an
low drag coefficients are obtained with a low aspect-ratio cylin
(AR55). This study brings out the effect of end conditions
such flows. A similar observation was reported by Tokumaru a
Dimotakis @4#.

Shown in Fig. 3 are the spanwise averagedCp distributions for
the various three-dimensional computations at approximatet
550. It is well known that for a stationary cylinder, the surfa
pressure distribution for the viscous and potential flows are qu
tatively different. This is attributed to the flow separation in t
case of a real fluid. However, for a rotating cylinder spinning
a55, it is interesting to observe that the pressure distributions
the two-dimensional and potential flows are very similar, qual
tively. As expected, compared to the two-dimensional flow,
three-dimensional effects tend to reduce the suction generate
the cylinder. Among all the cases, theCp variation for theAR
55 case with slip walls is the closest to that from the tw
dimensional computations. The peak suction decreases as thAR
is reduced. It is also observed that the location of the peak v
of Cp moves towards the front of the cylinder asAR is reduced
and end effects become important.

Figure 4 shows the isosurfaces for the spanwise compone
the vorticity for various cases at approximatelyt550. In all the
cases centrifugal instabilities, such as those observed in flows
tween two concentric rotating cylinders, exist along the span
the spinning cylinder. The spanwise wavelength of these cent
gal instabilities is, approximately, one cylinder diameter which
similar to that observed in Taylor instabilities. In addition, inte
action of the rotating cylinder with the boundary layer on t
‘‘no-slip’’ side wall leads to flow separation. Both these effec
contribute to a loss in lift and increase in drag. The effect of
side wall reduces as one moves away from it. For example,
AR515, the flow on the lower half of the span appears qu
similar to theAR55 flow with slip walls. Therefore, for a cylin-
der with very large aspect ratio the aerodynamic coefficients m
be quite close to those for the two-dimensional flows. Howev
94 Õ Vol. 71, JANUARY 2004
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the three-dimensional centrifugal instabilities would still b
present and lead to loss of lift and increase in drag, compare
the two-dimensional flow.

Figure 5 shows the isosurfaces for spanwise vorticity at vari
time instants forAR515. It is interesting to note that, as was th
case with two-dimensional computations, only one spanwise
tex ~the startup vortex! is shed fora55. The development of the
centrifugal instabilities along the cylinder span can also be
served in the figure. Their initial development seems to be in
gated by the end conditions. The shear generated by the boun
layer on the side wall is also responsible for the twisting of t
startup vortex. The end effects can be eliminated/minimized
using end plates. Prandtl observed a value ofCL;3.2 for a cyl-
inder of AR54.7 and at Re55.23104 ~as reported by Tokumaru
and Dimotakis@4# and Goldstein@3#!. However, on using end
plates of diameter 1.7 times the cylinder diameter, he obser
that the value of the lift coefficient goes up to, approximately,

Very high lift coefficients are observed for high rotation rates
the cylinder. The present results support the observation by To
maru and Dimotakis@4# that Prandtl’s limit does not hold for large
aspect-ratio cylinders. It certainly does not hold for the tw
dimensional flows. The lift coefficient from the two-dimension
computations approach the values from the three-dimensi
setup for large aspect-ratio cylinders.

5 Concluding Remarks
Three-dimensional flow past a cylinder, rotating in the count

clockwise sense, and placed in uniform stream (Re5200) has
been analyzed for a spin rate corresponding toa55. A stabilized
finite element method is utilized to solve the incompressi
Navier-Stokes equations in the primitive-variables formulation

It is found that the aspect ratio of the cylinder~spanwise length/
diameter! and its end conditions play an important role in dete
mining the amount of lift generated by the rotating cylinder. Wh
the two-dimensional flow for a55 is stable, the three-
dimensional flow is associated with centrifugal instabilities. The
instabilities are observed even for the case with ‘‘slip walls’’ a
are quite similar to those observed in flow between rotating c
inders. The presence of a no-slip side wall~no end plates! results
in flow separation. Both of these effects contribute to loss of
and increased drag as compared to a purely two-dimensional
It is found that very large lift coefficients can be realized for lar
aspect-ratio cylinders via the Magnus effect and that Prand
limit does not hold.
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Existence of Critical Wavelength
for Gap Nucleation in
Solidification on a Rigid Mold
Previous theoretical models of pure metal solidification on a patterned mold sur
neglected either the thermal capacitance of the solidifying shell material (which is eq
lent to assume that thermal diffusivity is infinitely large) or interfacial coupling betw
the thermal and mechanical fields along the mold-shell interface. In the present w
however, we examine the combined effects of thermomechanical coupling at the
shell interface and non-negligible thermal capacitance (or finite thermal diffusivity) of
solidifying shell material during solidification of pure aluminum and iron shells on
rigid, perfectly conducting mold. It is assumed that the mold surface has a sinus
corrugation with a small aspect ratio, and the surface is perfectly wet by the molten m
which is initially at its melting temperature. The undulatory geometry of the mold sur
lead to nonuniform heat extraction and hence initiated a nonuniform evolving disto
of the metal shell. This distortion produces a critical wavelength that corresponds to
situation where both the contact pressure and its time derivative simultaneously f
zero. This critical mold surface wavelength serves as a cutoff between those wavel
that lead to gap nucleation in the troughs and those that lead to gap nucleation in
crests. The conditions for gap nucleation in the mold surface troughs are examined
a corresponding increase in contact pressure at the crests signals the possibility
growth instability in the metal shell at later stages in the process. Gap nucleation ti
associated mean shell thicknesses, and critical wavelengths are calculated for pur
minum and pure iron shells under identical process conditions. It is found that the
shell nucleates gaps faster than an aluminum shell, with the associated critical w
lengths of iron being substantially larger than those for aluminum.
@DOI: 10.1115/1.1641065#
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1 Introduction
In the casting process, the mold surface topography has a g

influence on cast surface quality, microstructure, and thickn
uniformity, @1–3#. Therefore, considerable amount of effort h
been directed towards the understanding of the effect of a
terned or ‘‘textured’’ mold surface on metallurgical structure
the cast product, where quality is either created or lost. Exp
mentalists have addressed the issue of shell thickness
uniformity with a number process-related enhancements. On
the most common enhancements involves the application of a
cific mold surface topography~see@4–12#!. For example, periodic
‘‘groove’’ topographies that mimic the extended surface of a
diator, and hence allow for multidirectional heat flow at the mo
shell interface, have been routinely investigated with empiri
methodologies. A qualitative observation made by most of th
authors is that ingot contraction can be delayed due to the re
tion in interfacial heat extraction. This leads to more uniform s
face features, improved microstructural properties, and more
form shell thickness. A similar observation can be made about
matte finish although the contact conditions differ due to wett
characteristics of the molten metal. Unfortunately, at present, th
are no design criteria that might suggest how mold surface top
raphies can be ‘‘tuned’’ to a specific casting process and mate

Based upon existing experimental works on the mold surf

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, January 3, 20
final revision, July 16, 2003. Associate Editor: M.-J. Pindera. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
96 Õ Vol. 71, JANUARY 2004 Copyright ©
reat
ess
s
at-

of
eri-
on-
of

spe-

a-
d-
al
se
uc-
r-
ni-
the
ng
ere
og-
rial.
ce

topography effect on shell growth uniformity, Hector et al.@13#
developed a model of pure metal solidification on a rigid, p
fectly conducting mold with a sinusoidal surface of low aspe
ratio. The total contact pressure along the mold-shell interface
calculated. Irregular distortion of the shell due to nonuniform h
extraction along mold-shell interface led to gap nucleation o
the contact pressure dropped to zero. It was found that gap
ways nucleate at the lowest points of the surface troughs, w
the evolving distortion of the shell increased the contact press
beyond the hydrostatic pressure at the highest points of the cr
They also found that gap nucleation time and the mean s
thickness were influenced by the topography wavelength such
gap nucleation was delayed or even prevented over the time fr
of interest with increasing wavelength. Yigit and Hector@14,15#
extended the theoretical model in@13# to include a deformable
mold of finite thickness. The mold surfaces were again sinuso
with low aspect ratios. The contact pressure at the lowest poin
that surface of the mold in contact with the solidifying shell w
calculated for systems where the mold and shell materials w
combinations of pure aluminum, copper, iron, and lead. The t
oretical results lead to the suggestion that for a given mold-s
material combination, a wavelength selection process occurs s
a band of wavelengths for which the contact pressure always
to zero at the lowest points of the troughs was identified. A ba
is delimited by two ‘‘critical wavelengths’’ which were defined a
those wavelengths for which the interface pressure and its t
derivative simultaneously fall to zero at positions of extreme s
face curvature~i.e., the troughs!. At the same time, the contac
pressure increases at the surface crests. This signals the onse
possible growth instability in which the initial shell nonuniformit
becomes exaggerated to improve local heat transfer above
highest points on the mold surface. Wavelengths that lie outsid
the band lead to gap nucleation at the highest points of the m
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surface, i.e., the crests, with a simultaneous increase in con
pressure in the troughs. The time to gap nucleation was lar
dictated by the mold-shell material combination and its associa
distortivity ratio which is indicative of the extent to which th
materials deform at the interface,@16#. The bandwidth was larges
for the iron-copper shell-mold combination. Much greater c
would therefore have to be exercised in the selection of a m
wavelength. On the other hand, the bandwidths were smalle
those cases where a less distortive shell material~such as copper!
solidified on a more distortive mold material~such as lead!, or if
the distortivity ratio of the two materials is near unity. The ban
widths predicted for solidification of a more distortive shell on
less distortive mold generally exceed those for a less distor
shell solidifying on a more distortive mold irrespective of the s
of a selected process parameter. Yigit and Hector@17# recently
reformulated the model presented in@13# to include the thermal
diffusivity of the solidifying shell material. The thermal and m
chanical fields were not fully coupled at the mold-shell interfa
since the thermal stress field is controlled by the temperature
but not vice versa. The mold was assumed to be a rigid, per
conductor of heat, and the shell solidifies from the molten me
due to a prescribed constant heat flux at the mold-shell interf
Heat extraction through the mold-shell interface is mitigated
the sinusoidal geometry of the mold surface, and this leads to
evolution of a nonuniform stress field in the shell. The cont
pressure profile at the shell/asperity interface, which is indica
of shell distortion due to the mold surface geometry, was obtain
The effects of the mold wavelength and shell thermal diffusiv
on the contact pressure, temporal and spatial evolution of
nucleation at the mold-shell interface, and mean shell thickn
were examined in detail. It was subsequently concluded tha~i!
increasing the thermal capacitance~or decreasing the thermal dif
fusivity! of the shell leads to a decrease in the contact pres
perturbation due to nonuniform heat extraction at the sinuso
mold surface.~ii ! The diffusivity effect is negligible for small
wavelengths.~iii ! An increase in the mold surface waveleng
increases the time to gap nucleation~or the time when the mold-
shell contact pressure drops to zero! to form a separation.~iv! For
a given mold wavelength and mean liquid pressure, an increas
the thermal capacitance of the shell leads to an increase in
time to gap nucleation.~v! For a given mold wavelength and mea
liquid pressure, an increase in the thermal capacitance of the
leads to a thicker shell at any time. As in@13#, it was again found
that gaps always nucleate at the lowest points of the sur
troughs. Yigit and Hector@18# very recently reconsidered th
problem developed in Yigit and Hector@14,15# removing the re-
striction that heat extraction through the mold-shell interface
curs across a pressure-dependent thermal contact resistance
role of interfacial coupling between the thermal and mechan
fields along the mold-shell interface and the mechanical prope
of the mold was examined via qualitative comparisons with
results presented in Yigit and Hector@14,15#. Perhaps the mos
significant feature of uncoupled physics was that the distortion
the mold material plays no role in the evolution of the cont
pressure and the time and location of gap nucleation due to
tortion of the shell material as it grows from the melt. Howev
when the thermal and mechanical problems are coupled throu
pressure-dependent thermal contact resistance, and the mo
modeled as finite and deformable, the mold and shell interfa
distortions interact to produce two critical wavelengths as d
cussed earlier. Hence, it was concluded that in order to theo
cally predict the critical wavelengths, it is necessary to model
mold as finite and deformable and to couple the thermal and
chanical problems at the mold-shell interface as in@14,15#. And
yet, the critical wavelengths will not be predicted when a pu
metal with infinitely large thermal diffusivity solidifying on a
rigid, perfectly conducting mold with or without interfacial cou
pling as demonstrated by Hector et al.@13,19#. However, neither
of these studies examined the combined effects of interfacial c
Journal of Applied Mechanics
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pling between the thermal and mechanical fields along the m
shell interface and finite thermal diffusivity of the solidifying she
material. Hence, the importance of the combined effects of th
momechanical coupling and nonzero~non-negligible! thermal ca-
pacitance of the shell material in solidification on a rigid mold h
not been thoroughly delineated. For this reason, we extended
model presented in@17# to include coupling along the mold-she
interface through a pressure-dependent thermal contact resist
This requires that the contact resistance be a functional of
contact pressure and hence can be smeared out along the m
shell interface as a continuous function. This is a continuum r
resentation of imperfect contact between the highest freque
components of the shell and mold surfaces due to microsc
gaps upon initial fluid wetting: It does not alter apparent wetti
of the macroscale topography. Hence, the present model is a d
and logical continuation of the works by Hector et al.@13# and
Yigit and Hector@17#, in that we coupled the thermal and me
chanical fields at the mold-shell interface and included the ther
diffusivity of the solidifying shell material.

The effects of the mold wavelength and shell thermal diffus
ity on the contact pressure, temporal and spatial evolution of
nucleation at the mold-shell interface, and mean shell thickn
are examined for pure aluminum and iron shells. The impac
selected process parameters on the existence of the critical w
length is explored through variation of the mean pressure of
molten metal, the pressure sensitivity of the thermal contact re
tance, the amplitude of the mold surface, and the mean con
resistance. These results are qualitatively compared with com
rable results presented in Yigit and Hector@15#. Finally, a discus-
sion of the importance of surface wetting effects on the evolut
of the shell thickness is presented.

2 Formulation of the Thermal Problem
A quiescent bath of molten liquid is assumed to perfectly w

the sinusoidal surface of a rigid mold at initial time as shown
Fig. 1. Molten material is initially at its melting temperature,Tm .
The instantaneous location of the solidification front~relative to
the mold surface! is given bys(x,t). All material properties are
assumed to be constant and independent of temperature. Re
to a planar reference, the mold surface is located aty
5a cos(2px/l) where a is the surface amplitude andl is the
wavelength or center-to-center spacing between adjacent cr
The temperature field in the solidified shell,T(x,y,t) is governed
by the heat conduction equation

¹2T5
1

k

]T

]t
(1)

subject to the following boundary and initial conditions:

T~x,s,t !5Tm (2)

Fig. 1 Pure metal shell solidifying on a sinusoidal mold
surface
JANUARY 2004, Vol. 71 Õ 97
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]T

]y
~x,s,t !5Lr

]s

]t
~x,t ! (3)

Q~x,t !5K
]T

]y
~x,y,t !5

T~x,y,t !2Tmold

R
at y5 l e cos~mx!

(4)

s~x,0!5 l e cos~mx! (5)

where l 5l/2p51/m and e5a/ l is the mold aspect ratio. The
latter quantity is a convenient perturbation parameter since
assumee!1. Justification of this assumption is discussed in H
tor et al.@13#. Note thatk, K, L, andr, are the thermal diffusivity,
the thermal conductivity, the latent heat of fusion, and the den
of the solidified shell, respectively. Equation~2! states that freez-
ing front is isothermal at the melting temperature, while~3! de-
fines the energy balance between heat conducted away from
moving interface into the shell and the latent heat released du
solidification. Equation~5! implies that the thin shell is complian
to the sinusoidal mold surface at initial time. Heat extracti
Q(x,t) from the casting to the mold is opposed by a therm
contact resistanceR, defined by Eq.~4!. Tmold is the temperature
of the rigid mold, which can be taken to be zero without loss
generality.

Physical causes of the resistanceR include the presence of ai
gaps and inclusion materials of poor conductivity at the interfa
Experimental and theoretical investigations of the conduction
heat between conducting solids show that contact resistanc
very sensitive to the local contact pressureP(x,t), probably be-
cause increased contact pressure increases the proportion o
interface over which the solids are in intimate contact. The re
tanceR is therefore assumed to be a continuous and differentia
function of P, but no assumptions are made about the prec
nature of this function.

Note that Eq.~4! is more appropriately written as

n•¹T5
Q

K
(6)

wheren is the unit normal vector to the mold surface at any poi
However, the difference between Eqs.~4! and~6! can be shown to
beO(e2) ~this relies in part on the fact that the unperturbed so
tion is independent ofx!. A similar observation also applies to Eq
~3!. The following perturbation analysis will only keep track o
terms toO(e), and hence we may retain Eq.~4! without loss of
generality.

2.1 Perturbation of the Thermal Problem. When the
moving solid-liquid interface is a planey5s0(t), and tempera-
tures and stresses depend only ony, t, the problem has a simple
one-dimensional solution which is called the ‘‘zeroth-order’’ so
tion. However, if a very small spatial perturbation was introduc
into the mold temperature or the thermal resistanceR, the thermo-
mechanical coupling associated with the boundary condition~4!
might lead to unstable growth of an associated perturbation
temperature and stress fields. In particular, we assume the fol
ing forms for the temperature field,T(x,y,t), the casting
thickness, s(x,t), the heat flux Q(x,t) and thermal contac
resistanceR:

T~x,y,t !5T0~y,t !1T1~y,t !cos~mx!

s~x,t !5s0~ t !1s1~ t !cos~mx!
(7)

Q~x,t !5Q0~ t !1Q1~ t !cos~mx!

R~P~x,t !!5R01R1~P~x,t !!cos~mx!

where terms with suffix 1 are implicitlyO(e). We insert Eq.~7!
into Eq. ~1! and separate the zeroth-order and first-order gove
ing thermal equations. We then expand Eqs.~2!, ~3!, and~4! in a
Taylor series abouty5s0(t) andy50 toO(e), respectively. After
grouping terms corresponding to the zeroth-order and first-o
98 Õ Vol. 71, JANUARY 2004
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conditions, we separate expressions corresponding to the ze
order and first-order thermal problems, which are written
follows:

The Zeroth-Order Problem.

]2T0

]y2
~y,t !5

1

k

]T0

]t
~y,t ! (8)

T0~s0 ,t !5Tm (9)

Lr
ds0~ t !

dt
5K

]T0

]y
~s0 ,t ! (10)

Q0~ t !5K
]T0

]y
~0,t !5

T0~0,t !

R0
(11)

The First-Order Problem.

]2T1

]y2
~y,t !2m2T1~y,t !5

1

k

]T1

]t
~y,t ! (12)

s1~ t !
]T0

]y
~s0 ,t !1T1~s0 ,t !50 (13)

Lr
ds1~ t !

dt
5KF ]T1~s0 ,t !

]y
1s1~ t !

]2T0~s0 ,t !

]y2 G (14)

Q1~ t !5K
]T1

]y
~0,t !5

1

R0
H l e

]T0

]y
~0,t !1T1~0,t !

2
T0~0,t !

R0
R8P1~ t !J (15)

where we have used the following equation forR1 :

R1~P~x,t !!5R8P1~ t ! (16)

which comes from the Taylor series expansion

R~P~x,t !!5R~P0~ t !1P1~ t !cos~mx!! (17)

5R~P0!1R8~P0!P1~ t !cos~mx! (18)

and

R85
dR~P0!

dP
. (19)

3 Determination of the Stress Field
To determine the stress field, we will follow the procedure o

lined in @13#, noting, however, that in his case the simplificatio
k→` permitted the temperature field to be obtained in clos
form, whereas in the present problem it is determined numeric
and, therefore, is defined in discretized form. Since the analys
closely related to that in@13#, only the essential steps are pr
sented in the following derivations, readers being referred to@13#
for more details.

3.1 The Zeroth-Order Solution. Derivation of the zeroth-
order solution is readily available in@20#. We therefore summarize
only the final results:

sxx0
52p1

Ea

12n
@Tm2T0~y,t !#; syy0

52p; sxy0
50.

(20)

3.2 The First-Order Solution. We next consider the ther
moelastic problem corresponding to the first order tempera
field T1(y,t)cos(mx). A suitable particular solution for the stres
field can be defined in terms of a thermoelastic displacement
tential f ~see@21#!, where
Transactions of the ASME
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f5F f ~y,t !2
ea~11n!

m2~12n!
T0~0,t !sinh~my!Gcos~mx!. (21)

Equation~51! of @13# then requires thatf (y,t) satisfies the equa
tion

]2f ~y,t !

]y2
2m2f ~y,t !5

Ea

~12n!
T1~y,t !. (22)

Note that this equation must be satisfied for allt, and hence it is
essentially an ordinary differential equation for the functi
f (y,t) in which t appears only as a parameter. The first-ord
stress components corresponding to this potential are then
tained by substituting into Eqs.~52! of @13# in the form

sxx1

p 52F f 9~y,t !2
Eae

~12n!
T0~0,t !sinh~my!Gcos~mx! (23)

sxy1

p 52Fm f8~y,t !1
Eae

~12n!
T0~0,t !cosh~my!Gsin~mx!

(24)

syy1

p 5Fm2f ~y,t !2
Eae

~12n!
T0~0,t !sinh~my!Gcos~mx! (25)

where~8! denotes differentiation with respect toy. To satisfy the
boundary conditions of the problem, the particular solution m
be supplemented by a homogeneous solution which we prese
terms of the Airy stress functionF. Since the strain rates, but no
strain, are required to be compatible~see@22#!, it follows that the
time derivative ofF must be biharmonic and hence that the m
general function of the appropriate sinusoidal form inx is

F5$@a1~ t !1a2~ t !y#cosh~my!1@a3~ t !1a4~ t !y#sinh~my!

1g~y!%cos~mx! (26)

where the arbitrary time-dependent coefficientsa1(t)2a4(t) and
the arbitrary time-independent functiong(y) are to be determined
from the mechanical boundary conditions corresponding to
first-order problem.

Using Eqs.~23!–~26!, and ~69! of @13#, we can construct the
complete solution of the first-order problem in the form

sxx1
~x,y,t !5H Fa1~ t !1a2~ t !y1

2a4~ t !

m Gcosh~my!

1Fa3~ t !1a4~ t !y1
2a2~ t !

m Gsinh~my!

1
1

m2
@g9~y!2 f 9~y,t !#

1
Eae

m2~12n!
T0~0,t !sinh~my!J m2 cos~mx!

(27)

sxy1
~x,y,t !5H Fa1~ t !1a2~ t !y1

a4~ t !

m Gsinh~my!1Fa3~ t !

1a4~ t !y1
a2~ t !

m Gcosh~my!1
1

m
@g8~y!2 f 8~y,t !#

1
Eae

m2~12n!
T0~0,t !cosh~my!J m2 sin~mx! (28)
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syy1
~x,y,t !5H @a1~ t !1a2~ t !y#cosh~my!

2@a3~ t !1a4~ t !y#sinh~my!2g~y!1 f ~y,t !

2
Eae

m2~12n!
T0~0,t !sinh~my!J m2 cos~mx!.

(29)

Also, using the elastic constitutive relations for plane strain c
dition to determine the strain components and hence solve for
displacements, we obtain

u̇y1~x,y,t !52
11n

E H 2
1

m
ḟ 8~y,t !1F ȧ1~ t !1ȧ2~ t !y

2
12n

m
ȧ4~ t !Gsinh~my!1F ȧ3~ t !1ȧ4~ t !y

2
12n

m
ȧ2~ t !Gcosh~my!J m cos~mx! (30)

where~•! denotes differentiation with respect tot.
We now consider the boundary conditions corresponding to

first order problem. Since the perturbation on the stress fiel
small, we can expand the stress field in the vicinity of the me
solid/melt interface position,y5s0(t) in a Taylor series. Then the
first boundary condition in Eq.~49! of @13# can be written, drop-
ping the higher order terms in small quantities,s1 , s1 , as follows:

sxx0
~s0 ,t !1

]sxx0
~s0 ,t !

]y
s1~ t !cos~mx!1sxx1

~s0 ,t !52p.

(31)

Separating periodic and uniform terms and using Eq.~20!, we
obtain the boundary condition forsxx1

at y5s0(t), i.e.,

sxx1
~x,s0~ t !,t !5

Ea

12n
T08~s0 ,t !s1~ t !cos~mx!. (32)

The remaining boundary conditions in Eq.~49! of @13# can be
obtained by applying the same procedure as follows:

sxy1
~x,s0 ,t !50; syy1

~x,s0 ,t !50. (33)

The total shear stress on the mold surface given by Eq.~47! of
@13# may be written in terms of the planar reference via

snt~x,y,t !5sxy~cos2~f!2sin2~f!!1~syy2sxx!sin~f!cos~f!
(34)

which, using Eq.~55! of @13#, may be written as

snt~x,y,t !5sxy2~syy2sxx!e sin~mx! (35)

and we obtain

sxy1
~0,t !52

Eea

12n
@Tm2T0~0,t !#sin~mx! (36)

where we have retained terms toO(e). Also from Eq. ~48! of
@13#, we have

u̇y1

h ~0,t !50. (37)

Applying boundary condition~36!, using~28!, we can obtain

a3~ t !52
a2~ t !

m
1

1

m
@ f 8~0,t !2g8~0!#2

Eae

m2~12n!
Tm .

(38)

Application of Eq.~37! gives
JANUARY 2004, Vol. 71 Õ 99
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a3~ t !5
122n

m
a2~ t !. (39)

Solving the last two equations together, we get

a2~ t !5
f 8~0,t !

2~12n!
2

EaeTm

2m~12n!2
(40)

a3~ t !5
~122n! f 8~0,t !

2m~12n!
2

~122n!EaeTm

2m2~12n!2
(41)

where we have imposed arbitrary conditiong8(0)50. Substitut-
ing for the stress components from Eqs.~27!–~29! into the re-
maining boundary conditions~32!, ~33!, we obtain the equations

cosh~ms0!a1~ t !1F 2

m
cosh~ms0!1s0 sinh~ms0!Ga4~ t !

1
1

m2
g9~s0!

5
1

m2
f 9~s0 ,t !2

EaeT0~0,t !

m2~12n!
sinh~ms0!

1
Ea

m2~12n!
T08~s0 ,t !s1~ t !1

EaeTm2m~12n! f 8~0,t !

2m2~12n!2

3@ms0 cosh~ms0!1~322n!sinh~ms0!# (42)

sinh~ms0!a1~ t !1F 1

m
sinh~ms0!1s0 cosh~ms0!Ga4~ t !1

1

m
g8~s0!

5
1

m
f 8~s0 ,t !2

EaeT0~0,t !

m2~12n!
cosh~ms0!

1
EaeTm2m~12n! f 8~0,t !

2m2~12n!2
@ms0 sinh~ms0!

12~12n!cosh~ms0!# (43)

cosh~ms0!a1~ t !1s0 sinh~ms0!a4~ t !1g~s0!

5 f ~s0 ,t !2
EaeT0~0,t !

m2~12n!
sinh~ms0!

1
EaeTm2m~12n! f 8~0,t !

2m2~12n!2
@ms0 cosh~ms0!

1~122n!sinh~ms0!# (44)

where we have used Eqs.~40!, ~41! to eliminatea2(t) anda3(t).
These three equations must be satisfied for all values oft, and
hence we can use them to eliminatea1(t) anda4(t). Let us define
v5tanh(ms0(t)); therefore, we obtain

~v2ms0v21ms0!~g9~s0!2 f 9~s0 ,t !!22m~g8~s0!2 f 8~s0 ,t !!

1m2~v1ms0v22ms0!~g~s0!2 f ~s0 ,t !!

5
Ea

~12n!
~v2ms0v21ms0!s1~ t !T08~s0 ,t !

1
2EaeT0~0,t !

~12n!cosh~ms0!
1

ms0v22~12n!

~12n!cosh~ms0!

3FEaeTm

~12n!
2m f8~0,t !G (45)
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which serves to determine the unknown residual stress func
g(y). Onceg(y) is known, we can recovera1(t) and a4(t) by
solving Eqs.~43!, ~44!, with the result

a1~ t !5
1

cosh~ms0! H F11
ms0v

2 G f ~s0 ,t !2F11
ms0v

2 Gg~s0!

2
EaeT0~0,t !

m2~12n!
sinh~ms0!

2
ms0v

2 F Ea

m2~12n!
s1~ t !T08~s0 ,t !1

1

m2
~ f 9~s0 ,t !

2g9~s0!!G1
EaeTm2m~12n! f 8~0,t !

2m2~12n!2 F ms0

cosh~ms0!

1~122n!sinh~ms0!G J (46)

a4~ t !5
1

2 cosh~ms0! H 1

m @ f 9~s0 ,t !2g9~s0!#

1m@g~s0!2 f ~s0 ,t !#1
Ea

m~12n!
s1~ t !T08~s0 ,t !

2
f 8~0,t !

~12n!
sinh~ms0!1

EaeTm

m~12n!2
sinh~ms0!J . (47)

Finally, we determine the perturbation in contact press
P1(t)cos(mx) at the casting-mold interface, from Eqs.~46! of @13#
and ~29! as

P1~ t !5m2@a1~ t !2 f ~0,t !# (48)

where we have imposed the arbitrary conditiong(0)5g8(0)50,
since the free constants in the solution of Eq.~45! can be assigned
to satisfy this condition.

4 Dimensionless Formulation
Before proceeding to the solution of the problem, it is conv

nient to define the following dimensionless parameters:

Y5my; S0~b!5ms0~ t !; S1~b!5
m

e
s1~ t !; b5

m2KTm

rL
t

T̄0~Y,b!5
T0~y,t !

Tm
; T̄1~Y,b!5

T1~y,t !

eTm
; z5

KTm

mkrL

Q̄0~b!5
Q0~ t !

mKTm
; Q̄1~b!5

Q1~ t !

emKTm
; v̄5tanh~S0!

(49)

R̄05mKR0 ; R̄85
EaTm

~12n!R0
R8; P̄1~b!5

~12n!K

EaeTm
P1~ t !

ā1~b!5
m2~12n!K

EaeTm
a1~ t !; F̄~Y,b!5

m2~12n!K

EaeTm
f ~y,t !

Ḡ~Y!5
m2~12n!K

EaeTm
g~y!.

Hence, the governing Eqs.~8! and~12! for T̄0(Y,b) andT̄1(Y,b),
then become

]2T̄0~Y,b!

]Y2
5z

]T̄0~Y,b!

]b
(50)

]2T̄1~Y,b!

]Y2
2T̄1~Y,b!5z

]T̄1~Y,b!

]b
. (51)
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The boundary conditions~9!–~11!, corresponding to the zerot
order temperature fieldT̄0(Y,b) become

T̄0~S0 ,b!51 (52)

dS0~b!

db
5

]T̄0~S0 ,b!

]Y
(53)

]T̄0~0,b!

]Y
5

T̄0~0,b!

R̄0

(54)

and the boundary conditions~13!–~15!, corresponding to the firs
order temperature fieldT̄1(Y,b), can be written as

S1~b!
]T̄0~S0 ,b!

]Y
1T̄1~S0 ,b!50 (55)

dS1~b!

db
5

]T̄1~S0 ,b!

]Y
1S1~b!

]2T̄0~S0 ,b!

]Y2
(56)

Q̄1~b!5
]T̄1~0,b!

]Y

5
1

R̄0
H ]T̄0~0,b!

]Y
1T̄1~0,b!2T̄0~0,b!R̄8P̄1~b!J .

(57)

Thus, the heat conduction problem is reduced to the determina
of two pairs of functionsT̄0(Y,b), S0(b) andT̄1(Y,b), S1(b) in
Eqs. ~50! and ~51!, which satisfy the boundary conditions~52!–
~54! and ~55!–~57!, respectively. These equations would com
pletely define the temperature field if the heat fluxQ(x,t) of Eq.
~7! were prescribed, as in@17#, but, in the present problem, th
heat flux is related to the temperature and the contact pres
through Eq.~57!. The procedure here is to solve Eq.~22! for
f (y,t) and Eq.~45! for g(y), after which we can finda1(t) from
Eq. ~46! and henceP1(t) from Eq. ~48!. The dimensionless form
of these equations is

]2F~Y,b!

]Y2
2F~Y,b!5T̄1~Y,b! (58)

~S0v̄22S02v̄ !G9~S0!12G8~S0!2~S0v̄21v̄2S0!G~S0!

5~S0v̄22S02v̄ !F9~S0 ,b!12F8~S0 ,b!2~S0v̄21v̄

2S0!F~S0 ,b!1~S0v̄22S02v̄ !S1~b!T̄08~S0 ,b!

2
2T0~0,b!

cosh~ms0!
1

S0v̄22~12n!

~12n!cosh~S0!
~F8~0,b!2T̄m! (59)

ā1~b!5
1

cosh~S0!
H F11

S0v̄

2 GF~S0 ,b!2F11
S0v̄

2 GG~S0!

2T0~0,b!sinh~S0!2
S0v̄

2
@S1~b!T08~S0 ,b!1~F9~S0 ,b!

2G9~S0!!#1
T̄m2F8~0,b!

2~12n! F S0

cosh~S0!
1~1

22n!sinh~S0!G J (60)

P̄1~b!5ā1~b!2F~0,b!. (61)

5 Numerical Algorithm
Both zeroth-order and first-order problems require numer

solution, for which we use the algorithm developed in@17#. The
zeroth-order solid phase 0,Y,S0(t), is divided into a fixed
number of elementsN, so the space step size,d5S0 /N, increases
Journal of Applied Mechanics
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with time due to the growth inS0(t). This permits the last node to
be identified with the zeroth-order solid-liquid moving front at a
times, but implies that the node locations move in time, nece
tating the inclusion of convective terms in the updating algorith
for temperature. Thus, for example, the instantaneous zeroth-o
temperature field is represented by the temperatures at theN11
points Y5( i 21)d, i 51,2, . . . ,N11. The increase of the she
thicknessS0 during the next time incrementt is determined from
the finite difference form of Eq.~53!

S0
j 115S0

j 1
t

2d
~3T0N11

j 24T0N

j 1T0N21

j !, (62)

after which the temperatures at the interior nodesi 52,3, . . . ,N
are updated using the finite difference form of the heat conduc
Eq. ~50!

T̄0i

j 115T̄0i

j 1
t

zd2
~ T̄0i 11

j 22T̄0i

j 1T̄0i 21

j !; i 52,3, . . . ,N

(63)

which can be corrected using convective terms through

T̄0i

j 115T̄0i

j 111~ i 21!
d j 112d j

d j
~ T̄0i 11

j 11 2T̄0i

j 11!; i 52,3, . . . ,N.

(64)

The temperatures at nodeN11 remain at 1 for all times in view
of Eq. ~52! and that at node 1 is updated through Eq.~54!, which
determines the first difference in the first element.

Essentially, the same procedure is used to determine the ev
tion of the first-order temperature field, using Eqs.~51! and~55!–
~57!, except thatQ̄1(b) must be determined from Eq.~57! which
necessitates the solution of the thermoelastic problem forP̄1(b),
using Eqs.~58!–~61!. If the time incrementt is sufficiently small,
the thermal and thermoelastic updating algorithms can be
formed sequentially and hence explicitly.

The choice of an appropriate value fort is motivated by the
desire for computational efficiency, while retaining acceptable
merical convergence and stability. Extensive investigations w
made into the effect of both space and time discretization to
sure that the final results are reliable. With the explicit sche
used here, the maximum time step for stability is proportiona
zd2 and hence the stability requirement generally places the m
severe restrictions ont when good spatial accuracy is desire
necessitating small values ofd. However,S0 and henced increase
during the process, permitting the time step to be increased a
system evolves, without loss of stability.

5.1 Initial Conditions. With the algorithm described above
it is clearly not possible to start at the instant of first solidificatio
since atS050, all the nodes would coincide. Instead, we need
use an asymptotic solution of the problem at small times to p
vide a suitable initial condition for the numerical algorithm
finite time. Fortunately, the limiting solution~given in the appen-
dix to verify that the present more general solution reduces to
result previously obtained in case of zero thermal capacity! due to
Hector et al.@13#, which assumes that diffusivity of the solidifie
shell material is infinitely large, becomes progressively more
curate at small times, since the temperature drop across the s
fied layer is small at the very beginning of the process. We
therefore start the process with a small but finite thickness, us
the limiting solution given in@13# to define the initial values for
the temperature field in the solid layer.

6 Gap Nucleation Criterion
Determination of the conditions for gap nucleation can

achieved through examination ofPtr , which is the ratio of the
JANUARY 2004, Vol. 71 Õ 101
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total ~dimensional! contact pressure at the lowest points of t
troughs,P, to the mean pressure,P0 , at the mold surface troughs
Hence

Ptr5
P

P0
512

P1

P0
. (65)

Note that forP1 /P0→1, the following condition, which is de-
rived in @13# must be met:

2
R8P0

R0
!1. (66)

This limits the proposed gap nucleation analysis to wea
coupled systems. All other perturbation quantities are require
be much less than one.

Gap nucleation occurs when

Ptr50. (67)

If Ptr.0 during the time frame of interest, then gaps will n
nucleate in the troughs. Gap nucleation at the troughs will indic
the possibility of irregular growth of the shell since contact w
simultaneously increase at the crests. Beyond gap nucleation
the present model is no longer valid since it cannot account
continued growth of the gaps and the shell.

As defined by Yigit and Hector@15#, a wavelength is critical if
it corresponds to

Ptr5
dPtr

dt
50. (68)

Note that Yigit and Hector@15# found that wavelengths band
were delimited by upper and lower critical wavelengths. Wa
lengths that fell between the two critical wavelengths led to
condition given by Eq.~68!. Wavelengths that were either small
than the lower critical wavelength, or larger than the upper criti
wavelength led to gap nucleation at the highest points of
crests, instead of the lowest points in the troughs.

7 Results and Discussion
The material properties used in the calculations are listed

Table 1 along with pertinent references to those properties. N
that the properties for pure aluminum are taken from Richmo
et al. @23#. The symbolsE, a, and n denote Young’s modulus
thermal expansion coefficient, and Poisson’s ratio, respectiv
Although it is assumed that each property is a temperat
independent constant, most of the reported values were mea
close to the melting temperature of each material. For more in

Table 1 Material properties for pure aluminum and iron at the
melting temperature

PROPERTY

MATERIAL

Al Fe

Value Value Fe Reference

Tf (°C) 660 1536 @25#

KS W

m•°CD 229.4 36.2 @26#

rS kg

m3D 2650 7265 @27#

LS 105
J

kgD 3.9 2.7 @28#

E(1010 Pa) 6.0 14.4 @29#
a(1026 °C21) 37.8 23.4 @30#
n 0.33 0.33 @29#

kS1025
m2

s D 8.2 16.1 @31#
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mation on the temperature-dependence of these materials
reader is referred to Heinlein et al.@24#. The process parameter
are chosen to beR051025 m2 sec °C/J,R850 m2 sec °C/J•Pa,
P0510,000 Pa, anda51.0mm ~unless otherwise specified!.

Figure 2 examines the evolution of the contact pressure
trough in the mold surface for a pure aluminum shell. The
curves correspond to wavelengths ofl51 mm, 3 mm, 5 mm, 7
mm, 10 mm, and 50 mm. The smaller wavelengths lead to fa
gap nucleation, while the larger wavelengths, such asl550 mm,
do not lead to gap nucleation over the time frame of interest.

Figure 3 shows the evolution of the contact pressure at a tro
in the mold surface for a pure iron shell with the same proc
conditions used in Fig. 2. A comparison of Figs. 2 and 3 sho
that the time to gap nucleation for pure iron is nearly an order-
magnitude smaller than that for pure aluminum for any giv
value ofl. The controlling property that creates this distinction
the thermal capacity,c5K/rk. A pure iron shell has a smalle
thermal capacity than a pure aluminum shell. Hence, the tende
of the aluminum shell to store latent heat liberated at the freez

Fig. 2 Ptr versus t for selected values of l: pure aluminum
shell. „P0Ä10000 Pa, R0Ä10À5 m2 sec °C ÕJ, aÄ10À6 m, R8
Ä0 m2 sec °C ÕJ"Pa….

Fig. 3 Ptr versus t for selected values of l: pure iron shell.
„P0Ä10000 Pa, R0Ä10À5 m2 sec °C ÕJ, aÄ10À6 m, R8
Ä0 m2 sec °C ÕJ"Pa….
Transactions of the ASME
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front is greater than that for a pure iron shell. In other words, h
diffuses~propagates! more quickly through the iron shell than
does the aluminum shell, and the result is that the evolving t
momechanical distortion of the aluminum shell is less than t
for the iron shell.

Solidification process conditions are not always conducive
gap nucleation. For example, Fig. 4 shows the evolution ofPtr for
solidification of a pure aluminum shell with the same proce
materials considered in Fig. 2, except that the nominal con
pressure has been increased toP052 MPa. Six curves corre-
sponding to wavelengths of 4 mm, 4.6 mm, 4.84 mm, 8 mm,
mm, and 30 mm are shown. Over the 6-sec time frame consid
in Fig. 4, Ptr due to 30-mm wavelength exhibits the smalle
deviation fromPtr51. As the wavelengths are decreased,Ptr de-
creases more rapidly at the earlier stages of solidification. Th
evident from a comparison of the curves corresponding tol510
mm andl530 mm ~for example!. A larger value ofl leads to a
smaller value of the contact pressure perturbationP1 over the
earliest solidification times, and this causes the apparent orde
of the Ptr curves in Fig. 4. Figure 4 shows that the waveleng
denoted bylR which is equal to 4.84 mm meets the critical wav
length criteria in Eq.~68!. Gap nucleates attR55.52 sec. Wave-
lengths less thanlR lead to gap nucleation. Gap nucleation tim
for l54.0 mm, 4.6 mm, and 4.84 mm are listed in Table 2 alo
with calculated gap nucleation times for the idealized case of z
thermal capacity material~i.e., material with infinitely large ther-
mal diffusivity!, z50. For the l54 mm, tR50.1549 sec and
0.4523 sec forz50 andz50.00114, respectively, and hence th
diffusivity effect does not significantly influence thermomecha
cal distortion of the shell. Forl54.84 mm,tR50.4495 sec and
5.52 sec forz50 andz50.00114, respectively. Including therma
capacitance of the shell increases the gap nucleation time
trough by more than 5.0 sec. This difference is further increa

Fig. 4 Ptr versus t variation for aluminum shell showing the
critical wavelength at lRÄ4.84 mm. „P0Ä2.0 MPa, R0
Ä10À5 m2 sec °C ÕJ, aÄ10À6 m, R8Ä0 m2 sec °C ÕJ"Pa….

Table 2 Thermal diffusivity effect on gap nucleation time for
an aluminum shell

l~mm! z50.284331023 l tR (sec) forz50 tR (sec) forz5z~l!

4.00 0.00114 0.1549 0.4523
4.60 0.00131 0.3168 1.6472
4.84 0.00138 0.4495 5.5200
5.00 0.00142 0.5856 ¯
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by increasing the wavelength to 5.0 mm, as shown in Table
Note thattR50.5856 sec forz50, however, gap never nucleate
for z50.00114. For small values ofl, the thermal diffusivity ef-
fect exerts little influence on the thermomechanical distortion
the shell since there is a small difference with the case in wh
the shell has infinitely large diffusivity. However, as the wav
length is increased, which means that the mold surface gradu
becomes smoother, thermal diffusivity is much more signific
since the time to gap nucleation increases rather dramatically
gaps never nucleate for wavelengths that are larger thanlR when
the thermal capacity of the solidifying material has been includ

Figure 5 shows the evolution ofPtr for selected values of the
mold surface wavelength,l for a pure iron shell. Note that the
behavior observed in both Figs. 4 and 5 is the same. The
nucleation time can be decreased by decreasing the mold su
wavelength. It is immediately apparent that gap nucleation tim
over an order-of-magnitude faster for the iron shell than for
aluminum shell considered in Fig. 4. The critical wavelegth cri
ria has been met atlR59.63 mm which is larger than that the on
observed in Fig. 4. Gap nucleates attR50.342 sec. Table 3 list the
gap nucleation times for bothz50 andz5z~l! for the mold sur-
face wavelenghts considered in Fig. 5. Note that the significa
of finite thermal diffusivity for both pure aluminum and iron she
is evident in Tables 2 and 3 when the gap nucleation times for
z50 andz5z~l! have been compared.

Although it cannot be established a quantitative compari
between the present formulation and that in Yigit and Hec
@14,15#, it is instructive to examine results from their model fo
the appropriate process parameters. Our intent here is revea
portant qualitative differences between the present theoretica
proach and that followed in@14,15#. For this purpose, we presen
Figs. 6 and 7 which examine the evolution of the contact press
ratio due to selected mold-shell combinations. Note that the t

Fig. 5 Ptr versus t variation for iron shell showing the critical
wavelength at lRÄ9.63 mm. „P0Ä2.0 MPa, R0Ä10À5 m2

sec °C ÕJ, aÄ10À6 m, R8Ä0 m2 sec °C ÕJ"Pa….

Table 3 Thermal diffusivity effect on gap nucleation time for
an iron shell

l ~mm! z50.028031023 l tR (sec) forz50 tR (sec) forz5z~l!

7.00 0.000196 0.0289 0.0491
9.00 0.000252 0.0586 0.1493
9.63 0.000269 0.0729 0.3420

10.0 0.000280 0.0822 ¯
JANUARY 2004, Vol. 71 Õ 103
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scale in each of the following two figures is logarithmic due to t
large range of gap nucleation times for each combination. T
required that we select different wavelength values for each c
bination. Figure 6 shows the evolution ofPtr for an aluminum
shell solidifying on a copper mold at the mold surface crests. N
that two wavelengths which meet the criteria established by
~68! were identified as critical. These arelR

150.22 mm andlR
2

560 mm. Wavelengths that fall within the range delineated by
critical wavelengths~i.e.,l50.2, 5, 40 mm! lead to gap nucleation
at the crests in the mold surface. Wavelengths that lie outsid
the range delineated by the critical wavelengths~i.e. l50.1, 80
mm! lead to gap nucleation in the troughs of the mold surfa
since the contact pressure in both cases achieves a minimum~non-
zero! value and then turns around toward increasing values. N
that the gap nucleation times corresponding to the smaller

Fig. 6 Ptr versus t at tÄt R for selected l, aluminum solidifying
on copper, P0Ä10,000 Pa, h 0Ä0.5 mm, R0Ä10À5 m2 sec °C ÕJ,
with critical wavelengths at lR

1Ä0.22 mm and lR
2Ä60.0 mm

Fig. 7 Ptr versus t at tÄt R for selected l, iron solidifying on
copper, P0Ä10,000 Pa, h 0Ä0.5 mm, R0Ä10À5 m2 sec °C ÕJ, with
critical wavelengths at lR

1Ä0.05 mm and lR
2Ä194.3 mm
104 Õ Vol. 71, JANUARY 2004
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larger critical wavelengths, are, respectively,tR52.131024 sec,
tR59.2231022 sec. Figure 7 shows the evolution ofPtr for an
iron shell solidifying on a copper mold at the surface crests. I
immediately apparent that gap nucleation is over an order
magnitude faster for the iron shell than for the aluminum shel
Fig. 6. The smaller critical wavelength,lR

150.05 mm corresponds
to gap nucleation attR57.031026 sec. The larger critical wave
length, lR

25194.3 mm corresponds to gap nucleation attR56.0
31021 sec. Clearly, the iron shell nucleates gaps faster than
aluminum shell and has a broader band of wavelengths that
to gap nucleation at the mold crests.

Figures 8 and 9 show the mean thickness at gap nuclea
time, s0(tR), as a function of mold surface wavelength in mm f
selected values of the mean contact pressure,P0 , for a pure alu-
minum and a pure iron shell. Increasing the mean pressure ca
the shell to grow thicker in both figures. For any given wav
length, gaps nucleate more rapidly during solidification of an ir
shell. For both cases, an increase inP0 for fixed l leads to an
increase in the mean thickness of the shell,s0 . It is interesting to
note that and increase inP0 for the solidification of pure iron
leads to a shell thickness that is thinner than that for the alu
num. Clearly, the thermal conductivity for the iron shell is smal

Fig. 8 s 0„t R… versus l for selected values of P0 : pure alumi-
num shell. „R0Ä10À5 m2 sec °C ÕJ, aÄ10À6 m, R8Ä0 m2

sec °C ÕJ"Pa….

Fig. 9 s 0„t R… versus l for selected values of P0 : pure iron
shell. „R0Ä10À5 m2 sec °C ÕJ, aÄ10À6 m, R8Ä0 m2 sec °C ÕJ"Pa….
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than that for the aluminum shell and this leads to slower growth
the former material. It is therefore not surprising to note that
pure iron is less sensitive to an increase in the mean pressure~for
the chosen range ofl! when compared with the pure aluminu
since the spread in the maximum values ofs0 for the former
system is less than that for the latter system. Note that the in
ence of the mean contact pressure,P0 , on the mean shell thick-
ness variation with the mold surface wavelength, i.e.,s0 vs. l is
almost linear for lower mean contact pressure,P0 whereas the
linearity gradually diminishes as the value ofP0 is increased.

Table 4 lists values of thes0(tR) for the P0 , z combinations at
l55.0 mm considered in Figs. 8 and 9. Increasing the mean p
sure causes the shell to grow thicker. For any given value ofP0 ,
a shell that stores latent heat liberated at the freezing front tend
grow thicker than one that does not. Figures 8 and 9 show that
nucleation always occurs at the troughs on the mold surface.
any given wavelength, gaps nucleate more rapidly during so
fication of an iron shell. The shell thickness increases very li
through inclusion of the diffusivity effect atP051000 Pa since
s0(tR)50.1158 mm and 2.518931022 mm for z50, ands0(tR)
50.1221 mm forz50.001422 andz50.000140 for a pure alumi-
num and a pure iron shell, respectively. However, this differe
gradually becomes substantial as the mean pressure is incre
Note thats0(tR)511.005 mm for the pure aluminum shell solid
fication with P052 MPa andz50. However, gap never nucleate
with the same process conditions when the thermal capacity
been included.

Figure 10 shows the variation oflR with mean pressure,P0 .
The remaining process parameters were fixed ata51.0mm, R0

51025 m2 sec °C/J, andR850 m2 sec °C/J•Pa. The smallest
mean pressure evaluated in the figure isP0510 kPa. ThelR val-
ues for both mold materials are greatest at the smallest press

Table 4 Thermal diffusivity effect on mean shell growth at lÄ5
mm and selected pressures

P0 (MPa)

s0(tR! ~mm) for z50 s0(tR! ~mm)

Al Fe Al ~z50.56! Fe ~z50.15!

0.01 0.1158 2.518931022 0.1221 2.542531022

0.10 0.3987 8.599931022 0.4376 8.833131022

1.00 2.2027 0.3439 2.9841 0.3836
2.00 11.005 0.5752 ¯ 0.6812

Fig. 10 lR variation with P0 . „R0Ä10À5 m2 sec °C ÕJ, a
Ä10À6 m, R8Ä0 m2 sec °C ÕJ"Pa….
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As P0 is increased,lR decreases nonlinearly in both cases. Bo
systems give nearly constant values oflR as further increase in
P0 has a diminishing effect. For all values ofP0 considered in
Fig. 10, lR for the pure aluminum is less than that for the pu
iron. Hence, the wavelengths that lead to gap nucleation can
decreased by selecting casting material with higher thermal ca
ity at increased mean pressures.

Figure 11 shows the variation oflR with pressure-sensitivity of
the thermal contact resistance,R8 over the 0.0 m2 sec °C/J•Pa,
2R8,1.0310210 m2 sec °C/J•Pa range. The remaining proces
parameters were fixed atP051.0 MPa, R051025 m2 sec °C/J,
anda51.0mm. Notice thatR8 will generally be negative becaus
the thermal contact resistance falls with increasing contact p
sure. Figure 11 shows thatlR for both cases are always increas
by a greater negative value ofR8, implying that the interfacial
coupling between the thermal and the mechanical problems
motes the possibility of undulatory growth of the shell in a ve

Fig. 12 lR variation with a. „P0Ä1.0 MPa, R0Ä10À5 m2

sec °C ÕJ, R8Ä0 m2 sec °C ÕJ"Pa….

Fig. 11 lR variation with R8. „P0Ä1.0 MPa, R0Ä10À5 m2

sec °C ÕJ, aÄ10À6 m….
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large range of the wavelength of the mold surface. This situa
is enhanced for solidification of casting materials with higher th
mal capacity.

Figure 12 shows the variation oflR with amplitude,a, of the
mold surface over the 1.0mm,a1,10.0mm range. The remain-
ing process parameters were fixed atP051.0 MPa, R0

51025 m2 sec °C/J, andR850 m2 sec °C/J•Pa. Variation ofa in
the pure iron leads to a rapid increase in thelR , whereas a similar
variation in the pure aluminum leads to much smallerlR . Hence,
lR for a shell with smaller thermal capacitance~or larger diffu-
sivity! is more sensitive to changes in the mold surface amplit
than a corresponding shell material with higher thermal capac

Figure 13 shows the variation oflR with mean contact resis
tance, R0 . The remaining process parameters were fixed aa
51.0mm, P05100.0 kPa, andR850 m2 sec °C/J•Pa. For both
materials, variation of the mean resistance over the
31025 m2 sec °C/J,R0,10.031025 m2 sec °C/J range gives
little variation in lR since both curves are nearly horizontal.

8 Conclusions
The combined effects of thermomechanical coupling at

mold-shell interface and non-negligible thermal capacitance of
shell material during solidification of pure aluminum and iro
shell on a rigid, perfectly conducting mold was presented. T
evolution of the contact pressure at the lowest points of the m
surface troughs was examined. The mold surface was assum
have a sinusoidal corrugation with a small aspect ratio. The
dulatory geometry of the mold surface led to nonuniform h
extraction and hence initiated a nonuniform evolving distortion
the metal shell. This distortion produces the nucleation of gap

Fig. 13 lR variation with R0 . „P0Ä100.0 kPa, aÄ10À6 m, R8
Ä0 m2 sec °C ÕJ"Pa….
106 Õ Vol. 71, JANUARY 2004
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the mold-shell interface wherein the contact pressure falls to z
This implies the possibility of nonuniform or undulatory grow
of the shell at later stages of the process since the contact pre
simultaneously increases at the highest points of the upper m
surface crests. The shell thickness above these points incre
whereas the shell thickness above the lowest points of the trou
diminishes. The critical wavelength was shown to exist for bo
pure aluminum and iron shells under specific process conditio
Those wavelengths that are larger than the critical wavelength
not promote gap nucleation in the troughs of the mold surfa
They are more likely to cause gap nucleation at the crests of
mold surface and thereby promote planar growth of the she
early times. Critical wavelengths and associated gap nuclea
times were calculated for both pure aluminum and pure iron sh
under identical process conditions. It was found that the iron s
nucleates gaps faster than an aluminum shell, with the assoc
critical wavelengths of iron being substantially larger than tho
for aluminum. Effects of important casting process paramet
such as pressure, pressure-sensitivity of contact resistance
mold surface amplitude, and resistance, on the size of the cri
wavelength were also examined in detail.

Perhaps the most significant result of the present model is
the coupling effect, when combined with the thermal capacita
effect considered in@17#, leads to critical mold surface wave
length that surves as a cutoff between those wavelengths that
to gap nucleation in the troughs and those that lead to gap nu
ation in the crests. However, when the thermal and mechan
problems are uncoupled in the presence of thermal capacitan
the shell material,@17#, or when the thermal and mechanical pro
lems are coupled in the absence of thermal capacitance of
shell material, @13#, critical wavelenghts were not predicted
Hence, in order to predict the critical wavelengths theoretically
is necessary to model the system as one of the following:~i! to
model the mold as finite and deformable and to couple the ther
and mechanical problems at the mold-shell interface without c
sidering the effect of thermal diffusivity of the solidifying she
material,~ii ! to model the mold as rigid, perfectly conducting an
to couple the thermal and mechanical problems at the mold-s
interface including the effect of thermal diffusivity of the solid
fying shell material. Table 5 summarizes the works done so far
the effects of three major features on the existence of crit
wavelengths during solidification of pure metals. We observe t
the problem defined in Case 5, where the mold is modeled
finite and deformable in the absence of interfacial coupling
tween the thermal and mechanical problems with finite therm
diffusivity of the solidifying shell material, must be solved t
obtain a definitive conclusion about the prediction of a critic
wavelength theoretically. Do two features among three~i.e., inter-
facial coupling, mold deformation, and thermal capacity of t
shell! have to be included in the model to predict a critical wav
length or thermomechanical coupling along the mold-shell int
face is necessary but not sufficient condition? This question
open at present, and is the subject of an ongoing investigatio

The perfect wetting assumption used in the present mode
unlikely to be valid for sufficiently short mold surface wave
lengths since surface tension effects tend to predominate the
ting process. Also, the interaction between imperfect wetting
Table 5 Effect of modeling on the existence of critical wavelength, lR , concept

Case Coupling Mold Distortivity Thermal Capacity Existence oflR Reference

1 Yes Yes Yes Not yet investigated ¯

2 Yes No Yes lR exists @current work#
3 Yes No No NolR @13#
4 Yes Yes No lR exists @14#, @15#
5 No Yes Yes Not yet investigated ¯

6 No Yes No NolR @18#
7 No No Yes NolR @17#
8 No No No NolR @19#
Transactions of the ASME
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the microscale and macroscale roughness becomes importan
mechanical boundary conditions in the present model would n
to be changed to include the effect of surface tension on the
nucleation process and to delineate a possible surface ten
induced wavelength selection process for uniform shell growt
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Appendix

Limiting Solution for Zero Thermal Capacity. It can be
demonstrated that the solution forz→0 is a limiting case of the
present more general theory. This simplification permits the p
dominantly analytical solution to be obtained.

The results of limiting case are useful in the development
checking of purely numerical solution of general case, as wel
in providing a start-up solution for the general problem. In phy
cal terms, this simplifying assumption is equivalent to the sta
ment that the casting material has zero thermal capacity. In o
words, the heat diffusivity of the casting is infinitely large. It the
follows that Eq.~50! approximates Laplace’s equation and in vie
of the condition,]s/]x!1, that the temperature profile in th
solidified layer is linear inY. In this case Eq.~50! can easily be
solved using the boundary conditions~52!–~54! with the result

T̄0~Y,b!5
Y1R̄0

S0~b!1R̄0

. (A1)

Substituting~A1! into ~53! and solving the ordinary differentia
equation forS0(b) we obtain the unperturbed solidification fron
as

S0~b!52R̄01AR̄0
212b. (A2)

Substituting~A1! into ~54! gives the zeroth-order heat flux

Q0~b!5
1

S0~b!1R̄0

. (A3)

The governing Eq.~51! for the first-order temperature field can b
solved using the remaining boundary conditions~55!, ~56! with
the result

T̄1~Y,b!5
1

S01R̄0
$@S18~b!cosh~S0!1S1~b!sinh~S0!#sinh~Y!

2@S18~b!sinh~S0!1S1~b!cosh~S0!#cosh~Y!% (A4)

where ~8! denotes differentiation with respect toS0 . Once the
first-order temperature profile has been determined the solutio
Eq. ~58! can also be obtained. We can then write Eq.~59! allowing
z→0 with the result

~S0v̄22S02v̄ !G9~S0!12G8~S0!2~S0v̄21v̄2S0!G~S0!

52
S0v̄

S01R̄0

S18~b!2
S01v̄

S01R̄0

S1~b!

1
2~12n!2S0v̄

~12n!cosh~S0!
2

2R̄0

~S01R̄0!cosh~S0!
. (A5)

Finally, substituting Eqs.~A1!, ~A4!, and ~61! into Eq. ~57! we
obtain
Journal of Applied Mechanics
. The
eed
gap
ion-
.

Jr.
n-

re-

nd
as

si-
te-
ther
n
w

t

e

n of

F S0v̄R̄8

2 cosh~S0!
GḠ9~S0!2

R̄8

cosh~S0! F11
S0v̄

2 GḠ~S0!

5
v̄R̄0R̄8

S01R̄0

1H R̄8

2 cosh~S0! S cosh~S0!sinh~S0!2S0

S01R̄0
D

2cosh~S0!2
sinh~S0!

R̄0
J S18~b!1H R̄8v̄ sinh~S0!

2~S01R̄0!

2sinh~S0!2
cosh~S0!

R̄0
J S1~b!1

1

R̄0

2
R̄8

2~12n! H S0

cosh2~S0!
1v̄~122n!J (A6)

where we have setḠ(0)5Ḡ8(0)50 since these are arbitrary an
will not affect the final results. Note that Eqs.~A4! and~A5! con-
stitute a pair of coupled differential equations to determine
unknown quantitiesḠ(Y) and S1(b), given suitable initial con-
ditions atY50. OnceḠ(Y) and S1(b) are determined, contac
pressure perturbation can be determined from

P̄1~b!5
1

2 cosh~S0! H S 122n

12n D F S0

~122n!cosh~S0!
1sinh~S0!G

1S0v̄@Ḡ9~S0!2Ḡ~S0!#22Ḡ~S0!

2
1

S01R̄0
H S0v̄S1~b!12R̄0 sinh~S0!

1@S1~b!sinh~S0!1S18~b!cosh~S0!#

3Fsinh~S0!2
S0

cosh~S0!G J J . (A7)

Note that Eqs.~A1!–~A6! are exactly equal to the results reporte
in @13#.
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Coupled Belt-Pulley Vibration in
Serpentine Drives With Belt
Bending Stiffness
A method is developed to evaluate the natural frequencies and vibration modes o
pentine belt drives where the belt is modeled as a moving beam with bending stif
Inclusion of bending stiffness leads to belt-pulley coupling not captured in moving s
models. New dynamic characteristics of the system induced by belt bending stiffne
investigated. The belt-pulley coupling is studied through the evolution of the vibra
modes. When the belt-pulley coupling is strong, the dynamic behavior of the syst
quite different from that of the string model where there is no such coupling. The e
of major design variables on the system are discussed. The spatial discretization c
used to solve other hybrid continuous/discrete eigenvalue problems.
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Introduction

Serpentine belt drives with flat multi-ribbed belts are used
drive individual accessories of an automobile. Most of the mod
used in the literature only address the pulley rotational mot
with the spans modeled as axial springs,@1–4#. These discrete
models are relatively simple and have been used extensi
Many factors have been incorporated to describe the dynamic
havior such as damping, dry friction of the tensioner arm, s
between the pulley and belt, and so on. Its assumptions exc
the span transverse vibrations which may be large and inte
strongly with the pulleys, as seen in experiments,@5#, and com-
municated by automotive manufacturers and suppliers.

In contrast to the discrete model, more refined models incl
the span transverse vibrations, pulley rotational motions, and
interactions between these continuous and discrete compon
Ulsoy et al.@6# considers the possibility of parametric instabili
and presented a mechanism which may cause large trans
span vibration due to tension fluctuations. Beikmann et al.@5,7#
treats the belt as a moving string and studied a prototypical th
pulley model, which captured a linear coupling mechanism
tween the tensioner rotation and the transverse vibrations of
two spans adjacent to the tensioner~Fig. 1!. Other spans are de
coupled from pulley rotations in the linear model. Zhang et
@8,9# build on this model by adding damping and give a comp
modal analysis of the serpentine belt drive system. Parker@10#
develops a spatial discretization of this model extended ton pul-
leys.

By incorporating the belt bending stiffness, Kong and Par
@11# present another model. Each span is an Euler elastica,@12#,
moving with constant speed. Modeling the belt as a moving be
shows that transverse vibration of every span is linearly coup
with the rotations of the two adjacent pulleys at its ends. T
degree of span-pulley coupling depends on the steady state c
ture of the span. Further, a coupling indicator is defined for e
span to quantify coupling strength. In@11#, the attention is focused

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
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Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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on analytical and numerical methods to calculate the steady
tion and the effects of design parameters on the steady state
coupling indicator.

Belt-pulley coupling from bending stiffness is more consiste
with observed automotive serpentine drive vibration proble
than prior models. In these cases, span vibrations most comm
occur at low ~engine idle! speeds and at the engine firing fre
quency from pulsations to the crankshaft pulley. This preclu
belt or pulley runout as root causes because they lead to
vibrations at frequencies other than the firing frequency. Param
ric instability from tension or speed fluctuations,@13–15#, occurs
in practice only at high engine speeds.

Based on the moving beam-pulley model,@11#, this study in-
vestigates serpentine belt drive dynamic analysis. Computatio
the natural frequencies and vibration modes is a central task.
pentine belt drives belong to the class of hybrid continuo
discrete systems, and solving the eigenvalue problem for su
system is challenging. For the simpler case of a string mode
the belt, three papers,@5,8,10#, develop numerical methods t
solve the serpentine drive eigenvalue problem. The first two m
ods, @5,8#, fail when the spans are modeled as moving bea
because both require the explicit solution form for axially movi
continua while no such form exists for a traveling beam,@16#.
Both methods retain the continuum model and seek roots o
numerically ill-behaved characteristic equation. The numeri
singularities~see@10#! can lead to missing or false roots and si
nificant computational expense to try to avoid these errors.
address these issues, the third method,@10#, discretizes the two
spans adjacent to the tensioner and uses Lagrange multiplie
enforce the geometric boundary conditions at the belt-tensio
interface. The method is presented for a generaln-pulley drive.

One of the main developments of this paper is a spatial disc
zation to solve the serpentine belt drive eigenvalue problem wi
moving beam model. Compared with characteristic equat
methods,@5,8#, the present approach can incorporate bending s
ness, is numerically economical with dramatic reduction in co
putation time, avoids numerical singularities, and does not req
advance estimation of the natural frequency bandwidth. Afte
coordinate transformation and some mathematical modificatio
the governing equations are rewritten into an extended oper
form that retains the mathematical structure of a gyroscopic c
tinuum. Galerkin discretization is readily applied in this extend
operator context. Although the reformulation initially seems co
plicated, the key ideas are such that the method is straightforw
to implement when devising code. The concepts can be natu
extended to other hybrid continuous/discrete systems.
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Fig. 1 A prototypical three-pulley serpentine belt drive
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The three-pulley system in Fig. 1 is used to demonstrate
method and results. The method can be extended to multi-pu
serpentine drive systems. A comprehensive, multi-pulley anal
code based on the method has been developed for use in
automotive industry.

The relationship between belt-pulley coupling and bend
stiffness is investigated from the perspective of evolution of
vibration modes. When the bending stiffness is appreciable, al
continuous ~span! and discrete~pulley! components interac
strongly with each other, and the former classification of
modes for the string model~pulley rotationally dominant vibration
modes and span transversely dominant vibration modes,@5,8,10#!
does not apply. When the bending stiffness is small, the dyna
behavior converges to that of string models. Finally, the effect
key design parameters on the natural frequencies are investig

Linearization of Equations of Motion
Figure 1 depicts a prototypical three-pulley system that inclu

the primary components in automotive serpentine drives,@5,8,9#.
The spans are modeled as Euler-Bernoulli beams translating
constant speedc. Each span is subjected to constant moment
its ends arising from the bending of the continuous belt around
pulleys. Movement of the belt-pulley contact point due to b
vibration is neglected,@17–19#. Detailed description of the mode
is given in @11#. Only essential equations and some key conce
are repeated here. Hamilton’s principle applied to the prototyp
serpentine belt drive leads to the equations of motion

m~wi ,tt22cwi ,xt1c2wi ,xx!2@~Pi1 P̃i !wi ,x# ,x1EIwi ,xxxx50

(1)

i 51,2,3

w1~0,t !50 EIw1,xx~0,t !5
EI

r 1

w1~ l 1 ,t !5r tu t cosb1 EIw1,xx~ l 1 ,t !52
EI

r 2
(2)

w2~0,t !5r tu t cosb2 EIw2,xx~0,t !52
EI

r 2 (3)

w2~ l 2 ,t !50 EIw2,xx~ l 2 ,t !5
EI

r 3
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w3~0,t !50 EIw3,xx~0,t !5
EI

r 3
w3~ l 3 ,t !50

(4)

EIw3,xx~ l 3 ,t !5
EI

r 1

J1ü11 P̃1r 12 P̃3r 15M̃1 (5)

J2ü22 P̃1r 21 P̃2r 250 (6)

J3ü32 P̃2r 31 P̃3r 35M̃3 (7)

Jtü t1kru t1@mcw1,t~ l 1!1~P12mc21 P̃1!w1,x~ l 1!

1EIw1,xxx~ l 1!#r t cosb11~mc22 P̃1!r t sinb1

2@mcw2,t~0!1~P22mc21 P̃2!w2,x~0!

1EIw2,xxx~0!#r t cosb2

2~mc22 P̃2!r t sinb250 (8)

where

P̃15
EA

l 1
S 2r 2u21r 1u12r tu t sinb11E

0

l 1 1

2
w1,x

2 dxD (9)

P̃25
EA

l 2
S 2r 3u31r 2u21r tu t sinb21E

0

l 2 1

2
w2,x

2 dxD (10)

P̃35
EA

l 3
S 2r 1u11r 3u31E

0

l 3 1

2
w3,x

2 dxD (11)

and M̃ i(t) are dynamic accessory torques. All dynamic motio
~pulley rotationsu i(t), tensioner arm rotationu t(t), transverse
belt deflections (wi(xi ,t))) are measured relative to thereference
state corresponding to a stationary, string model system subje
any steady accessory torques,@11#. Different spans may have dif
ferent reference tensionsPi due to the accessory torques.b1,2 are
the orientation angles of the tensioner arm relative to the
spans adjacent to the tensioner in the reference state~Fig. 1!.

The following nondimensional variables are introduced:
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o

g

s
a

x̂i5
xi

l i
ŵi5

wi

l i
l 5

l 11 l 21 l 3

3
t̂5tA P0

ml2
P̂i5

Pi

P0
«25

EI

P0l 2

s5cAm

P0
(12)

ks5
kr

P0r t
g5

EA

P0
mi5

Ji

mri l
2

mt5
Jt

mrtl
2

Mi5
M̃ i

P0r i

whereP0 is the uniform tension at zero speed with no access
torques using a string model,@11#. Substitution of~12! into ~1!–
~11! leads to the nondimensionaldynamicequations of motion for
the prototypical serpentine belt system, from which the equati
governing the steady motion can be obtained by equating t
derivative terms to zero. Methods to determine the steady mo
and its properties are discussed in@11#.

Linearization for small motions about the steady-state confi
ration yields the following nondimensional equations, whe
u i(t), u t(t), wi(xi ,t) now represent small vibrations about th
steady motion~not about the reference state as in~1!–~11!!;
steady motion quantities are denoted by asterisks. The hat
dimensionless variables have been dropped. The span vibr
equations are

S l 1

r t
D S l 1

l D 2

w1,tt22sS l 1

l D S l 1

r t
Dw1,xt2S l 1

r t
D P̄1w1,xx

1«2S l

l 1
D 2S l 1

r t
Dw1,xxxx2gS l 1

r t
D S 2

r 2

l 1
u21

r 1

l 1
u1

2
r t

l 1
u t sinb11E

0

1

w1,xw1,x* dxDw1,xx* 50 (13)

w1~0,t !50 w1~1,t !5
r t

l 1
cosb1u t w1,xx~0,t !50 w1,xx~1,t !50

(14)

S l 2

r t
D S l 2

l D 2

w2,tt22sS l 2

l D S l 2

r t
Dw2,xt2S l 2

r t
D P̄2w2,xx

1«2S l

l 2
D 2S l 2

r t
Dw2,xxxx2gS l 2

r t
D S 2

r 3

l 2
u31

r 2

l 2
u2

1
r t

l 2
u t sinb21E

0

1

w2,xw2,x* dxDw2,xx* 50 (15)

w2~0,t !5
r t

l 2
cosb2u t w2~1,t !50 w2,xx~0,t !50 w2,xx~1,t !50

(16)

S l 3

r t
D S l 3

l D 2

w3,tt22sS l 3

l D S l 3

r t
Dw3,xt2S l 3

r t
D P̄3w3,xx

1«2S l

l 3
D 2S l 3

r t
Dw3,xxxx2gS l 3

r t
D S 2

r 1

l 3
u11

r 3

l 3
u3

1E
0

1

w3,xw3,x* dxDw3,xx* 50 (17)
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w3~0,t !50 w3~1,t !50 w3,xx~0,t !50 w3,xx~1,t !50 (18)

P̄15P12s21P1* ,
(19)

P1* 5gF2
r 2

l 1
u2* 1

r 1

l 1
u1* 2

r t

l 1
u t* sinb11E

0

1 1

2
~w1,x* !2dxG

P̄25P22s21P2* ,
(20)

P2* 5gF2
r 3

l 2
u3* 1

r 2

l 2
u2* 1

r t

l 2
u t* sinb21E

0

1 1

2
~w2,x* !2dxG

P̄35P32s21P3* ,
(21)

P3* 5gF2
r 1

l 3
u1* 1

r 3

l 3
u3* 1E

0

1 1

2
~w3,x* !2dxG .

The pulley and tensioner arm equations are

m1S r 1

r t
D u1,tt1gS r 1

r t
D S 2

r 2

l 1
u21

r 1

l 1
u12

r t

l 1
u t sinb1D

1gS r 1

r t
D E

0

1

w1,xw1,x* dx2gS r 1

r t
D S 2

r 1

l 3
u11

r 3

l 3
u3D

2gS r 1

r t
D E

0

1

w3,xw3,x* dx5S r 1

r t
D M1 (22)

m2S r 2

r t
D u2,tt1gS r 2

r t
D S 2

r 3

l 2
u31

r 2

l 2
u21

r t

l 2
u t sinb2D

1gS r 2

r t
D E

0

1

w2,xw2,x* dx2gS r 2

r t
D S 2

r 2

l 1
u21

r 1

l 1
u1

2
r t

l 1
u t sinb1D2gS r 2

r t
D E

0

1

w1,xw1,x* dx50 (23)

m3S r 3

r t
D u3,tt1gS r 3

r t
D S 2

r 1

l 3
u11

r 3

l 3
u3D1gS r 3

r t
D E

0

1

w3,xw3,x* dx

2gS r 3

r t
D S 2

r 3

l 2
u31

r 2

l 2
u21

r t

l 2
u t sinb2D

2gS r 3

r t
D E

0

1

w2,xw2,x* dx5S r 3

r t
D M3 (24)
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mtü t1sS l 1

l D cosb1w1,t~1!1 P̄1 cosb1w1,x~1!1g cosb1S 2
r 2

l 1
u21

r 1

l 1
u12

r t

l 1
u t sinb11E

0

1

w1,xw1,x* dxDw1,x* ~1!

2sS l 2

l D cosb2w2,t~0!2 P̄2 cosb2w2,x~0!2g cosb2S 2
r 3

l 2
u31

r 2

l 2
u21

r t

l 2
u t sinb21E

0

1

w2,xw2,x* dxDw1,x* ~0!

2«2S l

l 1
D 2

cosb1w1,xxx~1!1«2S l

l 2
D 2

cosb2w2,xxx~0!2gS 2
r 2

l 1
u21

r 1

l 1
u12

r t

l 1
u t sinb11E

0

1

w1,xw1,x* dxD sinb1

1gS 2
r 3

l 2
u31

r 2

l 2
u21

r t

l 2
u t sinb21E

0

1

w2,xw2,x* dxD sinb21ksu t50. (25)
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Equations~13!–~25! reveal that the transverse vibrations ofall
spans are coupled with the pulley rotational motions, in contras
string models for the belt. Notice that Eq.~17! for span 3 shows
that its transverse vibration is now coupled with the two adjac
pulleys’ rotational motions and the degree of the span-pulley c
pling is determined by its steady state curvaturew3,xx* , @11#. If
there is no bending stiffness, this span~and any others betwee
fixed center pulleys in ann pulley system! remains a straight line
with w3,xx* 50 at steady state, meaning that its motion is co
pletely decoupled from the rest of the system. This expanded
pling is the primary ramification of including belt bending stif
ness.

Extended Operator Formulation
The above system can be expressed in the extended ope

form, @5,8,10#,

MẄ 1GẆ1KW 5F (26)

where the displacement vector, external force vector, and in
product are

W5$w1 ,w2 ,w3 ,u1 ,u2 ,u3 ,u t%
T (27)

F5H 0,0,0,S r 1

r t
D M1,0,S r 3

r t
D M3,0J T

(28)

^W,U&5E
0

1

w1ū1dx1E
0

1

w2ū2dx1E
0

1

w3ū3dx1(
i 51

3

u i s̄ i1u ts̄ t

(29)

and the overbar means complex conjugate. The differential op
tors M andK are symmetric whileG is skew-symmetric. There
fore, the above linear model constitutes a conservative gyrosc
system. The factors (l i /r t) in the span equations and (r i /r t) in the
pulley equations are necessary to preserve the symmetric/s
symmetric properties ofM , G, andK .

Although the above model is linear, solution of the correspo
ing eigenvalue problem is difficult because of the belt-pulley c
pling in the differential equations, belt-tensioner coupling in t
boundary conditions~see~14! and ~16!!, multiple spans, and gy
roscopic character. Even for the simpler case of modeling
spans without bending stiffness, which eliminates the belt-pu
coupling, solution is difficult. In that case, the main obstacle l
in the inhomogeneous boundary conditions~14! and ~16! that re-
sult from rotation of the tensioner arm moving the endpoints
the two adjacent spans.

Three distinct methods have been presented for the eigenv
problem of the string model. The first one is by Beikmann et
@5#, who determine a boundary condition error function akin to
characteristic equation. The second approach is by Zhang an
@8#, who established a closed-form characteristic equation, f
which the eigenvalues for the belt drive system are numeric
computed. The above two methods, however, cannot be use
112 Õ Vol. 71, JANUARY 2004
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attack the eigenvalue problem presented here because both m
ods require the explicit solution form for an axially moving strin
@20#. For the present model, no such explicit solution exists,@16#.
Furthermore, both of the two methods need a pre-specified b
width to search for roots of the characteristic equations. Singul
ties and numerical ill-behavedness of both characteristic equat
complicate the root-finding process,@5,10#, leading to time con-
suming calculations, especially when coded for general mu
pulley systems. Due to the numerical concerns, the accuracy
completeness of the calculated natural frequencies cannot be
anteed~that is, some computed natural frequencies may be fa
and true natural frequencies in the specified range may
missed!.

In @10#, a third method is developed to solve the string mod
eigenvalue problem. There the spans adjacent to the tensi
~which are the only ones coupled to the pulleys! are expanded in
a series of basis functions. The inhomogeneous boundary co
tions at the belt-tensioner interface are treated as constraints
the Lagrange multiplier method is applied to impose them. T
method overcomes the drawbacks of the first two methods
could be extended to models with bending stiffness. A result of
Lagrange multiplier approach is that the discretized matrices
the symmetric/skew-symmetric properties of a conservative gy
scopic system, although this does not influence the accuracy o
results.

A different technique is developed in this work to solve t
eigenvalue problem of the moving beam model. The key conce
are to reformulate the span deflections in terms of variables s
fying homogeneous boundary conditions, cast the equations in
structured symmetric/skew-symmetric extended operator fo
and apply Galerkin discretiztion to this form. The reformulation
needed to transform the troublesome mixed continuum/disc
boundary conditions at the belt-tensioner interface,~14! and~16!,
into homogeneous boundary conditions.

First, the following coordinate transformations are applied:

y15w12
r t

l 1
x cosb1u t

y25w21
r t

l 2
~x21!cosb2u t (30)

y35w3 .

The new unknown functionsyi satisfy the trivial boundary condi-
tions

yi~0,t !50 yi~1,t !50 yi ,xx~0,t !50 yi ,xx~1,t !50, i 51,2,3
(31)

instead of the mixed continuum/discrete boundary conditions
~14! and ~16!. Substitution of~30! into ~13!–~25! leads to a new
set of equations. When directly rewritten in the extended oper
form ~26!, however, these new equations do not lead to the r
uisite symmetric/skew-symmetric properties of theM , G, andK
operators. To recover these operator properties, more manip
tions are needed.
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In the following derivation, thewi in ~13!–~25! have been re-
placed by theyi through Eq.~30!. Multiplying Eq. ~13! for the
first span byr t / l 1x cosb1 and integrating over the span yields

S l 1

l D 2E
0

1

x cosb1y1,ttdx1S l 1

l D 2S r t

l 1
D E

0

1

~cosb1x!2dxü t

22sS l 1

l D E
0

1

x cosb1y1,xtdx22sS l 1

l D S r t

l 1
D E

0

1

x cos2 b1dxu̇ t

2 P̄1E
0

1

x cosb1y1,xxdx1«2S l

l 1
D 2E

0

1

x cosb1y1,xxxxdx
Journal of Applied Mechanics
2gF2
r 2

l 1
u21

r 1

l 1
u12

r t

l 1
u t sinb11E

0

1

y1,xw1,x* dx

1E
0

1S r t

l 1
D cosb1u tw1,x* dxG E

0

1

x cosb1w1,xx* dx50. (32)

Similar manipulations of Eq.~15! for the second span~first mul-
tiplying 2r 3 / l 2(x21)cosb2 and then integrating! give
. This
sform-
2S l 2

l D 2E
0

1

~x21!cosb2y2,ttdx1S l 2

l D 2

cos2 b2E
0

1S r t

l 2
D ~x21!2dxü t12sS l 2

l D E
0

1

~x21!cosb2y2,xtdx

22sS l 2

l D S r t

l 2
D E

0

1

~x21!cos2 b2dxu̇ t1 P̄2E
0

1

~x21!cosb2y2,xxdx2«2S l

l 2
D 2E

0

1

~x21!cosb2y2,xxxxdx

1gS 2
r 3

l 2
u31

r 2

l 2
u21

r t

l 2
u t sinb21E

0

1

y2,xw2,x* dx2E
0

1S r t

l 2
D cosb2u tw2,x* dxD E

0

1

~x21!cosb2w2,xx* dx50. (33)

Addition of ~32!, ~33!, and ~25! leads to a new equation for the tensioner arm, which is not given here for the sake of brevity
process is similar in spirit to pre-multiplying by the transpose of the transformation matrix to retain a symmetric form when tran
ing coordinates in symmetric, discrete equations of motion.

Equations~13!–~24! and this new tensioner equation can be expressed compactly in the following extended operator form:

MŸ 1GẎ1KY 5F (34)

Y5$y1 ,y2 ,y3 ,u1 ,u2 ,u3 ,u t%
T (35)

MY 5

l

S l 1

r t
D S l 1

l D 2

y11S l 1

l D 2

cosb1xu t

S l 2

r t
D S l 2

l D 2

y22S l 2

l D 2

cosb2~x21!u t

S l 3

r t
D S l 3

l D 2

y3

m1S r 1

r t
D u1

m2S r 2

r t
D u2

m3S r 3

r t
D u3

S l 1

l D 2E
0

1

x cosb1y1dx2S l 2

l D 2E
0

1

~x21!cosb2y2dx1Mdu t

m
(36)

GY53
22sS l 1

l D S l 1

r t
D y1,x22sS l 1

l D cosb1u t

22sS l 2

l D S l 2

r t
D y2,x12sS l 2

l D cosb2u t

22sS l 3

l D S l 3

r t
D y3,x

0
0
0

2sF S l 1

l D E
0

1

2x cosb1y1,xdx2S l 2

l D E
0

1

2~x21!cosb2y2,xdxG
4 (37)
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KY 5$K1 ,K2 ,K3 ,K4 ,K5 ,K6 ,K7%
T (38)

K152S l 1

r t
D P̄1y1,xx1«2S l

l 1
D 2S l 1

r t
D y1,xxxx

2gS l 1

r t
D E

0

1

w1,x* y1,xdxw1,xx* 2gS r 1

r t
Dw1,xx* u11gS r 2

r t
Dw1,xx* u2

1g sinb1w1,xx* u t2g cosb1w1* ~1!w1,xx* u t (39)

K252S l 2

r t
D P̄2y2,xx1«2S l

l 2
D 2S l 2

r t
D y2,xxxx

2gS l 2

r t
D E

0

1

w2,x* y2,xdxw2,xx* 2gS r 2

r t
Dw2,xx* u21gS r 3

r t
Dw2,xx* u3

2g sinb2w2,xx* u t2g cosb2w2* ~0!w2,xx* u t (40)

K352S l 3

r t
D P̄3y3,xx1«2S l

l 3
D 2S l 3

r t
D y3,xxxx

2gS l 3

r t
D E

0

1

w3,x* y3,xdxw3,xx* 1gS r 1

r t
Dw3,xx* u12gS r 3

r t
Dw3,xx* u3

(41)
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K45gS r 1

r t
D E

0

1

w1,x* y1,xdx2gS r 1

r t
D E

0

1

w3,x* y3,xdx1gS r 1

r t
D S r 1

l 1

1
r 1

l 3
D u12gS r 1

r 1
D S r 2

l 1
D u22gS r 1

l 1
D @sinb12cosb1w1* ~1!#u t

2gS r 1

r t
D S r 3

l 3
D u3 (42)

K552gS r 2

r t
D E

0

1

w1,x* y1,xdx1gS r 2

r t
D E

0

1

w2,x* y2,xdx2gS r 2

r t
D

3S r 1

l 1
D u11gS r 2

r t
D S r 2

l 1
1

r 2

l 2
D u22gS r 2

r t
D S r 3

l 2
D u31gS r 2

l 1
D

3@sinb12cosb1w1* ~1!#u t

1gS r 2

l 2
D @sinb21cosb2w2* ~0!#u t (43)

K652gS r 3

r t
D E

0

1

w2,x* y2,xdx1gS r 3

r t
D E

0

1

w3,x* y3,xdx

2gS r 3

r t
D S r 1

l 3
D u12gS r 3

r t
D S r 2

l 2
D u2

2gS r 3

l 2
D @sinb21cosb2w2* ~0!#u t1gS r 3

r t
D S r 3

l 2
1

r 3

l 3
D u3

(44)
K752g sinb1E
0

1

w1,x* y1,xdx1g cosb1w1,x* ~1!E
0

1

w1,x* y1,xdx1g sinb2E
0

1

w2,x* y2,xdx1g cosb2w2,x* ~0!E
0

1

w2,x* y2,xdx

2FgS r 1

l 1
D sinb12gS r 1

l 1
D cosb1w1* ~1!Gu12F2gS r 2

l 1
D sinb12gS r 2

l 2
D sinb21gS r 2

l 1
D cosb1w1* ~1!2gS r 2

l 2
D cosb2w2* ~0!Gu2

1FgS r t

l 1
D sin2 b11gS r t

l 2
D sin2 b21ks1 P̄1S r t

l 1
D cos2 b11 P̄2S r t

l 2
D cos2 b21gS r t

l 1
D cos2 b1~w1* ~1!!2

1gS r t

l 2
D cos2 b2~w2* ~0!!222gS r t

l 1
D sinb1 cosb1w1* ~1!12gS r t

l 2
D sinb2 cosb2w2* ~0!Gu t1FgS r 3

l 2
D sinb2

1gS r 3

l 2
D cosb2w2* ~0!Gu t (45)
de-
ns.
where Md5mt11/3@(r t / l 1)( l 1 / l )2 cos2 b11(rt /l2)(l2 /l)2 cos2 b2#.
The external force vectorF remains the same as~27!. After these
manipulations, the system seems more complicated. The key
vantage, however, is that the new operatorsM andK are symmet-
ric andG is skew-symmetric with an inner product analogous
~29!.

Galerkin Discretization
The mathematical structure of the extended operator form~34!–

~45! and the trivial boundary conditions in~31! allow classical
Galerkin discretization. The extended variableY is expanded in a
series of basis functions as

Y5 (
k51

N11N21N314

ak~ t !ck~x!,
ad-

to

ck5$sin~kpx!,0,0,0,0,0,0%T k51,2, . . .N1 ,

ck5$0,sin~mpx!,0,0,0,0,0%T k5N111, . . . ,N11N2

m5k2N1 ,

ck5$0,0,sin~npx!,0,0,0,0%T k5N11N211, . . . ,N11N2

1N3 n5k2~N11N2!,
(46)

ck5$0,0,0,1,0,0,0%T k5N11N21N311,

ck5$0,0,0,0,1,0,0%T k5N11N21N312,

ck5$0,0,0,0,0,1,0%T k5N11N21N313,

ck5$0,0,0,0,0,0,1%T k5N11N21N314

whereNi is the number of basis functions for theith span. Theck
are global comparison functions where each one describes a
flection of the entire system and satisfy all boundary conditio
Transactions of the ASME
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Table 1 Physical properties of the example system, from which nominal dimensionless pa-
rameters are calculated

Pulley radiusr 1 0.0889 m Pulley center (x1 ,y1) ~0.5525,0.0556! m
Pulley radiusr 2 0.0452 m Pulley center (x2 ,y2) ~0.3477,0.05715! m
Pulley radiusr 3 0.02697 m Pulley center (x3 ,y3) ~0,0!
Tensioner armr t 0.097 m Pulley center (xt ,yt) ~0.2508,0.0635! m
Rotational inertiaJ1 0.07248 kg•m2 Belt modulusEA 120000N
Rotational inertiaJ2 0.000293kg•m2 Initial tensionP0 300N
Rotational inertiaJ3 0.000293kg•m2 Belt mass densitym 0.1029kg/m
Rotational inertiaJt 0.001165kg•m2 Tensioner stiffnesskr 116.4N•m/rad
Span lengthl 1 0.1548 m Alignment angleb1 135.79°
Span lengthl 2 0.3449 m Alignment angleb2 178.74°
Span lengthl 3 0.5518 m Tensioner rotationu tr 0.1688 rad
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They form a complete set. After substitution of~46! into ~26!
~with w→y), the error~residual! is constrained to be orthogona
to theck using the inner product~29!. This gives the equations o
motion and eigenvalue problem

@M #Ä1@G#Ȧ1@K #A5f (47)

2v2@M #r1 iv@G#r1@K #r50, A5reivt (48)

r5$a1 ,a2 , . . .aN11N21N314%
T (49)

Mi j 5^Mc j ,c i& Gi j 5^Gc j ,c i& Ki j 5^Kc j ,c i&, (50)
i , j 51 . . .N11N21N314

f5$ f 1 , f 2 , . . . f N11N21N314%
T f i5^F,c i&,

(51)
i 51 . . .N11N21N314

where the inner product is an extended one similar to that in~29!.
The matrices@M #, @K #, and @G# inherit the symmetry/skew-
symmetry of the corresponding differential operators. These p
erties ensure that the eigenvalues are purely imaginary, as req
for a conservative gyroscopic system.

The present method has several advantages over contin
characteristic equation approaches,@5,8#: ~1! It is easy to imple-
ment because of the simple basis functions and trivial bound
conditions.~2! It is efficient, accurate, and greatly reduces co
putational time.~3! It does not require a user-specified bandwid
to search for natural frequencies.~4! It is numerically robust and
free of missing/false natural frequency concerns.~5! Because the
method uses Galerkin discretization, all properties of that
proach are retained, including convergence of the eigenva
from above.~6! Dynamic response analysis is trivial to impleme
using ~47!.

Results and Discussion
In this section, results are presented for a prototypical thr

pulley system~Fig. 1!; the physical properties are shown in Tab
1. Because the motion of the crankshaft (u1) is typically pre-
scribed in practical applications, it is treated as a specified exc
tion source andu150 in the following free-vibration analysis
Special attention is given to the interaction between span 3
the rest of the system because this span is bounded by fixed
leys, and its motion is decoupled from the rest of the system
vanishing bending stiffness.

Figures 2 and 3 show that when the belt bending stiffnes
small ~«50.01!, there are two distinct types of modes: pulley r
tationally dominant vibration modes and span transversely do
nant vibration modes. These mode types are similar to the re
computed with the string model except that here span 3 has s
small transverse deflection~as opposed to being straight in th
string model,@5#!. These two figures also show that when bend
stiffness increases, the magnitude of the span 3 deflection
creases accordingly, and the relative magnitudes of the initi
dominant components diminish. The coupling between the sp
and pulleys becomes stronger for these modes.
ied Mechanics
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Figure 4 describes a type of vibration mode not captured w
the string model. When« is small ~'0.01!, the dominant motion
is the transverse motion of span 3 while all other compone
have small motions. But when« is appreciable, say«50.07 or
«50.1, the modal amplitudes of other components are signific
indicating a strongly coupled mode. Note that as bending stiffn
decreases, the span 3 deflection increases markedly relativ
other deflections. In the limit as«→0, span 3 is completely de
coupled from the rest of the system, as in prior string mo
results,@5#.

A key point of Figs. 2–4 is that bending stiffness induc
modal coupling with spans connecting fixed center pulleys~such
as span 3! provides an explanation for the observed vibration
these spans in vehicle applications. String models have no m
to capture this known behavior except using parametric excita
models,@13,14#, that are not relevant at the idle/low speed regio
where span vibrations are commonly observed.

These figures also reveal another tendency for all types

Fig. 2 Rotationally dominant mode „«Ä0… for increasing belt
bending stiffness. The dimensionless natural frequency for
«Ä0 is vÄ4.1205. „a… «Ä0.01, „b… «Ä0.04, „c… «Ä0.07, „d… «Ä0.1.
sÄ0, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1, b1Ä135.79°, b2Ä178.74°.
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modes: When the belt bending stiffness increases or the span
sions decrease~that is, as« increases!, the magnitude disparities
between the dominant components and the other parts of the
tem decrease. In essence, the distinction between different t
of modes becomes less pronounced. Eventually, this classifica
of vibration modes does not apply any more. This can be s
from the cases of«50.1 in Figs. 2–4 where all the spans an
pulleys have nearly the same order amplitude. In this case, al
pulley and span vibrations are strongly coupled, and the syste
dynamic operating condition response is quite different from t
when belt bending stiffness is neglected.«50.04 and«50.07 fall
into the transition region between the string and the beam mod
For practical serpentine belt drives, manufacturers approxim
the bending stiffness of a poly-ribbed belt typical of vehicle a
plications by EI5(m21)2.86731023 N•m2 ~where m is the
number of ribs!. Notice that« depends on the relative magnitud
of bending stiffness and belt tension because«25EI/P0l 2. For
the range of belts and span tensions in use, reasonable value«
fall in the range 0.01<«<0.12.

Figure 5 shows the relationship between the natural frequen
and the bending stiffness. As bending stiffness increases, s
natural frequencies decrease when the belt bending stiffne
small. This interesting phenomenon is inconsistent with the lin
system requirement that natural frequencies increase with s
ness. The root cause is that although increased bending stiff
tends to increase the natural frequencies for a fixed steady s
the increased bending stiffness changes the steady state, w
also influences the natural frequencies, as shown in the dyna
Eqs.~39!–~45!. This change in the steady state causes some n
ral frequencies to decrease with increasing bending stiffness.
mechanism is that increased bending stiffness increases the s
state curvature, and correspondingly the coupling between the
spans and pulleys also increases,@11#. The increased belt-pulley

Fig. 3 Span 2 transversely dominant mode „«Ä0… for increas-
ing belt bending stiffness. The dimensionless natural fre-
quency for «Ä0 is vÄ3.0951. „a… «Ä0.01, „b… «Ä0.04, „c… «Ä0.07,
„d… «Ä0.1. sÄ0, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1, b1Ä135.79°, b2
Ä178.74°.
116 Õ Vol. 71, JANUARY 2004
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coupling causes the strange phenomenon because for transve
dominant modes the increased belt-pulley coupling is similar
relaxing constraints at the boundaries of the dominant span.
merical experiments confirm that if the steady state is fixed~let
the steady state terms marked by asterisk in the Eqs.~39!–~45! be

Fig. 4 Span 3 transversely dominant mode „«Ä0… for increas-
ing belt bending stiffness. The dimensionless natural fre-
quency for «Ä0 is vÄ1.9968. „a… «Ä0.01, „b… «Ä0.04, „c… «Ä0.07,
„d… «Ä0.1. sÄ0, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1, b1Ä135.79°, b2
Ä178.74°.

Fig. 5 Natural frequency spectrum for varying belt bending
stiffness. sÄ0, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1, b1Ä135.79°, b2
Ä178.74°.
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assumed constant!, then all the natural frequencies increase as
belt bending stiffness is increased~Fig. 6!, which is consistent
with our physical intuition. If the changing belt bending stiffne
only influences the steady state while the value of«2 in ~39!–~45!
is held fixed, then Fig. 6 shows that some natural frequen
decrease due to the increased belt-pulley interactions. Event
for large enough«, further increases in bending stiffness lead
monotonic increases in all natural frequencies~Fig. 5!.

The relationship between the dimensionless natural frequen
and belt speed is shown in Fig. 7. When the bending stiffnes
small ~«50.01!, the spectrum is similar to the string model. Th
frequencies of transversely dominant modes decrease quickly
speed, but speed has little influence on the natural frequencie
rotationally dominant modes. As the bending stiffness increase
«50.1, the influence of speed on the natural frequencies is m
edly smaller, and there is no clear distinction between rotation
dominant modes or transversely dominant modes. Notice tha
natural frequencies do not decrease monotonically as they do
the single span moving string or beam systems.

Fig. 6 Natural frequency spectrum for varying belt bending
stiffness. , fix steady state; , fix bending stiffness
value in „39…–„45…. sÄ0, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1, b1
Ä135.79°, b2Ä178.74°.

Fig. 7 Natural frequency spectrum for varying belt speed.
, «Ä0.1; , «Ä0.01. k sÄ4, gÄ400, P1ÄP2ÄP3Ä1, b1

Ä135.79°, b2Ä178.74°.
Journal of Applied Mechanics
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Generally, only four or five basis functions per span are nee
for all natural frequencies of practical importance to converge
within 3%. More terms are needed for increasing speed and hig
natural frequencies, as discussed by Jha and Parker@21#. For the
string model critical speeds51 andv,11 in Fig. 7, six terms per
span are needed for the eight natural frequencies to converg
to within 3% with «50.1; for «50.01, 16 terms per span ar
required for the 16 natural frequencies.

Through changing the orientation of the tensioner arm, the
fects of the tensioner effectivenessh on the natural frequencie
are described in Figs. 8 and 9.h is an indicator of the ability of
the tensioner to maintain constanttractive belt tension despite
changes in belt speed or accessory torques@7#. For a generaln
pulley system with the tensioner pulley as pulleyi, one has,@11#,

h5
1

( j 51
n l j

g
F PiS 1

l i 21

cos2 b11
1

l i

cos2 b2D 1ks

~sinb12sinb2!2
G11

.

(52)

Fig. 8 Natural frequency spectrum for varying belt speed.
, hÄ0 „b1Ä68.53°, b2Ä111.47°…; , hÄ0.78 „b1

Ä135.79°, b2Ä178.74°…. «Ä0.04, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1.

Fig. 9 Natural frequency spectrum for varying tensioner effec-
tiveness h. , «Ä0.1; , «Ä0.01. sÄ0, k sÄ4, gÄ400,
P1ÄP2ÄP3Ä1.
JANUARY 2004, Vol. 71 Õ 117
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For well-designed systems,h is close to unity, while for poorly
designed systems,h is away from unity. Figure 8 shows how th
tensioner effectivenessh influences the relationship between nat
ral frequencies and belt speed. For largerh50.78, the decrease
rate of the natural frequencies with belt speed is smaller than
for h50 because of the stronger ability of the tensioner to co
pensate for the tension loss induced by belt speed due to cen
gal action~h50 andh50.78 can be visualized in Fig. 10!. Similar
behavior occurs with the string model,@5#. Further inspection of
Figs. 7 and 8 reveals that for the properly designed system
h50.78, the decrease rate of the natural frequencies with spe
Fig. 8 ~«50.04! is between the two cases«50.01 and«50.1 in
Fig. 7. This is because«50.04 falls in the transition region be
tween the string and beam models. Speed has its strongest
for small «.

Figure 9 shows the relationship between natural frequen
and the tensioner effectivenessh for different bending stiffness
The variation ofh is caused solely by changing the tension
orientation b1,2. For small bending stiffness, only rotational
dominant modes are influenced significantly while transve
dominant modes are insensitive to the orientation of the tensio
This agrees with conclusions from the string model,@5,8#. As h
increases, the natural frequencies of rotationally dominant mo
increase. Physically, this is because largerh means the corre-
sponding tensioner orientation provides increased resista
torque from the belts and makes it more difficult for the tensio
to rotate around its pivot~Fig. 10!. This increases the effectiv
rotational stiffness of the tensioner. Transverse dominant mo
are insensitive to this effect.

For significant bending stiffness~or small tension!, all natural
frequencies are affected when the tensioner effectivenessh is
changed~Fig. 9!. Furthermore, the dominant tendency of the na
ral frequencies is to decrease withh, in contrast with the small«
case. These differences result because of the expanded vibr
mode coupling that leads to all spans and pulleys deflecting
given mode rather than the division into rotational and transve
dominant modes. For these coupled modes with modal deflect
distributed throughout the system, there are two competing eff
as h increases. The first is described above for the small« case

Fig. 10 Fifth vibration mode for varying tensioner effective-
ness h. „a… hÄ0 „b1Ä68.53°, b2Ä111.47°…, „b… hÄ0.5 „b1
Ä95.53°, b2Ä138.47°…, „c… hÄ0.78 „b1Ä135.79°, b2Ä178.74°….
«Ä0.1, sÄ0, k sÄ4, gÄ400, P1ÄP2ÄP3Ä1.
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and tends to increase the natural frequencies for modes with
preciable tensioner rotation. With higher bending stiffness,
opposing effect is from the resistance of the tensioner to defl
tions of the endpoints of the spans adjacent to the tensioner.
small h, the tensioner orientation is such that it strongly resi
translational deflection of the tensioner pulley in the radial dir
tion that span deflections want to move it because the rigid
sioner arm can not be compressed~Fig. 10~a!!. In contrast, for
largerh the tensioner resistance to span endpoint deflection co
primarily from the compliant tensioner spring~Fig. 10~c!!. Con-
sequently, this effect causes the natural frequencies of cou
belt-pulley modes to decrease for increasingh. This second effect
tends to dominate the first one noted above as seen by the dec
ing natural frequencies in Fig. 9. The exceptions are modes do
nated by tensioner rotation such as the lowest natural frequenc
Fig. 9. Still, the increase rate of this natural frequency is marke
smaller for«50.1 than«50.01 because of the additional couplin
with the adjacent spans and the increased resistance to span
point deflection for smallh.

Summary and Conclusions
Dynamic analysis is conducted for serpentine belt syste

when belt bending stiffness is modeled. Free vibration about n
trivial steady motions that result from belt bending stiffness
examined. A mathematical reformulation of the governing eq
tions leads to an extended operator form that has the mathema
structure of a conservative gyroscopic system. In contrast to p
formulations, the mixed continuum/discrete boundary conditio
at the interface between the belt and the tensioner pulley are
placed by trivial boundary conditions for all spans, includin
those adjacent to the tensioner. This transformation admits an
ficient spatial discretization using Galerkin’s method applied
the structured extended operator form. The method is numeric
robust and free of missing/false natural frequency concerns, w
at the same time preserving the conservative gyroscopic char
of the discretized model. Dynamic response calculations using
discretized model follow naturally.

Belt bending stiffness introduces a linear coupling between
belts bounded by fixed pulleys and the rest of the system.
appreciable bending stiffness~or low tension!, all modes are spa-
tially distributed and involve transverse deflections of all spans
addition to the pulley rotations, in contrast to zero bending st
ness models where the modes divide into rotational pulley
transverse span modes. This modal coupling provides a me
nism whereby pulley rotation, which is directly excited by engi
torque/speed fluctuations, couples to transverse vibration o
spans, including those bounded by fixed centers. This provide
explanation for the span vibrations observed in practice that
tentially lead to noise and belt fatigue failure. This mechani
applies at engine idle speeds where parametric excitation me
nisms based on higher frequency excitation,@6,13,14#, do not ap-
ply.

While the natural frequencies generally increase with bend
stiffness, the changes are not monotonic. For small bending s
ness, some natural frequencies initially decrease. This unu
phenomenon results because the system steady state change
bending stiffness in a way that tends to increase compliance
deflections about steady state.

Belt speed has reduced effect on the natural frequencie
bending stiffness increases within practical ranges. In contras
the string model where only transverse dominant modes are
fected by speed, all natural frequencies change with spee
bending stiffness induced modal coupling increases. Un
single-span moving string and beam models, serpentine d
natural frequencies do not decrease monotonically with speed

For systems with small bending stiffness, changing the t
sioner orientation to increase the tensioner effectivenessh in-
creasesthe natural frequencies of rotationally dominant mod
while having little influence on the natural frequencies of tran
Transactions of the ASME
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versely dominant modes. For systems of large bending stiffn
tensioner orientation influences all natural frequencies and, for
example system, tends todecreasethem ash increases.
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Aeroelastic Flutter Mechanisms
of a Flexible Disk Rotating in an
Enclosed Compressible Fluid
The aeroelastic stability of a thin, flexible disk rotating in an enclosed compressible
is investigated analytically through a discretization of the field equations of a rota
Kirchhoff plate coupled to the acoustic oscillations of the surrounding fluid. The disc
zation procedure exploits Green’s theorem and exposes two different gyroscopic e
underpinning the coupled system dynamics: One describes the gyroscopic couplin
tween the disk and acoustic oscillations, and another arises from the disk rotation
discretized dynamical system is cast in the compact form of a classical gyroscopic s
and acoustic and disk mode coupling rules are derived. For the undamped sy
coupled structure-acoustic traveling waves can destabilize through mode coales
leading to flutter instability. A detailed investigation of the effects of dissipation aris
from acoustic and disk damping predicts previously unknown instability me
nisms for this system. The results are expected to be relevant for the design o
speed, low vibration, low-noise hard disk drives, and optical data stor
systems.@DOI: 10.1115/1.1631034#
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1 Introduction
The flow-induced vibrations of thin flexible rotating disk po

significant engineering challenges in the design of high-sp
hard disk drives, optical disks, floppy disks, turbomachinery, a
circular saws. In data storage applications, the drive towards
creased rotation speeds to maximize data throughput are con
ally challenged by flow-induced and aeroelastic vibrations. Th
vibrations contribute directly to track positioning errors of t
read/write head. Furthermore, the disks are efficient sound ra
tors, and under certain conditions the acoustic modes of the
closure amplify disk vibrations leading to significant noise em
sion from the device.

The aeroelastic stability of unenclosed rotating disks was inv
tigated in several previous works,@1–5#. However, the presen
article focuses on the flutter of rotating disks in enclosed fluid
situation more commonly observed in practice. Some works
ad hoc rotating damping operators to model the surrounding fl
@5–7#. However, a majority of the literature uses thin hydrod
namic lubrication theory to model the coupling of the disk with
thin air film, @8–12#. These models are well suited for flopp
disks or circular saws with fluid bearings where the Reyno
number in the thin air film is very small. However, most oth
applications such as hard disk drives, CD-ROM’s, and turbom
chinery, involve larger enclosures and stiffer disks. In addition,
Reynolds numbers are very high, and the Ekman boundary la
on the disk are very small compared to the enclosure dimensi
Moreover acoustic oscillations in the enclosure can couple sig
cantly to disk vibrations. For such applications, therefore, an
propriate initial model is that of a compressible potential flo
~acoustics!.

The aeroelastic stability of flexible disks rotating in an enclos
compressible potential flow was first investigated by Rensh
et al. @3#. Both theoretical predictions and experimental resu
were presented. A key conclusion in this work was that the us

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, February
2003; final revision, June 4, 2003. Associate Editor: O. O’Reilly. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
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compressible potential flow modeling of the surrounding flu
overestimates the experimentally observed flutter speeds by
eral orders of magnitude. Additionally, the underlying mech
nisms of aeroelastic flutter and issues of modal coupling of aco
tic and disk vibrations were not addressed. This work has led
general opinion in the community that compressible potential fl
is fundamentally incapable of predicting accurately aeroela
flutter in these systems.

The present work re-examines the aeroelastic flutter of a d
rotating in an enclosed compressible fluid. The main contributi
of this article are~i! to use discretization and computational tec
niques different from @3# that are better established in th
acoustic-structure interaction community, and to present for
first time the discretized equations of motion governing t
coupled rotating disk and acoustic oscillations,~ii ! to explain
clearly the coupling rules between disk vibration and fluid osc
lation modes, and to describe the process of eigenvalue veerin
this coupled structure-acoustic system,~iii ! to include systemati-
cally in the compressible flow model the effects of acoustic a
disk material damping which were neglected in@3#, ~iv! to dem-
onstrate that there are not one but three distinct aeroelastic me
nisms for the onset of traveling wave flutter in such systems,
~v! to demonstrate that the predicted flutter speeds, and mode
very much in the range of known experimental results.

2 Coupled Field Equations
A uniform, thin annular disk, clamped at inner radiusRi and

free at outer radiusRo , rotates about its axis at a constant angu
speedVd in a compressible fluid filled cavity as shown in Fig.
The field equations for the small amplitude transverse vibrati
of the rotating disk of thicknessH and mass densityrd are for-
mulated using the Kirchhoff plate theory for an isotropic, linea
elastic plate which is modified through a rotation speed depen
membrane stress field. Accordingly,E and n are the Young’s
modulus and Poisson’s ratio of the disk material, respectively.
equations governing an Eulerian description of the tim
dependent transverse deflection of the disk,W, and the compress
ible fluid oscillations are described in an inertial, ground-fix
coordinate frame (R, u, Z). The undeflected disk is located in th
planeZ50. Radial and circumferential componentssR* andsu* of
the axisymmetric membrane stress field generated by steady
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tion are derived from classical plane-stress elasticity,@13#. An
inviscid, compressible, irrotational fluid of mass densityr f and
acoustic speedco surrounds the disk. Under the above modeli
assumptions, the field equation for the rotating plate subject to
aerodynamic pressure differentialQ between the upper and lowe
face of the disk is,@4,12#,

rdH~W,TT12VdW,Tu1Vd
2W,uu!1C@W,T1VW,u#1D¹4W

2
H

R
~Rs r* W,R! ,R2

H

R2 ~su* W,u! ,u5Q (1)

where¹4 is the biharmonic operator, a comma in the subsc
denotes partial differentiation, andD5EH3/12(1-n2) is the disk
flexural rigidity. Note that the Eulerian description of the tran
verse disk deflection generates unsteady, gyroscopic, and Co
acceleration terms for each material particle. Further, the pos
definite operatorC@"# models the disk material damping. Indeed
co-rotating coordinates the termC@W,T1VW,u# represents a
positive definite co-rotating damping. In this article we chose
simple viscoelastic model for a thin plate withC@ "#
5h* D¹4("), where h* is a viscoelastic coefficient,@4#. The
wave equation governing the propagation of infinitesimal dist
bances in an initially quiescent, inviscid, compressible and irro
tional fluid is given by

¹2F5
1

co
2 F ,TT (2)

where¹2 is the Laplacian operator, andF(R,u,Z;T) is the ve-
locity potential defined throughout the fluid domain. The veloc
field u5“F, and the linearized fluid pressureP(R,u,Z;T) at
every point in the fluid is given by

P52r fF ,T (3)

Accordingly

Q5r fF ,T
a 2r fF ,T

b uZ50[r f@@F ,T##Z50 (4)

where the superscriptsa andb indicate the upper and lower cav
ties, respectively. Introduction of the dimensionless variables

r 5
R

Ro
, z5

Z

Ro
, k5

Ri

Ro
, w5

W

H
, l a,b5

La,b

Ro
,

t5
T

To
, V5VdTo , To5ArdRo

4H

D
, (5)

h5
h*

To
, s r5

To
2

rdRo
2 s r* , su5

To
2

rdRo
2 su* , f5

To

RoH
F

Fig. 1 A schematic diagram of the rotating disk in an enclosed
compressible, inviscid fluid
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leads to the following coupled partial differential equations go
erning disk and acoustic oscillations:

w,tt12Vw,tu1V2w,uu1Cd@w,t1Vw,u#1Kd@w#5L@@f ,t##z50
(6)

¹2f5
1

C2 f ,tt (7)

where

Kd@w#5¹4w2
1

r
~rs rw,r ! ,r2

1

r 2 suw,uu

Cd@w,t1Vw,u#5n~¹4w,t1V¹4w,u !.

Kd@ "# is a self-adjoint and positive definite stiffness operator
cluding membrane stress effects andCd@w,t1Vw,u# contains a
self-adjoint damping term and a circulatory term. Two key dime
sionless parameters in Eq.~6! and Eq.~7! are:

~i! L, the weighted ratio of the fluid to disk mass density

L5
rfRo

rdH
(8)

Note thatL vanishes in vacuum implying that Eq.~6! re-
duces to the governing equation of a rotating disk witho
fluid coupling.

~ii ! C, the ratio of acoustic speed of the fluid to a bendi
wave speed of the stationary disk, that is

C5
co

cb
(9)

wherecb5Ro /To5AD/rdRo
2H is the flexural wave speed

of a flexural wave of wavelength 2pRo .
The boundary conditions for a clamped-free disk are posed

terms of the nondimensional variables as in@3#. For the surround-
ing compressible fluid, normal velocities satisfy the impermea
ity boundary conditions at the rigid walls over the areaAR

52p( l a1 l b), and the normal velocity matching condition on th
disk surface over the areaAd5p(12k2). In addition, dissipation
mechanisms of the acoustic oscillations are included through
introduction of a highly absorbent wall of the cavity over the ar
AA5p ~Fig. 1!. This boundary condition is often modeled as
simple point-impedance,zA* , @14#. The boundary conditions a
each wall become

“fa,b
•n5H 0 on AR

7ẇ on Ad

2ḟa,b/zA on AA

(10)

where, n is the unit normal vector on the surface, the7 sign
indicates the opposing normal directions on the top and bot
side of the disk, andzA is the nondimensionalized acoustic impe
ance defined byzA5TozA* /r fRo .

In this study, we consider the case when there is no radial
between the disk and cylindrical rigid wall. The formulation pr
sented here can be easily extended to the case with a radial ga
this case, however, the Dirichle`t boundary conditions for the
acoustic field in the radial gap make expensive the computati
Indeed, a much larger degree-of-freedom model for the discret
system would be needed for sufficient computational conv
gence. Moreover, it can be shown that the form of the di
acoustic coupling in the discretized equations in this case rem
similar to that of the present case. For this reason we res
ourselves to the computationally simpler problem of a vanish
radial gap.
JANUARY 2004, Vol. 71 Õ 121
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3 Coupled System Discretization
In what follows, the acousto-elasticity theory developed by

Dowell et al.@14# and others, is adapted to discretize the coup
disk-cavity system. The uncoupled acoustic normal modesFn of
the upper and lower cavities correspond to the classical nor
mode solutions for a rigid cylindrical acoustic cavity,@15#. These
rigid wall-normal mode solutions satisfy the wave equation
well as the Neumann boundary conditions on all boundaries,

“

2Fn
a,b1

Ln
2

C2 Fn
a,b50 with “Fn

a,b
•n50 on A5AR1Ad1AA

(11)

whereLn is the nth uncoupled acoustical natural frequency a
Fn the corresponding normal mode. Application of Green’s th
rem to the scalar fieldFn

a
“

2fa2fa
“

2Fn
a defined in the upper

cavity volumeVa leads to,@14,16,17#,

E E E
Va

~Fn
a
“

2fa2fa
“

2Fn
a!dV

5E E
A

~Fn
a
“fa

•n2fa
“Fn

a
•n!dA. (12)

Application of the boundary conditions and Eq.~11! yields

1

C2 E
Va

@Fn
af̈a1~Ln

a!2faFn
a#dV1E

AA

Fn
a

ḟa

zA
dA52E

Ad

Fn
aẇdA.

(13a)

Similarly, accounting for the direction of the normal on the di
surface in the lower cavity,

1

C2 E
Vb

@Fn
bf̈b1~Ln

b!2fbFn
b#dV1E

AA

Fn
b

ḟb

zA
dA5E

Ad

Fn
bẇdA.

(13b)

Equations~13! can be regarded as weak forms of the origin
partial differential Eq.~7!. The velocity potentials and disk dis
placement are discretized using the rigid wall acoustic nor
modes and the in vacuo structural modes, respectively, as the
tually orthogonal, complete basis functions.

fa~r ,u,z;t !5(
n

an~ t !Fn
a~r ,u,z!, (14a)

fb~r ,u,z;t !5(
n

bn~ t !Fn
b~r ,u,z! (14b)

w~r ,u;t !5(
m

qm~ t !cm~r ,u! , (15)

where an , bn , and qm are the generalized coordinates of t
upper, lower cavity and the disk, andcm are the in vacuo struc
tural modes of the stationary disk,@18#. The subscript (n1 , n2 ,
n3) denotes n1 nodal diameter, n2 nodal circle, and n3
z-directional node number of the cavity, and (m1 , m2) denotes a
m1 nodal diameter andm2 nodal circle disk mode, respectively
Each triad (n1 , n2 , n3) is denoted simply byn and each dyad
(m1 , m2) is represented bym. Further, owing to the axisymmetr
of the domain each asymmetric basis function (n1Þ0 or m1
Þ0) is divided into the sine and cosine components. The sine
cosine components are denoted in the text and Appendix by
superscriptsS and C, respectively. Substitution of Eq.~14! and
Eq. ~15! into Eq.~13! and the use of the orthogonality of the rig
wall normal modes
122 Õ Vol. 71, JANUARY 2004
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Va,b E
Va,b

Fn
a,bFr

a,bdV5H Mn
a,b when n5r

0 when nÞr

where

Va,b5p l a,b (16)

leads to the discretized equations for the velocity potentials of
upper and lower acoustic cavities coupled to the disk:

VaMn
a

C2 @ än1~Ln
a!2an#1AA(

r
ȧrCnr

a 52Ad(
m

q̇mLnm
a

(17a)

VbMn
b

C2 @ b̈n1~Ln
b!2bn#1AA(

r
ḃrCnr

b 5Ad(
m

q̇mLnm
b

(17b)

where

Cnr
a,b5

1

AA
E

AA

Fn
a,bFr

a,b/zAdA, Lnm
a,b5

1

Ad
E

Ad

Fn
a,bcmdA

(18)

are, respectively, the components of the acoustic damping and
disk-cavity coupling coefficient submatrices.

Galerkin discretization of the disk vibration using the in vac
disk modes~Eq. ~15!! and the substitution of Eq.~14! and Eq.~15!
into Eq. ~6! produces

q̈m
C12m1Vq̇m

S1kmqm
C1hvms

2 ~ q̇m
C1m1Vqm

S !

5LAdS (
n

ȧn
CLnm

aC2(
n

ḃn
CLnm

bCD (19a)

q̈m
S22m1Vq̇m

C1kmqm
S1hvms

2 ~ q̇m
S2m1Vqm

C!

5LAdS (
n

ȧn
SLnm

aS2(
n

ḃn
SLnm

bSD (19b)

where

km5vms
2 2am2m1

2~V22bm!, vms
2 5pE

k

1

~¹̃ r
4Rm!Rmrdr

am5pE
k

1

~rs rRm,r ! ,rRmdr, bm5pE
k

1 1

r
suRm

2 dr

and

¹̃ r
45S d2

dr2 1
1

r

d

dr
2

m1
2

r 2 D 2

.

vms are the in vacuo natural frequencies of a stationary disk
am and bm are nondimensional parameters related to the sp
dependence of the membrane stresses. Additionally, the disk r
eigenfunctions are normalized,p*k

1Rm
2 rdr 51.

Combining Eq. ~17! and Eq. ~19! yields the gyroscopically
coupled discretized equations governing the rotating disk and fl
oscillations in the cavity

Mẍ1~C1G!ẋ1~K1D!x50 (20)

where

x5@an ,bn ,qm#T

M5diag@Ma ,Mb ,Mq#, C5diag@Ca ,Cb ,Cq#

G5@0,0,Laq ;0,0,2Lbq ;2Laq
T ,Lbq

T ,Gq# (21)

K5diag@Ka ,Kb ,Kq#, D5diag@0,0,Dq#

The components of the above submatrices are given in the Ap
dix. The mass and stiffness matrices are each composed of d
Transactions of the ASME
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onal block matrices of upper, lower cavities and the rotating d
Several unusual features of the coupled discretized dynamical
tem ~Eq. ~20!! are listed as follows:

1. The system features two intrinsically different gyroscop
effects inG: (Laq ,Lbq) describing the gyroscopic couplin
between disk and upper and lower acoustic cavity osci
tions andGq arising from the disk rotation. The gyroscop
coupling between structural vibrations and acoustic osci
tions of the surrounding enclosure is well known. Lord Ra
leigh referred to this effect as ‘‘gyrostatic’’ coupling,@16#.

2. The vanishing natural frequency of the fundamental acou
mode renders positive semi-definite the system stiffness
trix. However the computational difficulties introduced b
this singular stiffness matrix can be avoided through the
troduction of a Helmholtz stiffness effect,@19#.

3. The damping matrix,C, is composed of the symmetri
acoustic and disk damping submatrices. Moreover they
diagonal so long as only the end covers of the cavity
absorbent.

4. The rotating damping arises from disk fixed material dam
ing and leads to a skew-symmetric circulatory matrix,D.
Note that the disk material damping also contributes to
symmetricC matrix.

4 Computational Issues
The coupled discretized equations governing disk and acou

oscillations are a classical gyroscopic system with positive d
nite damping and circulatory terms. The resulting eigenva
problem is conveniently solved using general solution techniq
for gyroscopic systems,@20,21#. For simplicity, only the case o
identical top and bottom enclosures is derived in this work.

The orthogonality conditions~Eq. ~16!! and the expression fo
the coupling coefficients~Eq. ~18!! lead immediately to twodisk-
acoustic coupling rules:

1. The sine modes of the disk couple only with the sine mo
of cavity, and cosine modes of the disk couple only with t
cosine modes of cavity.

2. A disk and an acoustic mode couple only if their nodal
ameter numbers are identical.

These coupling rules are exploited in the subsequent computa
by breaking down the general eigenvalue problem into sev
different sets of discretized equations. Each set or family of d
cretized equations governs the dynamics of disk and acou
modes of a specific nodal diameter number. This partitioning
the discretized eigenvalue problem enables fast, accurate an
expensive computations. Once the appropriate basis function
chosen for discretization, the eigenvalues are computed in M
LAB using the state space form of the gyroscopic system,@20#.

A direct consequence of the coupled eigenvalue problem is
the system modes are no longer purely disk vibration or acou
modes. Coupled modes contain both disk vibration and acoustic
fluid oscillation components. Modes composed of mostly disk
acoustic components are referred to respectively asdiskor acous-
tic dominatedmodes.

The convergence characteristics of the computed eigenva
with increasing number of basis functions are now describ
Representative results are now presented to determine the~2,0!
disk-dominated mode frequency for a disk with parameters lis
in Table 1, while rotating in an air filled cavity ofLa5Lb

51 cm at supercritical speed,Vd540,000 rpm. The disk param
eters in Table 1 correspond to those of a commercial hard
platter. Note, however, that cavity lengths in a disk drive are u
ally somewhat smaller than 1 cm. For a specific nodal diam
number mode, eigenvalues are calculated using as basis func
N disk modes andN2 acoustic modes possessing the same no
diameter number. For example, to determine two nodal diam
modes of the system the~2,0!, ~2,1!, . . . , (2,N) disk modes, and
Journal of Applied Mechanics
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~2,0,0!, ~2,0,1!, . . . , (2,0,N), . . . , (2,N,N) acoustic modes are
used as basis functions in the computation. Furthermore, bec
both the sine and cosine modes in the upper and lower cavities
included in the discretization, the total number of basis functio
considered in this computation becomes 23(N12N2). Figures
2~a! and~b! show the variation withN of the~2,0! disk-dominated
mode frequencies. Note that at supercritical speed the con
gence of the~2,0! disk-dominated forward traveling wave~FTW!
and that of the reflected traveling wave~RTW! are to be consid-
ered. The results show good convergence characteristics for
FTW and RTW frequencies. A choice ofN55 enables the predic
tion to within 0.02% of the asymptotic value of the~2,0! disk-
dominated mode frequencies atVd540,000 rpm. Interestingly,
predictions of RTW frequencies converge monotonically from b
low while those of the FTW converge from above. Similar resu
have also been reported recently in the literature with regard
supercritical gyroscopic systems,@22#. Computations were also
performed to determine the convergence characteristics of o
disk-dominated modes and also of acoustic-dominated mode
several speeds with similar results. Based on this detailed con
gence study,N55 was chosen for all subsequent computatio
This choice enabled the prediction with sufficient accuracy of
lowest five disk and acoustic dominated modes. However, for v
small air gaps increasing number of basis functions are neede
ensure sufficient accuracy.

5 Stationary Disk
Before investigating the dynamic behavior of a rotating disk

is useful to understand the coupling between the stationary
and the acoustic cavity. Although the gyroscopic term due to
tation (Gq in Eq. ~21!! vanishes for the stationary disk, the dis
couples with the acoustic modes due to acoustic-structure inte
tion. The frequencies of the disk and acoustic-dominated axis
metric modes~zero nodal diameter modes! with respect to the
nondimensional cavity length,l , ~air gap! are shown in Fig. 3.

Several key observations can be made from Fig. 3. First,
cause the cavities on either side of the disk are identical (l a5 l b

Table 1 Disk and acoustic cavity parameters used in most
computations. These parameters correspond approximately to
those of a hard disk drive platter.

Ro 4.74 cm Outer radius
Ri 1.56 cm Inner radius
H 0.790 mm Disk thickness
rd 2700 kg/m3 Disk density
r f 1.2 kg/m3 Air density
E 71 GPa Young’s modulus
n 0.33 Poisson’s ratio
co 343 m/sec Speed of sound in air

Fig. 2 Convergence characteristics of the two nodal diameter
mode at supercritical speed „40,000 rpm …. Each N corresponds
to use of 2 „N¿2N2

… basis functions in the discretization.
JANUARY 2004, Vol. 71 Õ 123



h

-
e

t
p

e
r

-
t
t
t

i

a

n
c

n

stic
ro-

na
en-
isk
p of

the
hed
re-
5l), there exist in-phase and out-of-phase acoustic modes~see for
example the~0,1,0! acoustic mode in Fig. 3!. In-phase modes
describe synchronous variation of acoustic pressure in upper
lower cavities, and do not couple to disk vibration. On the ot
hand, out-of-phase acoustic modes couple directly to disk vib
tion. Clearly if the cavities are not identical, even the in-pha
modes could couple to disk vibration.

Secondly,eigenvalue veering phenomena occur whenever
out-of-phase acoustic mode frequency approaches a disk m
frequency of the same nodal diameter number. For example the
~0,0,1! acoustic-dominated mode frequency decreases with
creasing air gap and veers with the~0,1! disk-dominated mode
near l ;0.8. Following this the~0,1! disk-dominated mode re
sembles suddenly the~0,0,1! acoustic-dominated mode. Th
veered~0,0,1! mode in turn encounters the~0,0! disk dominated
mode atl;5 leading to yet another veering phenomenon.

Finally, the numerical results indicate that the disk-domina
zero-nodal diameter mode~0,0! frequency increases as air ga
decrease. This is because for small air gaps the uncoupled aco
frequencies are very high and the acoustic coupling app
mainly as an added Helmholtz stiffness term. However, for la
gaps, the~0,0! disk-dominated modes veer when they encoun
the ~0,0,1! acoustic-dominated mode.Note that as a direct conse
quence of the coupling rules described earlier, the Helmholtz s
ness effects only the axisymmetric modes of the coupled sys.

In contrast to the axisymmetric modes, the variations of
natural frequencies withl of the asymmetric modes of the couple
disk-cylindrical acoustic cavity system are shown in Fig. 4. Fir
the frequency of the~1,0! disk-dominated mode decreases w
decreasing air gaps. Because such modes are not affected b
Helmhotz stiffness, they remain coupled weakly to acous
modes of the same nodal diameter. However, because the freq
cies of most acoustic modes increase with decreasing air gaps
weak coupling appears as an added mass effect on the~1,0! disk-
dominated mode. Second, in contrast to the asymmetric c
strong eigenvalue veering can occur at small air gaps. For inst
the ~1,1! disk dominated mode and the~1,0,0! acoustic dominated
out-of-phase mode veer whenl;1022.

The presence of eigenvalue veering in such coupled struct
acoustic systems is of critical importance because small cha
in system parameters can lead to the sudden change of a stru
dominated mode into an acoustic-dominated mode and vice ve
Such phenomena not only play an important role in the desig

Fig. 3 Coupled natural frequencies as a function of nondimen-
sional cavity length, l , of the axisymmetric acoustic-structural
modes of the stationary disk in a cylindrical acoustic cavity
124 Õ Vol. 71, JANUARY 2004
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low-noise rotating disk systems but also in the onset of aeroela
instabilities. The latter phenomenon is now discussed for the
tating disk system.

6 Rotating Disk „No Damping…
Disk rotation complicates significantly the coupling phenome

of the disk-cylindrical acoustic cavity system. The coupled eig
values depend on the gyroscopic terms arising from both d
rotation speed as well as acoustic-structure coupling. An air ga
1 cm is chosen for all subsequent computations.

The speed dependence of the axisymmetric modes of
coupled disk-acoustic cavity system is shown in Fig. 5. Das
lines indicating the uncoupled disk frequencies, that is disk f
quencies in the absence of fluid-structure interaction (L50) are

Fig. 4 Coupled natural frequencies as a function of nondimen-
sional cavity length, l , of the asymmetric acoustic-structural
modes of the stationary disk in a cylindrical acoustic cavity.
Note that all frequencies are repeated due to the axisymmetry
of the domain.

Fig. 5 Variation with nondimensional speed of the natural fre-
quencies of axisymmetric modes of the coupled rotating disk,
acoustic cavity system. System parameters are listed in Table 1
and a cavity depth of 1 cm is chosen for the computation „solid
line: coupled freq., dashed line: uncoupled freq. ….
Transactions of the ASME
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also plotted in Fig. 5. The rotational stress terms in the stiffn
operator ensure that the disk axisymmetric mode frequencies
crease with increasing rotation speed. However, eigenvalue v
ing phenomena occur whenever a disk-dominated mode frequ
approaches that of an out-of-phase acoustic-dominated mode
instance the~0,1! disk-dominated mode veers with the~0,1,0! out-
of-phase acoustic mode nearV5100. Other examples of eigen
value veering can also be seen in Fig. 5. This implies that d
dominated system modes can change suddenly at certain sp
into acoustic dominated modes and vice versa. Further the sp
at which eigenvalue veering occurs can be predicted in the
lowing simple manner. Uncoupled axisymmetric disk frequenc
increase with rotation speed while the uncoupled axisymme
acoustic mode frequencies are independent of rotation sp
Therefore eigenvalue veerings of axisymmetric modes oc
whenever the uncoupled disk frequencies nearly equal the
coupled acoustic frequencies. In Fig. 5, this is indicated by
intersections of the uncoupled disk frequency loci with the
phase acoustic frequency loci.

The variation with speed of the asymmetric mode frequenc
of the system is shown in Fig. 6. As expected, the disk-domina
modes split into forward and backward traveling waves~FTW and
BTW! and the BTW frequencies decrease and vanish at thei
spective critical speeds. The lowest critical speed at nondim
sionalV;55 occurs for the~3,0! disk-dominated mode. At super
critical speed a BTW is referred to as a reflected traveling w
~RTW!. The RTW frequencies increase from zero beyond the
spective critical speeds. Several other unique features of
coupled system in Fig. 6 are now described.

First, the repeated out-of-phase acoustic modes are also
into FTW and BTW. For instance, the frequency of one of t
~1,0,0! out-of-phase acoustic modes increases with rotation sp
while the other frequency of the~1,0,0! mode decreases as th
disk rotates. As in the case of disk modes, these can be interp
as the forward and backward traveling waves of the acoustic
ity modes. The underlying physics of this phenomenon lies in
coupling between the out-of-phase acoustic dominated mode
disk dominated modes of the same nodal diameter number. I
disk dominated modes split into FTW and BTW so will the acou
tic dominated modes.

Fig. 6 Variation with nondimensional speed „0ËVË150… of
the natural frequencies of axisymmetric modes of the coupled
rotating disk, acoustic cavity system. This computation is per-
formed for the undamped system, with system parameters
listed in Table 1 and a cavity depth of 1 cm is chosen for the
computation.
Journal of Applied Mechanics
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Secondly, when the FTW frequency of a disk-dominated mo
encounters an acoustic-dominated mode frequency of the s
nodal diameter number, the disk-dominated mode veers into
acoustic-dominated mode. For example, the~1,0! FTW disk-
dominated mode veers strongly atV;95 into an acoustic-
dominated~1,0,0! mode and its frequency approaches that of
uncoupled~1,0,0! acoustic mode. In other words, acoustic mo
frequencies act as barriers for FTW disk dominated mode frequ
cies and force the disk-dominated FTW frequencies to veer
acoustic dominated FTWs.

Thirdly, as the rotation speed increases further in the superc
cal range, the frequencies of the RTW coalesce with the acou
dominated mode frequencies~Fig. 7!. For example the~2,0! disk-
dominated RTW coalesces with the~2,0,0! acoustic-dominated
FTW at V;770, the~3,0! disk-dominated RTW with the~3,0,0!
acoustic-dominated FTW atV;440, and so on. This mode coa
lescence leads to the onset of traveling wave flutter over a ce
speed range, and a pair of eigenvalues moves into the right h
complex plane.

Several conclusions can be made from Fig. 7 about the na
of the mechanism in the undamped system that induces trave
wave flutter:

1. For each nodal diameter number, the traveling wave flu
instability occurs over the range of speed beyond which
specific mode restabilizes.

2. The one nodal diameter mode does not undergo flutter in
bility. Because this mode has no critical speed and the s
tem stiffness remains positive definite for all speeds in t
mode, @23#, the ~0,1! mode remains stable for all rotatio
speeds.

3. The~2,0! mode has the largest speed range of instability a
this range decreases with increase in nodal diameter num
of the unstable wave.

4. Interestingly, the greater the nodal diameter number of
mode, the lower its flutter speed. The lowest speed at wh

Fig. 7 Variation with nondimensional speed „0ËVË1000… of
the real and imaginary parts of the eigenvalues of axisymmetric
modes of the coupled rotating disk, acoustic cavity system.
This computation is performed for the undamped system, with
system parameters listed in Table 1 and a cavity depth of 1 cm
is chosen for the computation.
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flutter occurs in this case seems to asymptote toV;320.
Note that the lowest critical speed of the disk isV;55. This
implies that while it is possible to describe a flutter spe
beyond with the disk is unstable, it is impossible to s
exactly which mode shape destabilizes first. From the co
putational results this first instability is likely to occur in
very high nodal diameter number mode.

5. Because the traveling wave instability occurs from the c
lescence of acoustic and disk-dominated traveling wav
the unstable wave itself is neither disk nor acoustic do
nated. The unstable wave then appears as a cou
structural-acoustic traveling wave rotating in the same dir
tion as the disk, albeit slower than the disk.

6. Other instabilities caused by higher mode coalescence
also occur, although they are not shown in Fig. 7. For
ample, flutter instability caused by the mode coalescenc
~5,0! and ~5,1,0! waves occurs at a higher rotation spe
than for the instability involving a coalescence of~5,0! and
~5,0,0! waves.

The variation of the instability regions with respect to the no
dimensional parametersL and C are shown in Fig. 8. At a par
ticular value ofL andC, a flutter instability of a traveling coupled
acoustic-structural wave occurs over a finite speed range.
speed range is different for different nodal diameter modes. In
limiting case, in vacuumL→0 and the instability regions vanish
On the other hand, the flutter speeds generally increase with
creasingC values. This occurs because higherC values result in
higher cavity frequencies relative to disk frequencies. The gre
the C value, the higher the supercritical speed at which mo
coalescence occurs.

This completes the discussion of the instability mechanism
the rotating disk-cylindrical acoustic cavity system in the abse
of dissipation.

7 Effects of Dissipation
In the presence of disk and acoustic damping, the system

namics become more complicated than for undamped case
cussed earlier. This is clearly a more practically relevant scena
The effects of such dissipative mechanisms are now studie

Fig. 8 Variation of nondimensional flutter speed with L and C.
These instability regions are plotted for the undamped system
where hÄ0 and zAÄ infinity.
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detail in the following order~a! the effects of acoustic dampin
alone,~b! the effects of disk damping alone, and~c! the effects of
combined disk and acoustic damping.

7.1 Acoustic Damping Alone. Acoustic damping arises in
the model from the presence of a sound absorbing material on
top and bottom ends of the cylindrical enclosure~Eq. ~10!!. In the
presence of acoustic damping only, the submatricesCq , Dq50
andCa5CbÞ0 in Eq. ~21!. This results in a classical gyroscop
system with positive definite damping. In the absence of t
damping term, the system loses positive definiteness at its
critical speed and is gyroscopically stabilized immediately beyo
critical speed. According the to the Kelvin-Tait-Chetaev theore
@24#, therefore the inclusion of the positive-definite acous
damping destabilizes the system beyond its first critical spe
That is, the disk-dominated RTW undergoes a flutter instabi
exactly at critical speed. Once the flutter is initiated, the z
equilibrium remains unstable for all supercritical speeds. A
clearly, the first flutter speed of the coupled system correspond
the first critical speed, in this case that of the~3,0! disk-dominated
mode.

This prediction is confirmed numerically in Fig. 9, which show
the variation with rotation speed of the eigenvalues of the th
nodal diameter modes. The system parameters are listed in Ta
and the air gap is chosen to be 1 cm as before. A nondimensi
impedance value ofzA54.783105 is chosen for the computation
As expected the RTW of the~0,3! mode destabilizes exactly a
critical speed. Further beyond this critical speed at least one
of eigenvalues remains in the complex right half-plane. Seve
conclusions can be drawn from Fig. 9:

Fig. 9 Variation with nondimensional speed „0ËVË700… of
the real and imaginary parts of the eigenvalues of three nodal
diameter modes of the coupled rotating disk, acoustic cavity
system in the presence of acoustic damping alone induced by
sound absorbing wall „zAÄ4.78Ã105

…. System parameters
listed in Table 1 and a cavity depth of 1 cm is chosen for the
computation.
Transactions of the ASME
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1. The disk destabilizes by a traveling wave flutter of adisk
dominated~3,0! RTW. This corresponds to the mode wit
the lowest critical speed. Recall that in the absence of da
ing, the unstable wave contains both disk and acou
components.

2. Unlike the undamped case, the zero equilibrium remains
stable for all supercritical speeds.

3. Interestingly, however, the instability at critical speed can
be described as a classical Hopf bifurcation, for two reas
~i! a pair of eigenvalues moves into the right half-plane w
zero imaginary parts, and~ii ! the instability also violates the
nonzero ‘‘speed’’ eigenvalue crossing condition for a Ho
bifurcation, becausedl/dV50 at the instability,@25#.

In this mechanism, the system destabilizes through disk do
nated flutter when the system stiffness matrix loses positive d
niteness at the system critical speeds. Because the disk-fluid
pling does not appear in the stiffness matrix, the critical spee
the disk is independent of the properties of surrounding flu
Thus the nondimensional flutter speed and mode do not cha
with respect to the nondimensional parametersL andC.

7.2 Disk Damping Alone. In the absence of acoustic dam
ing, the dissipation arises from disk material damping alone.
effect of this dissipation mechanism on the aeroelastic stabilit
the coupled disk-cavity system is now investigated. The real
imaginary parts of the eigenvalues of the three nodal diam
system modes as a function ofV are shown in Fig. 10, with the
viscoelastic coefficienth51.76631023. The variation withV of
the natural frequencies of the disk with material damping alo
are nearly identical to those of the system with acoustic damp
alone~Fig. 9!. However, upon closer examination, the real part
the eigenvalues in Fig. 10 behave completely differently from t

Fig. 10 Variation with nondimensional speed „0ËVË700… of
the real and imaginary parts of the eigenvalues of three nodal
diameter modes of the coupled rotating disk, acoustic cavity
system in the presence of disk damping alone induced by vis-
coelastic disk material „hÄ1.766Ã10À3

…. System parameters
listed in Table 1 and a cavity depth of 1 cm is chosen for the
computation.
Journal of Applied Mechanics
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in Fig. 9. It is found that with increasingV the FTW disk domi-
nated~3,0! mode frequency approaches the three nodal diam
acoustic dominated frequency. NearV;100 the disk-dominated
~3,0! mode veers to a near-speed independent natural freque
and in the process of veering becomes an acoustic-domin
mode. Shortly thereafter, this acoustic dominated~3,0! FTW be-
comes unstable atV;180.

The flutter instability in the presence of disk material dampi
alone is completely different from the instability mechanisms
the absence of dissipation or in the presence of acoustic dam
alone:

1. In contrast to the other previous mechanisms, this flu
instability takes the form of anacoustic-dominatedFTW.
Once unstable, the equilibrium continues to remain unsta
at higher speeds.

2. For the chosen system parameters, the instability occur
an intermediate speed between the flutter speed of the s
mode in the absence of any dissipation~Fig. 7! and in the
presence of acoustic damping alone~Fig. 9!.

3. This instability represents a classical Hopf bifurcation b
cause at this flutter speed a pair of eigenvalues corresp
ing to an acoustic dominated FTW cross over to the rig
half-plane with nonzero imaginary part and nonze
‘‘speed.’’ This is a particularly nonintuitive result given tha
disk material damping usually suppresses rotating d
instabilities.

To understand the underlying physics of this interesting res
consider the following argument. Disk material damping lea
effectively to a damping that rotates with the disk,@12#. When
viewed from a ground fixed reference frame, this damping c
tributes in Eq.~20! to the symmetric damping matrixC as well as
to skew-symmetric circulatory matrix,D. However, upon recast
ing the discretized equations of motion~Eq. ~20!! in a co-rotating
frame, the disk material damping is essentially a symmetric p
tive definite damping. Two conclusions follow immediately. Firs
in the co-rotating frame, the acoustic cavity is no longer station
but rotates in a direction opposite to that of the disk. This gen
ates gyroscopic terms in the acoustic cavity oscillations. The
tating acoustic cavity then suffers critical speeds with vanish
traveling wave frequencies. Second, the disk material damp
then provides a symmetric positive definite damping for t
acoustic dominated traveling waves. Once again, invoking
Kelvin-Tait and Chetaev theorem, this implies that in the prese
of disk material damping, an acoustic dominated traveling wa
destabilizes at the critical speed of the rotating cavity. The im
cation therefore is that atV;180 in Fig. 10 flutter occurs exactly
at the critical speed of the acoustic dominated three nodal di
eter mode.

To confirm this hypothesis the discretized equation~Eq. ~20!!
are recast in the co-rotating frame using the following tim
dependent transformation

S an1n2n3

C ~ t !

an1n2n3

S ~ t !D 5S cosn1Vt 2sinn1Vt

sinn1Vt cosn1Vt
D S ān1n2n3

C ~ t !

ān1n2n3

S ~ t !D
(22a)

S bn1n2n3

C ~ t !

bn1n2n3

S ~ t !D 5S cosn1Vt 2sinn1Vt

sinn1Vt cosn1Vt
D S b̄n1n2n3

C ~ t !

b̄n1n2n3

S ~ t !D
(22b)

S qm1m2

C ~ t !

qm1m2

S ~ t !D 5S cosm1Vt 2sinm1Vt

sinm1Vt cosm1Vt
D S q̄m1m2

C ~ t !

q̄m1m2

S ~ t !D
(22c)

where the bar denotes coordinates in co-rotating frame, and
resulting eigenvalue dependence onV is plotted in Fig. 11 for the
same system parameters as those used in Fig. 10. The subscr¯
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and B̄in Fig. 11 stand, respectively, for traveling waves rotating
the same sense as the acoustic cavity or opposed to it, w
viewed in the co-rotating frame. For example, the (3,0)B̄ mode in
Fig. 11 is essentially the same as the (3,0)F mode in Fig. 10.
Similarly, the (3,0,0)F

out mode in ground-fixed frame is identical t

the (3,0,0)
B̄

out
mode in co-rotating frame.

From Fig. 11 it is clear that the acoustic modes split into FT
and BTW components. Further the three nodal diameter acou
dominated traveling wave destabilizes exactly at the critical sp
of this acoustic mode when viewed in a co-rotating frame. In
estingly therefore, the lowest flutter speed and corresponding
ter mode in the presence of disk material damping alone are
tated by the lowest critical speed of the acoustic cavity. Note
the natural frequencies of the acoustic modes and therefore
critical speeds also depend on cavity dimensions. Therefore
flutter speed and mode predicted by this instability mechan
can be modified significantly through variations in the enclos
geometry.

In addition, because the critical speed of the acous
dominated mode is dependent on the properties of surroun
fluid, the onset of flutter changes with respect to the nondim
sional parametersL andC. This dependence is described in Fi
12. In vacuum asL→0, flutter speed increase rapidly and occur
infinite rotating speeds while in a dense fluid the system beco
unstable at lower rotation speeds due to stronger disk-cavity
plings. Furthermore, because the uncoupled natural frequenc
acoustic cavity is linearly proportional to the acoustic wave spe
the flutter speed in this mechanism varies linearly with the non
mensional wave speed,C. This completes the discussion of th
flutter mechanism in the presence of disk damping alone.

Fig. 11 Variation with nondimensional speed „0ËVË300… of
the real and imaginary parts of the eigenvalues of three nodal
diameter modes in co-rotating frame, of the system in the pres-
ence of disk damping alone induced by viscoelastic disk mate-
rial „hÄ1.766Ã10À3

…. System parameters listed in Table 1 and
a cavity depth of 1 cm is chosen for the computation.
128 Õ Vol. 71, JANUARY 2004
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7.3 Combined Disk and Acoustic Damping. In the pres-
ence of both disk and acoustic damping, flutter speed is contro
directly through interplay of acoustic cavity and disk damping.
investigate this effect, the flutter speeds of different nodal dia
eter modes of the system are plotted in Fig. 13 as a function of
parameterzAh, the ratio of nondimensional disk material dam
ing to nondimensional acoustic damping. The results are plo
for a fixed value ofzA54.783105. When h is small ~low disk
damping! or zA is small ~high acoustic cavity damping!, onset of
flutter occurs in a disk-dominated RTW slightly above the low

Fig. 12 Variation of nondimensional flutter speed with L and
C. These instability regions are plotted for the case of h
Ä1.766Ã10À3 and zAÄ infinity.

Fig. 13 Variation of nondimensional flutter speed with the
nondimensional ratio of disk to acoustic damping zAh. These
instability regions are plotted for zAÄ4.78Ã105.
Transactions of the ASME



e

s

n

p

-

d
t

a

cil-
f a
ory
dis-

ns
to

ota-
of-
clo-

d in-
isk

isk-
lue
dden
riti-
ility
lead-

gh
ame

ta-
the
est

ity
rial

flut-
rs

ted
s the
for
mp-
the

le
un-

sk-
e of
oth
ely
ate

re-
ing

the
r of
et of

ith

ave
y.
en

oth
tter
or

ty-
tudy

the

Na-
critical speed of the disk, and in the corresponding mode. T
mechanism is identical to the flutter mechanism discussed ea
with acoustic damping alone. On the other hand, whenh is large
~high disk damping! or zA is large~low acoustic cavity damping!,
the system flutters first in an acoustic dominated FTW with a v
high nodal diameter number. For intermediate values ofzAh the
flutter speeds actually increase and approach the flutter sp
encountered from mode coalescence in the undamped system

The variation of the instability regions with respect to the no
dimensional parametersL andC are shown in Fig. 14. The result
are plotted for fixed values ofzA* 5153106 while h* 53.2
31026 in Fig. 14~a! and ~b!, andh* 53.2310212 in Fig. 14~c!
and (d). The nondimensional ratios of disk to acoustic dampi
zAh, in Fig. 14~b! and in Fig. 14~d!, are 844.17 and 8.441
31024, respectively. Note, however, that the nondimensional
rametersL andzA are related each other. For this reason asL is
varied in Fig. 14~a! and~c!, the value ofzA also changes. Specifi
cally the nondimensional ratiozAh varies in the range 675
;1013 in Fig. 14~a! and from 6.731024;0.101 in Fig. 14~c!. In
spite of this variation, Fig. 14~a! corresponds to a situation wher
disk damping dominates acoustic damping and Fig. 14~c! corre-
sponds to the case where the acoustic damping dominates the
damping. As expected the instability regions in Fig. 14~a! and~b!
are similar to the case of disk damping alone~Fig. 12!. Similarly,
the instability region in (d) resembles the case of acoustic dam
ing alone. However, the instability region in Fig. 14~c! is different
from the case of acoustic damping alone. This is because
nondimensional acoustic impedancezA is increases as theL is
decreased and cannot be regarded as negligible at low fluid
sities. It is interesting to note also that asL decreases the firs
flutter mode can actually change from the~3,0! disk dominated to
~4,0! disk-dominated RTW.

8 Conclusions and Discussion
The instability mechanisms of a flexible disk rotating in

enclosed compressible fluid are investigated in this study. Ga
kin’s method and Green’s theorem are used to derive the

Fig. 14 Variation of nondimensional flutter speed with L and
C in the presence of both acoustic and disk damping. These
instability regions are plotted for the case of zA*Ä15Ã106 and
h*Ä3.2Ã10À6

„in a, b …, and h*Ä3.2Ã10À12 in „c , d …. „a… and
„b … correspond to a system where disk damping dominates
acoustic damping while „c … and „d … correspond to a situation
where acoustic damping effects are dominant.
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cretized, linear equations governing rotating disk and fluid os
lations. The discretized dynamical system has the form o
classical gyroscopic system with positive damping and circulat
terms. Following a detailed convergence study, the coupled
cretized eigenvalue problem is studied computationally.

The coupled rotating disk-acoustic cavity system oscillatio
are governed by two different gyroscopic couplings: one is due
acoustic-structure interaction and the other arises from disk r
tion. The disk-acoustic cavity coupling generates in and out-
phase acoustic modes. For a symmetrically placed disks in en
sure, out-of-phase acoustic modes couple to disk modes, an
phase acoustic modes decouple from disk vibration. As the d
rotates, out-of-phase acoustic dominated as well as d
dominated modes split into FTW and BTW. Further, eigenva
veering between disk and acoustic modes leads to the su
transformation of disk to acoustic-dominated modes at superc
cal rotation speed. For the undamped system, the flutter instab
is caused by mode coalescence over the certain speed range,
ing to the flutter of a coupled acoustic-structural wave of hi
nodal diameter number. Further this wave propagates in the s
direction as disk rotation, albeit slower than it.

The inclusion of acoustic damping from absorbent walls des
bilizes a RTW of disk-dominated mode at the critical speed of
system. The flutter mode corresponds to the mode with the low
critical speed. In addition, once initiated, the flutter instabil
persists for all higher speeds. In the presence of disk mate
damping alone, an acoustic dominated FTW destabilizes via
ter instability at supercritical speed. The flutter instability occu
in the form of a very high nodal diameter acoustic-domina
wave. This unstable wave propagates in the same direction a
disk, but travels slower than it. Further, this instability persists
all higher speeds. In the presence of both disk and acoustic da
ing, the flutter speed, mode, and mechanism are controlled by
ratio of disk to acoustic damping of the system.

It may be noted that the instabilities predicted in this artic
occur typically at supercritical speed. While these speeds are
likely to be encountered in commercial hard disk drives, the di
cavity coupling and veering issues discussed in this paper ar
interest in the design of low-noise emission drives. Further, b
the aeroelastic stability and cavity-disk coupling issues are lik
to be important for optical or magneto-optical disks that oper
currently near their critical speeds.

The verification of these different instability mechanisms
quires further detailed experiments and is the subject of ongo
research. It is worthwhile, however, to compare qualitatively
present predictions to known experimental results on the flutte
disks in enclosed spaces with radial gaps. Especially the ons
flutter described for lightly damped steel disks in@2# is consistent
with the dynamics predicted by the present study for systems w
low disk to acoustic damping ratios~Figs. 13 and 14!. However,
to our best knowledge, the acoustic-dominated traveling w
flutter phenomenon has not yet been observed experimentall

Finally we note that there is an interesting similarity betwe
the flutter of infinitely long plates,@26,27#, and the cavity damp-
ing dominated instability discussed in the present work. In b
cases, the instability occurs as a traveling wave and the flu
mode wavelengths are of the order of twice the panel width
disk radial extent. However, the disk-cavity coupling and cavi
dominated instability phenomena described in the present s
appear not to have been discussed yet in the literature on
flutter of infinitely long panels.
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Appendix

an5@a000,¯ ,a0n2n3 ,a100
C , ¯ ,an1n2n3

C ,a100
S , ¯ ,an1n2n3

S #T

bn5@b000,¯ ,b0n2n3 ,b100
C , ¯ ,bn1n2n3

C ,b100
S , ¯ ,bn1n2n3

S #T

qm5@q00,¯ ,q0m2 ,q10
C , ¯ ,qm1m2

C ,q10
S , ¯ ,qm1m2

S #T

Ma,b5
LVa,b

C2 F Mn

Mn
C

Mn
S
G a,b

, Mq5F 1

1

1
G ,

Ca,b5LAAF Cnr

Cnr
C

Cnr
S
G a,b

,

Cq5hF vms
2

vms
2

vms
2
G ,

Laq,bq5LAdF Lnm

Lnm
C

Lnm
S
G a,b

,

Gq52VF 0

m1

2m1
T

G ,

Ka,b5
LVa,b

C2 F MnLn
2

Mn
CLn

2

Mn
SLn

2
G a,b

,

Kq5F km

km

km

G ,

Dq5hVF 0

m1vms
2

2~m1vms
2 !T

G ,

where all submatrices are diagonal exceptCnr andLnm and their
each element is defined by the corresponding scalar variable in
text.
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On the Heavily Damped Response in
Viscously Damped Dynamic Systems

R. M. Bulatovic
Faculty of Mechanical Engineering, University of
Montenegro, 81 000 Podgorica, Yugoslavia

Free motions of viscously damped linear systems are studie
heavily damped multi-degree-of-freedom system is defined as
for which all its eigenvalues are real, negative, and semi-simp
Several results are obtained which state conditions for the he
damping of the system. The conditions are given directly in te
of the coefficients of system matrices and these conditions
yield design constraints in terms of the physical parameters of
system. An example illustrates the validity and usefulness of
presented results.@DOI: 10.1115/1.1629108#

1 Introduction and Previous Results
We consider a viscously damped linear mechanical system

scribed by the equation

Mq̈1Bq̇1Cq50, (1)

whereq is then-dimensional position vector, andM, B, andC are
the inertia, damping, and stiffness matrices, assumed to be
stant, real, symmetric, and positive definite. SinceM.0 ~positive
definite!, one can utilize the positive definite square root in
familiar way to transform Eq.~1! to the form

ẍ1Dẋ1Kx50, (2)

where D5M 21/2BM21/25DT, K5M 21/2CM21/25KT and x
5M1/2q.

The eigenvalue problem associated with~2! is

~l2I 1lD1K !U50, (3)

whereI is the identity matrix,U is an eigenvector of dimensionn,
and l is its eigenvalue. There are 2n eigenvaluesl i which are
governed by the characteristic equation

D~l!5det~l2I 1lD1K !50. (4)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 1
1999; final revision, June 10, 2003. Associate Editor: V. K. Kinra.
Copyright © 2Journal of Applied Mechanics
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If all eigenvalues aredistinct ~simple!, the general solution of the
equation of motion~2! has the form

x~ t !5(
1

2n

ciUi exp~l i t !, (5)

whereci are the constants determined from the initial conditio
The expansion~5! is also valid forsemi-simpleeigenvalues, i.e.,
for the rootsl i of Eq. ~4! having the multiplicityk, if the number
of linearly independent eigenvectors corresponding tol i is equal
to k. It is well known that all eigenvalues of~3! have negative rea
parts and, consequently, the system~2! is asymptotically stable.
The system~1! or ~2! will be calledheavily dampedif all eigen-
values of ~3! are real and semi-simple, and hence all solutio
q(t) of differential Eq.~1! do not oscillate. Characterization of th
heavily damped system by its eigenvalues is not convenient
design purposes, since it requires a complete eigenvalue dete
nation for every combination of various system parameters. C
sequently, it is of interest to find conditions which are relat
in a simple way to the properties of the system matrices~see
Inman @1#!.

In the mechanics literature, particularly in ASMEJournal of
Applied Mechanics~see the list of references!, some attention has
been paid to the formulation of criteria which guarantee that
eigenvalues of the system are real and negative. There is a w
known definition ofoverdampedsystems first used by Duffin@2#
which ensures that a system~2! has real and semi-simple eigen
values. Duffin’s definition states that an overdamped system is
such that

~xTDx!2.4xTxxTKx (6)

for all nonzero realn-vectorsx. This is a sufficient condition for
~3! to have real and semi-simple eigenvalues~but not necessary
condition!, i.e., ~6! is sufficient for heavy damping in the sense
this paper. The following simple example of the system~2! illus-
trates this point. Let

D5S 4 0

0 10D and K5S 3 0

0 24D .

It is easy to verify that this uncoupled system is heavily damp
~the eigenvalues arel1521, l2523, l3524, andl4526)
but not overdamped~the condition~6! is not satisfied!. Thus, the
notions of heavy damping and of overdamping are different
multi-degree-of-freedom systems, although they are the same
single-degree-of-freedom systems. An overdamped system
some properties which cannot be generalized to less hea
damped systems~see Lancaster@3#!. Notice also that~6! requires

9,
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substantial calculation to check its validity. Later Inman a
Andry @4# proposed that the system is overdamped if

D.2K1/2, (7)

whereK1/2 denotes the positive definite square root of the posit
definite matrixK. Unfortunately, this condition does not guarant
real eigenvalues, as the example of Barkwell and Lancaster@5#
subsequently illustrated. The fallacy in the proof of condition~7!
has been recently discussed by Bhaskar@6#. Moreover, Barkwell
and Lancaster@5# obtained the following result: The system~2! is
overdamped if and only if there exists a positive numberk such
that

D.kI1k21K. (8)

The evaluation of this condition requires searches of thek values
by trial and error.

Beskos and Boley@7# proposed a method to determine a regi
in the parameter space such that each eigenvalue correspond
the values of damping coefficients in that region is real anddis-
tinct. On the boundary of this region~‘‘critical damping surface’’!
the eigenvalues are real and at least one is repeated. Unfortun
this method is cumbersome to use if the number of degrees
freedom is large, but it can be applied successfully for tw
degree-of-freedom systems.

Thus, there is still a lack of simple and applicable conditions
heavy damping.

2 Simple Heavy Damping Conditions
We first formulate a lemma.
LEMMA 1. The system (2) is heavily damped if and only if t

following 2n-dimensional conservative gyroscopic system

S I 0

0 I
D S ÿ

z̈
D 1S 0 D

2D 0 D S ẏ

ż
D 2S K 0

0 K
D S y

zD5S 0
0D (9)

is stable.
Proof. The eigenvalue problem associated with~9! is

S s2I 2K sD

2sD s2I 2K
D S Y

ZD5S 0
0D , (10)

whereY andZ aren-dimensional vectors. The system~9! is stable
if and only if all eigenvalues of~10! are purely imaginary and
semi-simple. Note that if (s5 iv, VT5(YT,ZT)), where i
5A21, is an eigenpair of~10!, then (s̄52 iv,V̄T) is also an
eigenpair.

If we substitutes5 iv in Eq. ~10!, we obtain

2~v2I 1K !Y1 ivDZ50, (11)

and

2 ivDY2~v2I 1K !Z50. (12)

From Eq.~11!,

Z52
i

v
D21~v2I 1K !Y, (13)

and substitution of this expression into Eq.~12! leads

~v4D211v2~D21K1KD212D !1KD21K !Y50, (14)

which is equivalent to

~v2I 1vD1K !D21~v2I 2vD1K !Y50. (15)

Let s5 iv, v,0, be an eigenvalue of~10! with eigenvector
VT5(YT,ZT). From Eqs.~3! and ~15!, we deduce thatl5v is
eigenvalue of~3! with eigenvectorU5D21(v2I 2vD1K)Y.
Conversely, ifl5v,0 is an eigenvalue of~3! with eigenvectorU,
thens56 iv are eigenvalues of~10! with eigenvectors
132 Õ Vol. 71, JANUARY 2004
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V5S Y
6iv21D21~v2I 1K !YD , (16)

whereY5(v2I 2vD1K)21DU. h

THEOREM 1. The system described by Eq. (2), with D5DT.0
and K5KT.0, is heavily damped if

D222~K1vmax
2 I !.0, (17)

where vmax is the highest frequency of the corresponding u
damped system.

Proof. According to Bulatovic@8#, we introduce auxiliary func-
tion of the form

V5V1~x,y!1V1~y,2x! (18)

with

V1~j,h!5jT~D22K2vmax
2 I !j12jTDKh1hT~K21vmax

2 K !h.
(19)

Here, j and h are n-dimensional real vectors andvmax
2 is the

largest eigenvalue of matrixK. The time derivative ofV, along
every solution of Eq.~9!, becomesV̇50. Now, we can rewriteV1
as:

V15jTS 1

2
D22K2vmax

2 I D j1F~j,h!, (20)

where

2F5~Dj12Kh!T~Dj12Kh!12hT~vmax
2 K2K2!h. (21)

From vmax
2 K2K2>0 and K21vmax

2 K.0, according to~21!, we
see thatF is positive semi-definite and the set

$~j,h!:j50,F50% (22)

is trivial. Consequently, according to~20!, V1(j,h), as well as the
function ~18!, are positive definite if the condition~17! holds.
Therefore, Theorem 1 follows from Lyapunov’s stability theore
and the previous lemma. h

For multi-degree-of-freedom systems the criterion~17! pro-
vides only sufficient and not necessary condition for heavy dam
ing ~unless eitherK5aI or D5aI , wherea is a positive scalar!.

In the case of ‘‘classical damping’’ in whichD andK commute
a sharper result can be obtained:

THEOREM 2. If DK 5KD, then the system described by (2)
heavily damped if and only if

D2.4K. (23)

Proof. If DK5KD, then~23! is necessary and sufficient for sta
bility of the system~9!. This follows immediately from a result o
Bulatovic @9#. h

Notice that~23! is equivalent to~7!, if D andK commute. We
note also that the condition~23! may be easily established throug
the use of the modal matrix.

A simple necessary condition for heavy damping is given ne
THEOREM 3. If all eigenvalues of (3) are real, then

iDi2.2Tr~K ! (24)

whereTr(K) is the trace of K andiDi is the Euclidean matrix
norm of D.

We note that Tr(K)5( i 51
n kii and iDi25( i , j 51

n di j
2 .

Proof. By proof of Lemma 1, it follows that all roots of char
acteristic Eq.~4! are real if and only if every eigenvalue of~10! is
purely imaginary. If all eigenvalues of~10! are purely imaginary,
then according to Theorem 2 of Lancaster and Zizler@10#, the
condition ~24! holds. h

There is another way of establishing this result. Indeed,
eigenvaluesl i of ~3! and eigenvalues of the state matrix
Transactions of the ASME
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are the same. Consequently, using a well-known result of ma
theory ~see Bellman@11#!, we have

(
i 51

2n

l i
25Tr~G2!5Tr~D2!22Tr~K !,

which is positive if all eigenvalues are real. From this and the f
that

iDi25Tr~D2!,

we obtain the result stated in~24!.
Theorems 1–3 provide simple conditions for heavy dampi

and they involve no undetermined parameters. The one-param
criteria ~i.e., conditions of the same type as~8! can be established
by means of Lemma 1 and the results of Walker@12# for stability
of conservative gyroscopic systems.

Finally, for completeness, the above results can be express
terms of the original matrices as follows:

~1! If

BM21B22~C1vmax
2 M !.0, (25)

the system described by (1) must be heavily damped.
~2! If BM 21C5CM21B, then the system described by (1)

heavily damped if and only if

BM21B24C.0. (26)

~3! If the system described by (1) is heavily damped, then

Tr~~M 21B!2!.2Tr~M 21C!. (27)

3 Illustrative Example
To illustrate the usefulness of the above results consider

two-degree-of-freedom system shown in Fig. 1, whereci andb i
stand for the spring constants and coefficients of viscous damp
respectively, andq1 and q2 are the displacements from equilib
rium positions of massesm1 andm2 . For simplicity, we takec1
5c25c35c andm15m25m. Such a model is described by th
system~2! with

D5S d1 0

0 d2
D , K5S 2 21

21 2 D (28)

where

di5
b i

Amc
, i 51,2. (29)

Fig. 1 The system of example
Journal of Applied Mechanics
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The sufficient heavy damping criterion obtained here for a g
eral case of damping is next applied to this system and the re
are compared with the exact solution.

An elementary calculation shows thatvmax
2 5lmax(K)53. Con-

dition ~17! takes the form

D222~K1vmax
2 I !5S d1

2210 2

2 d2
2210

D .0, (30)

which yields

d1
2.10 (31)

and

d1
2d2

2210~d1
21d2

2!196.0. (32)

If the parametersd1 andd2 are now chosen to satisfy~31! and
~32!, then~2!, ~28! will be heavily damped and the system will no
oscillate when perturbed from equilibrium. The regionRT1 pre-
dicted by inequalities~31! and~32! is represented by shaded are
in Fig. 2. The boundary of this region has asymptotesd15A10
andd25A10.

Next, a complete two-parameter (d1 ,d2) damping analysis of
the system, based on the discriminant of the characteristic p
nomial and Theorem 3, is presented.

The characteristic equation for system~2!, ~28! is

l41a1l31a2l21a3l1a450, (33)

where

a15d11d2 , a2541d1d2 , a352~d11d2!, a453.
(34)

The discriminant of the polynomial~33! is defined as

d5)
i . j

4

~l i2l j !
2, (35)

wherel i , l j are the roots of the polynomial~multiple roots being
counted as equal with different indices!. On the other hand, the
discriminantd can be expressed by the coefficients of the polyn
mial ~33!, as follows~see, for example, Korn and Korn@13#!:

Fig. 2 Weak „R1…, mixed „R2…, and heavy „R3… damping re-
gions, and the region RT1 predicted by Theorem 1 for the sys-
tem shown in Fig. 1
JANUARY 2004, Vol. 71 Õ 133
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d5detS 4 s1 s2 s3

s1 s2 s3 s4

s2 s3 s4 s5

s3 s4 s5 s6

D , (36)

with

s152a1

s25a1
222a2

s352a1
313a1a223a3

s45a1
424a1

2a214a1a312a2
224a4

s552a1
515a1

3a225a1
2a325a1a2

215a2a31a1a4

s65a1
626a1

4a216a1
3a319a1

2a2
2212a1a2a3

22a1
2a422a2

313a3
216a2a4

6 . (37)

From ~36!, ~37!, and~34! we see thatd depends on the paramete
d1 and d2 . Since this expression is quite lengthy, it is omitt
here.

It is evident from~35! that d50 if ~33! has multiple root;d,0
if ~33! has two real distinct and two complex conjugate ro
~mixed damped case!; d.0 if ~33! has either four real distinc
~heavily damped case! or four complex conjugate distinct root
~weakly damped case!. The question is now, whether the system
weakly damped~heavily damped! if d.0. An answer can be es
tablished by Theorem 2. According to this theorem,g582(d1

2

1d2
2)>0 implies that~33!, ~34! has at least two complex conju

gate roots. Consequently, whend.0, the system is weakly
damped if and only ifg>0. Summarizing these results we co
clude that:

a. the system~2!, ~28! is weakly damped ifd(d1 ,d2).0 and
d1

21d2
2<8;

b. the system~2!, ~28! is mixed damped ifd(d1 ,d2),0;
c. the system~2!, ~28! is heavily damped ifd(d1 ,d2).0 and

d1
21d2

2.8.

The equationd(d1 ,d2)50 results in two curvesC1 and C2 ,
which have been depicted by MATLAB, see Fig. 2. CurveC1

separates the weak damping regionR1 (d.0,d1
21d2

2<8) from
the mixed damping regionR2 (d,0). CurveC2 , which has the
asymptotesd15A8 andd25A8, separates the regionR2 from the
heavy damping regionR3 (d.0,d1

21d2
2.8).

Figure 2 shows that the regionR3 contains regionRT1 predicted
by Theorem 1. Boundaries of these regions coincide atd15d2 and
the boundary ofRT1 slightly departs fromC2 , more so asd1 and
d2 increase. Thus, for this example the condition~17! gives a
good result.

Finally, we note that another approach available to produce
critical damping curvesC1 andC2 is given in Beskos and Boley
@7# for a slightly different two-degree-of-freedom system. Th
approach is based on a closed-form solution of the cubic poly
mial which is obtained by differentiating the characteristic eq
tion with respect tol.

4 Concluding Remarks
We were interested in providing simple heavy damping crite

for multidimensional linear viscously damped systems with po
tive definite damping and stiffness matrices. Our primary intent
was to avoid spectral~eigenvalue! analysis of the full, original
damped system. Several results were derived. Theorem 1 pro
sufficient condition for heavy damping, while Theorem 2 sta
necessary and sufficient condition when the damping is class
Theorem 3 is a necessary condition. Both conditions~17! ~or ~25!!
and ~23! ~or ~26!! are presented in the form of the positive de
niteness of certain combination of the system matrices. Condi
134 Õ Vol. 71, JANUARY 2004 Copyright ©
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~25! is not as simple as~26!, since it requires the calculation of th
maximal natural frequency which is not entirely trivial, but th
check of ~25! is much easier than solving the spectrum of t
entire damped system. On the other hand, in contrast to the ei
value analysis, condition~25! yields inequalities amongst the var
ous damping parameters, and these inequalities can be us
design a system or to adjust the damping constants in orde
eliminate oscillation of the system. This was illustrated in Sect
4. Moreover, a procedure to determine the nature of eigenva
of two-degree-of-freedom system, as an alternative to the Bes
and Boley’s approach, was presented based on Theorem 3 an
the discriminant of the characteristic polynomial. This leads t
complete two-parameter analysis, with the regions of we
mixed, and heavy damping of the system shown in Fig. 1. Fig
2 illustrates the accomplished accuracy obtained by us
Theorem 1.
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On Viscoelastic Compliant Contact-
Impact Models

T. M. Atanackovic
Professor

D. T. Spasic
Professor
Department of Mechanics, University of Novi Sad, POB
55, 21121 Novi Sad, Yugoslavia

We study dynamics of a mass, moving on a straight line,
impacting against the rigid wall through a deformable body, th
we model as a straight rod of negligible mass. The chosen con
tutive model of the viscoelastic body comprises fractional deri
tives of stress and strain and the restrictions on the coefficie
that follow from Clausius Duhem inequality. We show that t
dynamics of the problem is governed by a single differential eq
tion of real order. The obtained equation was solved numerica
The comparison is made to the solution obtained by the Lapl
transform and Post’s inversion formula. The predictions of t
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model concerning the duration of the impact, maximal values
the impacting force and deformation as well as the restitut
coefficient are determined for several values of system par
eters.
@DOI: 10.1115/1.1629106#

1 Introduction
The impact of solid bodies is a complicated phenomena

could be studied by several different approaches. If impac
bodies are taken to be deformable then one has an advanta
being able to determine the impacting time, maximal deflecti
and impacting forces, see@1#. Special feature of viscoelastic im
pacting body is that there exist hysteresis-like behavior in fo
displacement diagram. Such a behavior was explained eithe
nonlinear models,@2#, or by use of the standard linear viscoelas
model, as done recently by Butcher and Segalman@3#. As a matter
of fact, in @3# besides the standard, the Kelvin-Voigt and Maxw
models of a viscoelastic body impacting against rigid obsta
were analyzed.

Our intention in this note is to use generalized model o
viscoelastic body that contains fractional derivatives of stress
strain for the study of impact. This model of a viscoelastic bo
with fractional derivatives~see@4,5#! was studied in@6–12#, to
mention just a few. We believe that generalized model of v
coelastic body used here is capable of describing impact in a m
accurate way while still remaining in linear theory,@13#. Another
feature of our approach is a consequent use of the restriction
the coefficients of the model that follow from the Clausius Duh
inequality,@14#. The proposed model could be used for the stu
of polymers elastomers and other systems,@15#.

2 The Models
Consider a massm moving on a straight line with constan

velocity v0 and impacting against the rigid wall~infinite mass!,
through a deformable body, that we model as a straight rod
negligible mass. We usex to measure uniaxial deformation of tha
deformable body. This deformation is assumed to be isother
Let f be the force between the body and the wall1. This force acts
also on a massm so that its equation of motion reads

mx~2!52 f , x~0!50, x~1!~0!5v0 , f ~0!50, (1)

where we used (•)(k)5dk(•)/dtk to denote thekth derivative with
respect to timet. The relation betweenf 5 f (t) andx5x(t) ~con-
stitutive equation of the deformable body! may be taken in differ-
ent forms. In order to motivate the approach to be followed att
tion is first focused on standard linear viscoelastic solid.

2.1 Standard Linear Viscoelastic Solid: Zener Model. In
this case we have

f 1t f• f ~1!5E~x1tx•x~1!!, (2)

wheret f andtx are the constants called relaxation times andE is
the modulus of elasticity. Note that in@3#, Eq. ~2! was written in
slightly different form ~our constantsE, t f and tx are given as
E5mvn

2, tx52z/vn and t f52zh/vn where vn
5Ak1k2 /((k11k2)m), h5k2 /(k11k2) and z5k1c/(2(k1
1k2)mvn) are introduced in@3#!. A special case of~2! with t f
50 represents the so-called Kelvin-Voigt model of a viscoela
body. Therheologicalmodel corresponding to Kelvin-Voigt bod
is given in Fig. 1~a!. In Fig. 1~b! the rheological model corre
sponding to standard linear viscoelastic solid, described by~2!, is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 3
2001; final revision, July 7, 2003. Associate Editor: K. R. Rajagopal.

1The forcef used here is given asf 5As whereA is the cross-sectional area an
s is the stress. We assume that the cross sectional area remains the same dur
deformation.
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shown. Both models were used to study impact in@3#. Note, how-
ever, that there exists a fundamental restriction on the coeffici
in ~2! that follows from the second law of thermodynamics,

E.0, t f.0, tx.t f (3)

as proposed in@6# and @14#. Although the Kelvin-Voigt modelt f
50 does not satisfy the restrictions~3! it could be used for certain
materials, and certain types of deformations, see@7#. Also note
that there will be no damping iftx5t f in ~2!, see@8#.

As in @3#, we consider that the body is separated when
contact force is equal to zero. It will be shown that this occu
before the deformation is recovered.

Introducing the dimensionless coordinate, force and time

x̄5
x

v0
AE

m
, f̄ 5

f

v0AmE
, t̄5tAE

m
, (4)

as well as the dimensionless relaxation times

t̄ f5t fAE

m
, t̄x5txAE

m
, (5)

from ~1! and~2! we get the equations describing the impact of t
system presented in Fig. 1~b!:

x~2!52 f , x~0!50, x~1!~0!51, f ~0!50, (6)

and

f 1t f• f ~1!5x1tx•x~1!, (7)

where we have omitted the bar, and where the derivatives
taken with respect to dimensionless time. In@3# the system~6!,
~7!, was solved fortx50.2; t f50.01, 0.04 and 0.08. As we se
the conditiontx.t f was satisfied in@3#, although it was not ex-
plicitly stated.

To solve ~6!, ~7! we use the Laplace transform technique. I
troducing X5X(s)5L$x(t)%5*0

`e2stx(t)dt and F5F(s)
5L$ f (t)%5*0

`e2stf (t)dt, from ~6!, ~7! we get

F5
11txs

11t fs
X, (8)

and

X5
11t fs

t fs
31s21txs11

, F5
11txs

t fs
31s21txs11

. (9)

An initial remark is that since lims→0 sX(s)50 than certainly if
limt→` x(t) exists it tends to zero~as an expected consequence
viscosity!. Second, the inverse transform of~8! yields the follow-
ing relation between the force and the coordinate

f ~ t !5
tx

t f
x~ t !1

1

t f
S 12

tx

t f
D E

0

t

e2t2j/t fx~j!dj (10)

which could be used if one wants to rewrite the impact model~6!,
~7! in the compact form of single integro-differential equatio
Finally, with the help of standard software packages it is fai
straightforward to obtain the solutionx(t), f (t) in the closed
form. Namely, the inverse Laplace transform of~9! for t f50.01
andtx50.2 gives

x~ t !50.0003e224.84t1e20.08t~1.006 sint20.0003 cost !,
(11)

f ~ t !520.162e224.84t1e20.08t~sin t10.162 cost !.

For the later use~when the inverse Laplace transform fails
proceed to a closed form! it is important to note that bothx(t) and
f (t) could be obtained by use of Post’s inversion formula, see@16#
p. 380, i.e.,

x~ t !5 lim
n→`

~21!nS n

t D
n11

X~n!S n

t D
n!

,

0,

ing the
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f ~ t !5 lim
n→`

~21!nS n

t D
n11

F ~n!S n

t D
n!

. (12)

Although Post’s formula, discovered in 1930@17#, may be re-
garded as an analytical result, very useful for applications, d
culties essentially technical in nature prevented its usage in p
tical problems. However, nowadays thenth derivatives of~9!
needed for the right-hand sides of~12! could be easily calculated
by use of standard software packages.

With this preparation completed we turn now to a discussion
the more general compliant contact impact model.

2.2 Fractional Standard Linear Viscoelastic Solid: Modi-
fied Zener Model. Once again we start with~1! but instead of
~2! here we deal with the model incorporating fractional damp
elements, Fig. 1~c!,

f 1t f a• f ~a!5E~x1txa•x~a!!, (13)

with 0,a,1 and where (•)(a) denotes theath derivative of a
function ~•! taken in Riemann-Liouville form as

da

dta
g~ t !5g~a![

d

dt

1

G~12a! E0

t g~j!dj

~ t2j!a

5
d

dt

1

G~12a! E0

t g~ t2j!dj

ja

5
g~0!t2a

G~12a!
1

1

G~12a! E0

t g~1!~ t2j!dj

ja

5(
n50

` S a
n D tn2a

G~n112a!
g~n!~ t !, (14)

where G denotes the Euler gamma function. Also in~14!4 the
binomial coefficients are (n

a)5(21)n21aG(n2a)/G(12a)G(n
11)5(21)n(2a)n /n! and (u)n5u(u11) . . . (u1n21), n
51,2, . . . ,(u)0[1. The dimension of the constantstxa andt f a is
@ time#a. Note that these constants no longer have the phys

Fig. 1 Systems under considerations
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meaning they have in standard models. In~13! we assume that
E.0, t f a.0, txa.t f a are satisfied and thus represent a therm
dynamically well-behaved model.

Introducing the dimensionless quantities

t̄xa5txaS E

mD a/2

, t̄ f a5t f aS E

mD a/2

, (15)

and using~4! we transform~13! into the following form~the bar is
omitted!:

f 1t f a• f ~a!5x1txa•x~a!, (16)

and find that the impact of the fractional standard linear solid
modeled by Eqs.~6! and~16!. Note that this model, belongs to th
class of continuous dynamics models of collision, i.e., collisi
dynamics is treated as a continuous time dynamics phenom
restricted to local deformations~vibration effects of the solid body
are not taken into account!. Compared to~7! in expression~16!
the customary time derivatives of integer order are replaced
derivatives of real ordera with 0,a,1. The justification for such
models has resided in the fact that they are effective in describ
the behavior of some real materials. Actually the study of cons
ered fractional standard linear solid models possess an esse
mathematical interest too.

Our main results concern the solution of~6!, ~16!.

2.2.1 Numerical Solution. In order to compute the solution
for the case of generalized constitutive equation we apply ar
ments presented in the book of Podlubny,@18#, p. 223. First, we
eliminate f and remove the nonhomogeneous initial conditi
~6!3 . Namely, by introducing the variable

z~ t !5x~ t !2t, (17)

and using basic properties of the Riemann-Liouville fractional d
ferentiation, instead of~6!, ~16!, we obtain the following differen-
tial equation of real order

t f az~21a!1z~2!1z1txaz~a!52t2
txaG~2!

G~22a!
t12a, (18)

with homogeneous boundary conditions

z~k!~0!50, k50,1,2. (19)

Using the first-order approximation of problem~18!, ~19!
we derive the following algorithm for obtaining the numeric
solution,@18#:

z050, z150, z250, (20)

zm5
1

11h221txah2a1t f ah222a

3H 2zm212zm22

h2
2

txa( j 51
m v j ,azm2 j

ha

2
t f a( j 51

m v j ,21azm2 j

h21a
2mh2

txaG~2!~mh!12a

G~22a! J ,

m53,4, . . . (21)

whereh is time step and where the coefficientsv j ,k , k5a, 21a,
are calculated by the recurrence relationshipsv0,k51; v j ,k5(1
2(k11)/ j )v j 21,k , j 51,2,3, . . . . Noting that zm5z(tm)
5z(mh) from ~17! we obtain

x~ tm!5mh1zm . (22)

Finally, by use of second-order backward differences from~6! we
find

f ~ tm!52
~zm22zm211zk22!

h2
. (23)
Transactions of the ASME
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The described numerical method was experimentally veri
on a number of test problems by comparing it~when it was pos-
sible! with analytical solutions, see@18#. In the case of Eq.~18!,
and therefore Eqs.~22!, ~23!, the concept of Post’s formula al
though less accurate for smalln could be very useful.

2.2.2 The Laplace Transform and Post’s Inversion Form
Applied to (6), (16). Using the standard procedure together w
the standard expression for the Laplace transform ofg(a), given
as L$g(a)%5saG2@(*0

t g(j)dj/(t2j)a)# t50 , where L$g(t)%
5G5G(s) and where the term in brackets vanishes if limt→0
1g(t) is bounded~see@4#!, from ~6!, ~16! we find that

F5
11txasa

11t f asa
X, (24)

and

X5
11t f asa

t f as21a1s21txasa11
, F5

11txasa

t f as21a1s21txasa11
.

(25)

As before, since lims→0 sX→0 we conclude that the motion wil
vanish as expected. Also note that the model incorporating f
tional damping elements~25! does not admit closed form solution
As the matter of fact the inversion of~24! yields the following
relation betweenf (t) andx(t)

f ~ t !5
txa

t f a
x~ t !1

1

t f a
S 12

txa

t f a
D E

0

t

ea,aS t2j,
1

t f a
D x~j!dj,

(26)

where ea,b(t;l) stands for the generalized Mittag-Leffler fun
tion, that is ea,b(t;l)[Ea,b(2lta)/t12b with Ea,b(t)
5(n50

` tn/G(an1b). The corresponding integro-differentia

Table 1 Impact materials for specific materials

Material Description Impact Description

a51 T52.962
f max(1.289)50.887

t f50.01 x50.144
xmax(1.480)50.869

tx50.2 x(1)520.756
a51 T52.981

f max(1.330)50.907
t f50.04 x50.126

xmax(1.490)50.890
tx50.2 x(1)520.792
a51 T53.013

f max(1.388)50.933
t f50.08 x50.100

xmax(1.507)50.918
tx50.2 x(1)520.842
a50.95 T52.945

f max(1.289)50.899
t f a50.01 x50.144

xmax(1.475)50.870
txa50.2 x(1)520.762
a50.95 T53.141

f max(1.570)50.999
t f a50.01 x50

xmax(1.571)50.998
txa50.011 x(1)520.997
a50.49 T52.151

f max(0.832)51.140
t f a5531028 x50.232

xmax(1.110)50.642
txa50.886 x(1)520.596
a50.23 T52.025

f max(0.910)51.356
t f a50.004 x50.135

xmax(1.034)50.632
txa51.183 x(1)520.771
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equation as a compliant contact impact model could be obta
easily from~6!. Note also that~26! generalizes~10! as expected.

Finally we apply Post’s inversion formula. This procedu
could be used for error estimation of the numerical solution. A
by using ~12! with X and F given by ~25! we could obtain an
analytical approximation for the solutionx(t) and f (t).

In the next section we illustrate all the results of above.

3 The Predictions
In Table 1 we present the duration of impactT, determined by

the conditionf (T)50 as proposed in@3#, maximal values ofx and
f for several values of dimensionless relaxation times in case
standard linear~viscoelastic! solids and for several values of con
stantsa, t f a , andtxa ~see~4! and~5! for definitions!. The values
of dimensionless time corresponding to these maximums
given in parenthesis. The valuesx and x(1) at T (x(1)(T) deter-
mines the restitution coefficient! are also presented.

The numerical values of constants 0,a,1, t f a and txa were
taken from the paper of Fenander where the railpad models w
investigated,@8#.

For a51 we apply the inverse Laplace transform to~9!. For
a,1 we apply numerical procedure~21! and then~22!, ~23!. In all
the calculations the time step wash51023.

In Fig. 2 we present some solutionsx(t). The values obtained
by applying Post’s inversion formula~12! to ~9! for a51, t f
50.04 andtx50.2 are also presented~squares in Fig. 2!. The
difference between the exact solution~11! and the solution ob-
tained by Post’s formula forn570, is less than 531022. Also,
the values calculated by Post’s formula~12! applied to~25! for
a50.23, t f a50.004, txa51.183 for n540 are also marked by
circles in Fig. 2. In this case the differences between the nume
solution and these values are less than 531022. In both cases the
derivatives were calculated with the help of SciWorkPlace~TCI
Software Research! and Mathematica~Wolfram Research, Inc.!. It
is worth noting that modern computers allow largern and thus
more accuracy.

Finally the hysteresis diagrams corresponding to the soluti
presented in Fig. 2 are shown in Fig. 3.

Note that when compared to standard linear viscoelastic s
the solid described by fractional derivatives exhibits shorter du
tion of impact, smaller maximal deformation and larger maxim
force.

Fig. 2 Curves x „t … for standard linear solid aÄ1, t fÄ0.04, tx
Ä0.2, „dotted …, fractional standard solid with aÄ0.49, t f aÄ5
Ã10À8, tx aÄ0.886, „solid line … and for aÄ0.23, t f aÄ0.004,
tx aÄ1.183, „dashed …
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4 Analysis of the Results
From the values presented in Table 1 we conclude that for

case whena→1 the solutions for the fractional standard line
solid are very close, and tend to the ones, that describe the
dard linear solid~for a51 and the same values of the consta
describing material!. Also whentx→t f there is no damping as
expected, i.e., velocity after the rebound is almost of the sa
intensity as before the impact. In such a case the presented v
of T andxmax could be compared with the case of nonlinear spr
as presented in@19#. Namely, in@19# the impact is modeled by the
equation

x~2!52rx3/2, x~0!50, x~1!~0!51. (27)

For example, if the we taker51 we obtainT53.218, x(1)(T)
521 andxmax51.093. However, it should be noted that in tac
ling the compliant impact problem by use of nonlinear elas
spring one methodological anomaly is encountered. Namely, if
body is released from rest in a vertical plane and impinges
horizontal surface it will bounce forever. In reality this is not th
case due to damping.

Our final remark concerns the thermodynamical restrictio
Violating them could pose severe problems. Roughly speak
puttingt f a.txa will lead to the rebound velocity which is highe
then the approaching velocity, i.e.,ux(1)(T)u.x(1)(0)51. In the
former example if the body falls a distanceh it will bounce to the
distances higher thenh and bounce forever as well.

5 Conclusions
In this paper we have analyzed the elastic compliant con

impact model with fractional derivative type of dissipation. The
modynamical restrictions on constitutive equations are taken
account. We show that the dynamics of the problem is gover
by a single differential equation of real order. The obtained eq
tion was solved numerically. The comparison is made to the s
tion obtained by the Laplace transform and Post’s inversion
mula. The predictions of the model concerning the duration of
impact, maximal values of the impacting force and deformation
well as the restitution coefficient are determined for several va
of system parameters.
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Surface Instability of a Semi-Infinite
Elastic Body Under Surface
van der Waals Forces

C. Q. Ru
Department of Mechanical Engineering, University of
Alberta, Edmonton, AL T6G 2G8, Canada
e-mail: c.ru@ualberta.ca

It is shown that the surface of a semi-infinite linear elastic bo
attracted by a rigid flat through van der Waals-like forces is a
ways unstable. The wavelength of the surface wrinkling is fin
and decreases with the van der Waals interaction coefficient
particular, this result implies that the deformation field of th
semi-infinite linear elastic body attracted by a rigid flat cannot
determined uniquely.@DOI: 10.1115/1.1636791#

Introduction
Intermolecular and surface forces,@1#, have a crucial effect on

mechanical behavior of deformable bodies at micro/nanosc
One well-known example is the contact mechanics of elastic b
ies in the presence of van der Waals-like interaction,@2#. Despite
extensive research, however, it appears that surface instabilit
elastic bodies under van der Waals-like attractive forces has
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 1
2001; final revision, May 5, 2003. Associate Editor: B. M. Moran.
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been widely recognized. Very recently, surface instability o
compliant rubber-like elastic layer attracted by a rigid flat h
been studied in@3,4#. This new type of surface instability is elast
in nature and does not rely on the existence of a surface comp
sive prestress. Therefore, it is essentially different from ot
known surface instability due to surface compressive str
@5–7#, negative surface modulus,@6#, or surface diffusion,@8#.

The analysis given in@3,4# has been restricted to surface inst
bility of a thin elastic film bonded on a rigid substrate, althou
the thickness of interacting deformable bodies is often large c
pared to their other characteristic sizes~such as the gap width
between the interacting bodies, the wavelength, and even the
of the interacting zone!. For an elastic film on a rigid substrate,
is found,@3,4#, that the wavelength of the surface instability mo
is proportional to the thickness of the elastic film. Obviously, t
result cannot be directly applied to a semi-infinite elastic body
treating it as a limit case of an elastic layer, because it wo
predict an infinite wavelength and thus surface wrinkling of
semi-infinite elastic body would not occur. It is the aim of th
note to analyze surface instability of a semi-infinite elastic bo
Here, we shall confine ourselves to plane strain and thus cons
an elastic half-plane attracted by a rigid flat through van
Waals-like interaction, as depicted in Fig. 1.

Surface Instability
When the rigid flat is brought into contact with the elastic ha

plane, van der Waals forces come into play if the gap width
tween the two surfaces is, say, below 100 nm,@1,3#. For instance,
a simple general expression for the van der Waals attraction
tween two flat surfaces, as function of the distance, can be fo
in @3#. Thus, the present problem, depicted in Fig. 1, admits a t
potential energy, just like@3,4#, and is a conservative system
Hence, surface instability of the elastic half-plane can be stud
by the conventional method of examining the existence of n
trivial deformation state in the neighborhood of the uniform d
formation state of the elastic half-plane.

Therefore, surface instability is defined by the existence o
nontrivial infinitesimal perturbation which satisfies all lineariz
governing equations and zero boundary conditions. Since the
der Waals attractive forces only cause a surface normal stres
the elastic half-plane, and the value of the surface normal stre
any point can be assumed to be a function of the distance betw
the two surface at that point, it follows that the perturbed surf
shear stresssxy vanishes, and the perturbed surface normal str
syy depends linearly on the perturbed surface normal displa
ment,v, of the elastic half-plane. Thus the surface conditions
the perturbed elastic half-plane can be written as

syy52bv2gv ,xx , sxy50, y501 (1)

where the interaction coefficientb is determined by the secon
derivative of the van der Waals interaction energy at the equ
rium distance between two flat surfaces, andg~.0! is the surface
energy of the elastic half-plane. In particular, the coefficienb
depends on the equilibrium distance between two flat surfa
prior to surface instability, and is not equal to the Hamaker c
stant of the van der Waals law,@1,3#. Here, because the van de
Waals attractive force at any point is a decreasing function of
distance at that point, the perturbed surface normal stresssyy at a
point is tensile~or compressive! if the perturbed surface norma
displacementv at that point is negative~or positive!, see Fig. 1.
This explains the sign ‘‘2’’ for the coefficient b. Therefore, the
van der Waals interaction on the perturbed surface acts lik
uniform distributed linear spring with negative spring consta
and becomes a driving force for surface instability. Based on
fact, it is anticipated that the surfaces of the elastic half-pla
would become unstable when the van der Waals attractive in
action, characterized by the coefficientb, is sufficiently strong. It
is stressed that the present analysis based on the surface c
Journal of Applied Mechanics
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tions ~1! is valid not only for van der Waals interaction, but als
for electrostatic interaction between two oppositely charged s
bodies,@9#.

The perturbed stresses and displacements have to mee
equations of plane elastostatics. Thus, in the upper half-plany
.0), the perturbed stresses and displacements (u,v) can be given
in terms of a single complex potentialV(z) ~see, e.g.,@10#, pp.
52–54! as follows:

2m~u1 iv !5kV~z!1V~ z̄!1~ z̄2z!V8~z!,

sxx1syy52@V8~z!1V8~z!#, (2)

syy2 isxy5V8~z!2V8~ z̄!1~z2 z̄!V9~z!, z5x1 iy , y>0

whereV(z) is an analytic function defined in the upper and low
half-planes, respectively,k5~324n! for plane strain andk5~3
2n!/~11n! for plane stress, andm and n are the shear modulu
and Poisson’s ratio of the elastic half-plane. Since admissible
turbations must meet zero boundary conditions, all perturbed
placements and stresses must vanish wheny tends to infinity, and
thus V(z) and its derivatives approach zero wheny tends to
infinity.

Let us now examine the existence of a nonzero perturbatio
follows from ~2! that the second surface condition of~1! gives

@V8~x!1V8~x!#15@V8~x!1V8~x!#2, y50.

BecauseV(z) approaches zero wheny tends to infinity, the above
condition implies,@10#,

V~z!1V̄~z!50 (3)

in the entirez-plane, where the second term on LHS is the sy
metric continuation ofV(z) defined in the opposite half-plan
with respect to the real axis. On using~2! and~3!, the first surface
condition of ~1! is given by

4im@V81~x!2V82~x!#

52b@kV~z!1V~ z̄!#11b@kV~z!1V~ z̄!#1

2g@@kV9~z!1V9~ z̄!#12@kV9~z!1V9~ z̄!#1#

52b~k11!@V1~x!1V2~x!#2g~k11!

3@V91~x!1V92~x!#, y50

which leads to

@4imV8~x!1b~k11!V~x!1~k11!gV9~x!#1

5@2~k11!bV~x!2~k11!gV9~x!14imV8~x!#2,

y50. (4)

Here, LHS of~4! can be understood as the boundary value of
analytic function in the upper half-plane, while RHS as the bou
ary value of another analytic function in the lower half-plan
BecauseV(z) and its derivatives approach zero wheny tends to
infinity, it follows from ~4! that

@4imV8~z!1b~k11!V~z!1~k11!gV9~x!#50, y.0;
(5)

@2b~k11!V~z!14imV8~z!2~k11!gV9~x!#50, y,0.

Thus,V(z) can be determined by the two differential equations
the upper and lower half-planes, respectively. It can be veri
that a nonzero solutionV(z) which approaches zero wheny tends
to infinity exists if and only ifb.0. Whenb.0, we have

V~z!5A exp@ ilz#, y.0;
(6)

V~z!5B exp@2 ilz#, y,0

with
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22m1A4m21bg~k11!2

g~k11!
(7)

where the positive sign ‘‘1’’ has been chosen becausel must be
positive. Further, in view of~3!, one finds

B52Ā (8)

whereA5a1 ib, anda andb are two arbitrary real numbers.

Discussions
In contrast to surface instability of an elastic film on a rig

substrate,@3,4#, or the so-called ‘‘tip-surface’’ instability,@11#,
which occurs only when the interaction exceeds a certain crit
value, the above results indicate that surface instability of an e
tic half-plane occurs wheneverb.0. In particular, this means tha
the deformation field of the elastic half-plane cannot be de
mined uniquely. The perturbed surface displacements cause
the surface instability are given by

2mu5~k21!@a coslx2b sinlx#,
(9)

2mv5~k11!@b coslx1a sinlx#

wherea and b are two arbitrary real numbers. The ratio of th
magnitude of the surface normal displacement to the magnitud
the surface tangential displacement is~k11!/~k21!, and thus the
surface tangential displacement vanishes in plane strain w
n51/2.

Surface wrinkling is significant especially for compliant solid
such as rubble-like materials. For instance, for elastomeric m
rials, @3,4#, we havem51 M Pa,g50.01–0.1 J/m2, andb5108

21011 J/m4. In this case, it is verified that the ratio (bg/m2) is a
few orders of magnitude smaller than unity, and thus~7! is sim-
plified approximately to

l'
b~k11!

4m
. (10)

The wavelength of surface wrinkling predicted by~10! for the
above material constants falls within the range from 100mm to 10
cm. Obviously, it is much larger than typical wavelengths
rubble thin films of thickness less than 10mm, @3,4#. In particular,
the wavelength obtained from~10! or ~7! also determines the rat
of decay of surface perturbation in they-direction. Here, it is
noted that thel-b relation ~10! differs from a similar relation
derived in@3,4# for an elastic film on a rigid substrate by a fact
of about 1.5. This also indicates that the present results canno
obtained from those derived in@3,4# as a limit case of an elasti
layer on a rigid substrate.

Fig. 1 Surface instability of an elastic half-plane under surface
van der Waals forces
140 Õ Vol. 71, JANUARY 2004
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Wheng or b is much larger than the above material constan
the dependence of the wavelength, defined by~2p/l! through~7!,
on bothb andg is shown in Fig. 2~wherem51 MPa,n51/2! for
b51011, 331011, 531011, 831011, and 1012 J/m4, respectively.
It is seen from Fig. 2 that the wavelength of surface wrinkling
very sensitive to the interaction coefficientb, but not to the sur-
face energyg. In particular, the wavelength of surface wrinklin
decreases when the interaction coefficientb increases. Becaus
surface wrinkling becomes significant usually only when t
wavelength is sufficiently small, the surface instability studi
here would become significant only when the interaction coe
cient b is sufficiently large. It would happen usually only whe
the distance between two interacting bodies downs to
nanoscale.

Finally, the present results are based on a simple linear
analysis of nontrivial infinitesimal perturbations, without consu
ing the total potential energy of the system. For instance, we h
not compared the total potential energy between the uniform s
and the perturbed nonuniform state. Indeed, detailed analys
post-bifurcation based on total potential energy of the sys
could be an interesting subject for future work.
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Nonlinear Elasticity for Modeling
Fracture of Isotropic Brittle Solids

K. Y. Volokh
Faculty of Civil and Environmental Engineering,
Technion, Haifa 32000, Israel

A softening hyperelastic continuum model is proposed for anal
of brittle fracture. Isotropic material is characterized by two sta
dard parameters—shear and bulk modulus—and an additio
parameter of the volumetric separation work. The model can
considered as a volumetric generalization of the concept of
cohesive surface. The meaning of the proposed constitu
equations is clarified by the examples of simple shear and hy
static pressure. It is emphasized that the proposed constitu
model includes only smooth functions and the necess
computational techniques are those of nonlinear elastic
@DOI: 10.1115/1.1636795#

1 Introduction
The idea to describe fracture as a material separation acro

surface was pioneered by Barenblatt@1#. It appears by name of the
cohesive zone model~CZM! in the modern literature. The cohe
sive zone is a surface in a bulk material where displacement
continuities occur. Thus, continuum is enhanced with discontin
ties. The latter requires an additional constitutive descripti
Equations relating normal and tangential displacement jum
across the cohesive surfaces with the proper tractions defi
specific CZM. There is a plenty of proposals of the ‘‘cohesiv
constitutive equations~for example, Barenbaltt@1#, Rice and
Wang@2#, Tvergaard and Hutchinson@3#, and Xu and Needleman
@4#!. All these models are constructed qualitatively as follow
tractions increase, reach a maximum, and then approach zero
increasing separation. This scenario is in harmony with our in
tive understanding of the rupture process. It is qualitatively ana
gous to atomic interactions.

Needleman@5# lifted the cohesive zone models to comput
tional practice. Since then CZMs are used increasingly in fin
element simulations of crack-tip plasticity and creep; crazing
polymers; adhesively bonded joints; interface cracks in bimat
als; delamination in composites and multilayers; fast crack pro
gation in polymers, etc. Cohesive zones can be inside finite
ments or along their boundaries~de Borst@6#, Xu and Needleman
@4#, and Belytschko et al.@7#!. Crack nucleation, propagation
branching, kinking, and arrest are a natural outcome of the c
putations where the discontinuity surfaces are spread over
bulk material. This is in contrast to the traditional approach
fracture mechanics where stress analysis is separated from
scription of the actual process of material failure.

The CZM approach is natural for simulation of fracture at t
material interface in composites and multilayers. It is less nat
for modeling fracture of the bulk material because it leads to
simultaneous use of two material models for the same real m
rial. One model describes the bulk material, while the other mo
describes the cohesive zones imbedded in the bulk material. S
two-model approach is rather artificial physically. It seems pr
erable to incorporate a material failure law directly in the con
tutive description of the bulk material. Such volumetric models
the material failure via strain localization are usually based
inelastic constitutive equations, including damage theories, wh

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
21, 2002; final revision, August 18, 2003. Associate Editor: H. Gao.
Copyright © 2Journal of Applied Mechanics
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the strain softening takes place~see the survey article by de Bors
@6#!. An interesting hyperelastic softening model based on
microstructural concept of the virtual internal bond has been p
posed recently by Gao and Klein@8#.

The computational efficiency of both volumetric and surfa
fracture models can suffer from two general problems. The fi
problem is mesh sensitivity. It takes place when the deform
finite element model reaches a critical point, which is a limit a
multiple bifurcation point. This happens when a number of fin
elements in various areas of the structure reach the cohe
strength simultaneously. The multiplicity of the bifurcation poi
and, consequently, the sensitivity of computations increase w
the refinement of the mesh. The mesh refinement can be lim
by introducing the characteristic length like in Bazant and Pla
@9# or Gao and Ji@10#. This will provide the upper bound for the
bifurcation multiplicity. It does not resolve the problem of th
bifurcation multiplicity as a whole, however. A more radical wa
in circumventing the mesh sensitivity issue is the introduction
the second displacement gradients and conjugate higher o
stresses~de Borst and van der Giessen@11# and Hutchinson@12#!.
This augmented initial boundary value problem can avoid
troubling critical point of the finite element model at all. The pric
for that is high because the enhanced model requires the a
tional boundary conditions which are not readily interpreted
simple physical terms.

The bifurcation multiplicity and the related mesh sensitivity a
inherent inany softening material model for aspecificloading of
the considered structure. Another computational problem of
separation constitutive models is more universal. It is related
the use of inequalities, like in damage or plasticity theories, a
vertex—hidden bifurcation—points, like in some compound el
tic models of debonding. These undesirable features significa
sophisticate numerical procedures and require informal experie
from their user.

We aim at formulating a volumetric material failure mode
which is both analytically and computationally simpler than t
existing fracture models. For this purpose a nonlinear soften
hyperelastic continuum model is considered. Isotropic materia
characterized by two standard parameters—shear and
modulus—and an additional parameter of thevolumetric separa-
tion work. This model can be considered as a volumetric gen
alization of the concept of the cohesive surface. The meanin
the proposed constitutive equations is clarified by the example
simple shear and hydrostatic pressure. It is emphasized tha
proposed constitutive model includes only smooth functions
the necessary computational techniques are those of nonli
elasticity.

2 Constitutive Equations
We set the strain energy per unit volume in the form

W5F2FS 113AK

F
« D expH 23AK

F
«2

G

F
ei j ei j J ,

(2.1)

where the standard volumetric/deviatoric decomposition of
strain tensor is used,

«5« i i /3, (2.2)

ei j 5« i j 2«d i j . (2.3)

CoefficientsK and G are the usual bulk and shear modulus r
spectively, whileF is a new constant of the isotropic brittle solid
This is thevolumetric separation work. Its dimension is work per
unit volume, i.e., it is the same as the dimension ofK andG and
the dimension of stress. It is worth emphasizing that the int
duced volumetric separation work is different from the separat
work traditionally used in the cohesive surface approach to fr
ture. The dimension of the latter is work per unit area.

For a hyperelastic material stresses are defined as follows:
er
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All entries on the right-hand side of this equation are readily co
puted accounting for the strain energy expression:

]W

]emn
52GemnS 113AK

F
« D expH 23AK

F
«2

G

F
ei j ei j J ,

(2.5)

]emn

]« i j
5dmid jn2d i j dmn/3, (2.6)

]W

]«
59K« expH 23AK

F
«2

G

F
ei j ei j J , (2.7)

]«

]« i j
5d i j /3. (2.8)

By using the volumetric/deviatoric decomposition of the stre
tensor,

s i j 5sd i j 1si j , s5skk/3, (2.9)

we have

si j 5
]W

]ei j
52Gei j S 113AK

F
« D expH 23AK

F
«2

G

F
emnemnJ ,

(2.10)

s5
]W

3]«
53K« expH 23AK

F
«2

G

F
emnemnJ . (2.11)

Linearized Eqs.~2.10! and ~2.11! present the classical Hooke
law.

In order to justify and clarify the specific choice of the stra
energy we consider two limit cases in the following two sectio

3 Simple Shear
Assume that only the following strain and stress compone

are nonzero:

t5s125s21 , g5e125e21. (3.1)

In this case the constitutive law~2.10! takes the form

t52Gg expH 2
2G

F
g2J . (3.2)

The shape of this curve appears in Fig. 1. Qualitatively, this me
that the magnitude of the shear traction increases linearly with
shear strain, reaches a maximum, and then approaches zero
increasing separation. It does not matter what the sign of the t
tion is.

Fig. 1 Simple shear. Normalized traction „vertical axis … versus
shear deformation „horizontal axis … as defined by Eq. „3.7….
142 Õ Vol. 71, JANUARY 2004
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The local maximum of the curve is at point

g56A F

4G
. (3.3)

The corresponding absolute magnitude of the maximum tractio

tmax5AGFexp$21/2%. (3.4)

Assume that for the given material the maximum traction
known:

tmax5G/100. (3.5)

Then we have

F5
G

104 exp~21!
. (3.6)

Substituting Eq.~3.6! in Eq. ~3.2! and normalizing the latter with
respect totmax we obtain

t

tmax
5200g exp$22•104 exp~21!g2%. (3.7)

The graph of this function is shown in Fig. 1.

4 Hydrostatic Pressure
Assume that the deformation under a uniform hydrostatic pr

sure is purely volumetric

s i j 5sd i j , « i j 5«d i j . (4.1)

In this case the constitutive law~2.11! takes the form

s53K« expH 23AK

F
«J . (4.2)

The shape of this curve appears in Fig. 2. Qualitatively, it can
interpreted as the linear increase of the magnitude of the ten
pressure with the increase of the material volume at the poin
reaches a maximum, and then approaches zero with increa
separation. The latter is nothing but the void nucleation. For
compression pressure the situation is different, however. The
no separation!

Assume that the material is defined by Eq.~3.5! andK/G52,
then Eq.~4.2! normalized with respect totmax takes the following
form:

s

tmax
5600« exp$2300A2 exp~21!«%. (4.3)

The graph of this function is shown in Fig. 2.

Fig. 2 Hydrostatic pressure. Normalized pressure „vertical
axis … versus volumetric deformation „horizontal axis … as de-
fined by Eq. „4.3….
Transactions of the ASME
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Flutter of Rotating Shells With a
Co-rotating Axial Flow 1

L. Cortelezzi

A. Pong

M. P. Paı̈doussis
Fellow ASME

Department of Mechanical Engineering, McGill
University, Montreal, QC H3A 2K6, Canada

It is shown that, in certain regions of parameter space, travelling
wave solutions in rotating shells containing co-rotating inviscid
fluid become indeterminate. This may render the determination of
the flutter speed impossible, or the solution nonphysical.
@DOI: 10.1115/1.1636794#

Introduction
The dynamics and stability of a shell containing fluid in

matched~solid body! rotation and also flowing axially was exam-
ined by Lai and Chow@1#, inspired by fluid-structure interactions
in ‘‘the thrust chamber and the pipelines in the liquid propellant
feed system of a spinning rocket.’’ In contrast to Srinivasan@2#,
Dowell et al.@3# and related studies which are connected to a real
system and need to face the complications attendant thereto, the
problem studied by Lai and Chow is very idealized. A closely
similar study was made by Chen and Bert@4# in which the shell is
stationary but the fluid is rotating as in the foregoing; thus, the
physical system is closer to engineering applications, but the use
of inviscid flow theory is less justifiable—see Paı¨doussis@5# for a
review.

This note presents new results which show that some of those
by Lai and Chow and Bert and Chen are questionable.

Equations of Motion and Analysis
Consider both the shell and the fluid to be rotating with angular

velocity V, and the fluid to have an axial velocityU, relative to
the shell. The shell is assumed to be very thin and its motions to
be governed by the Donnell equations,@1#, which in operator form
in terms of coordinates rotating with the shell are

LDH u
v
w
J 5gH ]2u/]t2

]2v/]t22V2v12V~]w/]t !
2]2w/]t21V2w12V~]v/]t !1p/rsh

J , (1)

whereu, v, andw are the axial, circumferential, and radial dis-
placements of the shell, and the other symbols are as in standard
thin-shell theory. The fluid velocities,vx , v r , andvu , are related
to the pressurep by

Dvx

Dt
52

1

r

]p

]x
,

Dv r
2

vu
2

22Vv 2V2r 52
1 ]p

, (2)

arch

ry
5 Conclusions
A novel constitutive model of an isotropic brittle solid has be

proposed. The exponential hyperelastic constitutive law descr
this model. The material bulk modulus and the shear modulus
completed with a new constant—the volumetric separation wo
The proposed constitutive equations are cohesive, that is
naturally allow for the material separation–strain localizatio
These equations may be interpreted on the basis of the sim
shear and hydrostatic pressure examples. The distortional~devia-
toric! deformation at the given point exhibits behavior analogo
to the simple shear, which graph is shown in Fig. 1. The dila
tional ~volumetric! deformation at the given point exhibits beha
ior analogous to the hydrostatic pressure, which graph is show
Fig. 2.

Adding the momentum conservation laws and the pro
boundary and initial conditions to the constitutive equations
scribed in Section 2 of our work, it is possible to set the init
boundary value problem ofnonlinear elasticity. The latter means
that the standard and well established numerical procedures
available. When a brittle solid is loaded quasi-statically then
crack nucleation means passing a limit point in the state spac
the discretized IBVP. Well-developed techniques of the arc-len
continuation can be used~Crisfield @13# and Riks@14#!. The loss
of the positive definiteness of the tangent stiffness matrix~the
Jacobian of the total discrete energy! means static instability. If
the equilibrium path does not become stable again, then the
namic crack propagation takes place and dynamic integration
cedures should be used~Belytschko et al.@15# and Xu and
Needleman@4#!. It is worth emphasizing that only smooth func
tions are used in the constitutive equations. The latter allows
circumventing the problems of inequalities and vertex poin
which are typical of most separation models.
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assuming the fluid to be inviscid and incompressible, D/Dt being
the material derivative.

Considering traveling wave solutions, the velocities are
pressed as

$vx , v r , vu%5$U, 0, 0%1$v̂x~r !, v̂ r~r !, v̂u~r !%eia, (3)

a5vt2kx2nu, (4)

wherek is the axial wavenumber; similarly,

p5P1p* , p* 5 p̂eia, (5)

in which p* is the perturbation pressure, whileP is the mean
pressure.

Utilizing these equations and continuity, one eventually find

d2p̂

dr 2 1
1

r

dp̂

dr
1Fk2~l221!2

n2

r 2G p̂50, (6)

l5
2V

~v2kU!
, (7)

for small perturbations. Equation~6! admits solutions of three
different types, depending onl2. The perturbation pressure i
related to the perturbation radial displacement via the imper
ability boundary condition,

v r ur 5a5 iw̄~v2kU!eia, (8)

where the shell displacements are taken to be

$u, v, w!5$ū, v̄, w̄%eia. (9)

Using these equations, the solutions to~6! may be written as

p̂5
ra~v2kU!2~12l2!In~krA12l2!

kaA12l2In21~kaA12l2!2n~11l!In~kaA12l2!
w̄,

l2,1, (10a)

5
8r~n11!V2r n

an11@n~n11!1k2a2#
w̄, l251, (10b)

5
ra~v2kU!2~12l2!Jn~krAl221!

kaAl221Jn21~kaAl2212n~11l!Jn~kaAl221!
w̄,

l2.1, (10c)

where Jn and In are Bessel and modified Bessel functions of t
first kind and ordern. These expressions, evaluated atr 5a, to-
gether with~9! are then substituted into~1!, giving three homoge-
neous ODEs inū, v̄, andw̄, solution of which yields the desired
frequencyv.

The results are presented in terms of the following dimensi
less parameters:

ṽ5vaArs~12n2!

E
, Ṽ5VaArs~12n2!

E
,

Ũ5UAr~12n2!

E
, k5ka, (11)

where n is the Poisson ratio,E Young’s modulus,a the shell
radius, andrs andr the shell and fluid densities.
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Typical Results
Typical results from Lai and Chow’s@1# work are shown in Fig.

1 for a rotating elastomer shell with co-rotating and axially flo
ing fluid. It is seen that, at a fixedṼ50.1 ~1 820 r.p.m.! and a
given wave number,k510, the system first loses stability in th
n53 mode atŨ50.089 (U53.3 m/s)—at the ‘‘nose’’ of the
curve shown. WhenṼ50 ~not shown!, one obtains flutter in the
n56 mode, at a higher criticalŨ, by about 11%.

Similar results have been obtained for Chen and Bert’s,@4#,
system. The analysis is similar, and so is the form of the solut

Newer Work
The authors decided to extend this analysis to take real fl

effects into account. The first step was to reproduce Lai a
Chow’s results, using the same Eqs.~1!–~11!. This was found to
be impossible, at least for part of the solutions~such as those
shown in Fig. 1!. Specifically, in most cases it was found impo
sible to ‘‘close the curve’’ at the nose, and hence to determine
critical Ũ5Ũ f .

At first it was thought that the difficulties were numerical, an
several different root-finding methods were tried, but they all ga
similar results. The problem is real, and it is the following. Ref
ring to Eqs.~10 a,b,c!, it is noted that~i! to trace each of the
curves of Fig. 1 fully, one generally needs all forms forp̂, Eqs.
~10 a,b,c!; ~ii ! the denominator of~10c! is a functional of the Jn
Bessel functions, each of which crosses zero an infinite numbe
times, and so does the denominator as a whole. For example
inspection, for then50 case the denominator becomes zero
every value ofkaAl221 for which J21(kaAl221)50. As a
result, the perturbation pressure at these points is indetermi
and the solution becomes impossible.

A typical set of results for then50 case of Fig. 1 are shown in
Fig. 2. The two straight lines limit the domain within which exi
islets where a solution is not feasible. Thus, it becomes imposs
to properly ‘‘close the curve’’ and determineŨ f . Generally, the
width and orientation of the no-solution band is paramet
dependent; thus, the band could well disappear completely o
could cover most of the stability curve.

In this regard, a valuable suggestion was made by a reviewe
an earlier version of this paper. The original eigenvalue probl
of Eq. ~1! may symbolically be written asLw5p, where p
5Aw with A5AN /AD . If this is recast in terms of pressure, on
obtains the equivalent eigenvalue problemLADp5ANp, which
may well circumvent the numerical difficulties associated w
AD50 at some frequencies. The infinite pressure points co
then be viewed as points of zero displacement amplitude.2 How-
ever, although this could mean that closed curves similar to Fi

Fig. 1 The dimensionless frequency ṽ versus Ũ for different
n , as given by Lai and Chow
Transactions of the ASME
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Flow, and Waves
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Diffusion, flow, and wave phenomena can each be captured by a
unified differential equation in matrix-vector form. This equation
forms the basis for the derivation of unified reciprocity theorems
for diffusion, flow and wave phenomena.
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Fig. 2 The recalculated ṽ versus Ũ plot for nÄ0
n

t

y

e

f

o

7
,

,

by

ent

am-
a-
l

nd

-
atin

d

roc-
mis-
ain,

tion
o
rd
eo-

the

orm

r

could then be obtained, it does not truly solve the problem; so
tions of zero displacement amplitude are as strange as solutio
infinite pressure for this linear homogeneous problem. Thus,
stead of islets of nonsolution~infinite pressure! we would have
islets of zero-amplitude solutions.

The same applies to Chen and Bert’s results, in view of
similarities in the expressions for the perturbation pressures.

Conclusion
It is not known how the two sets of previous authors ha

overcome these difficulties and have presented full curves.3 It is of
course possible to ignore the islets of nonsolution and join
valid regions with a trusty French curve, thoughany solution
within the no-solution band is really questionable. Alternative
the previous authors may have used the device suggested b
reviewer. In either case a mathematical/physical difficulty exis

Fundamentally, the question is this: does the mathematical
ficulty have the physical meaning that flutter of arbitrary amp
tude in such cases is impossible, even though its existence s
physically reasonable? Of course, the whole analysis of the ph
cal system is highly idealized by ignoring viscous effects. Th
incorporation, however, is anything but trivial. Perhaps, as is o
the case, added realism will also overcome the mathematical
ficulties. This line of research is being pursued.

It was nevertheless thought that the research community sh
be made aware that the results of the 1970s analyses ma
flawed in some regions of the parameter space.
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Introduction
Diffusion, flow, and wave phenomena can each be captured

the following differential equation in matrix-vector form:

A>
Du>

Dt
1Bu1Dxu5s, (1)

whereu5u(x,t) is a vector containing space and time-depend
field quantities,s5s(x,t) is a source vector,A5A(x) and B
5B(x) are matrices containing space-dependent material par
eters, andDx is a matrix containing the spatial differential oper
tors]/]x1 , ]/]x2 , and]/]x3 . Finally, D/Dt denotes the materia
time derivative, defined asD/Dt5]/]t1v•“5]/]t1vk]/]xk ,
where]/]t denotes the time derivative in the reference frame a
v5v(x) is the space-dependent flow velocity of the material;vk
denotes thekth component ofv. Throughout this paper the sum
mation convention applies to repeated subscripts; lowercase L
subscripts run from 1 to 3. The vectors and matrices in Eq.~1! are
further defined in the appendices for diffusion~Appendix A!,
acoustic wave propagation in moving fluids~Appendix B!, mo-
mentum transport~Appendix C!, and coupled elastodynamic an
electromagnetic wave propagation in porous solids~Appendix D!.
In this paper we use Eq.~1! as the basis for deriving unified
reciprocity theorems for these phenomena. In general, a recip
ity theorem interrelates the quantities that characterize two ad
sible physical states that could occur in one and the same dom
@1#. One can distinguish between convolution type and correla
type reciprocity theorems,@2#. Generally speaking, these tw
types of reciprocity theorems find their applications in forwa
and inverse problems, respectively. Both types of reciprocity th
rems will be derived for the field vectoru.

The Differential Equation in the Frequency Domain
Reciprocity theorems can be derived in the time domain,

Laplace domain and the frequency domain,@3#. Here we only
consider the frequency domain. We define the Fourier transf
of a time-dependent functionf (t) as f̂ (v)5*2`

` f (t)exp
(2jvt)dt, wherej is the imaginary unit andv denotes the angula
frequency. We apply the Fourier transform to all terms in Eq.~1!,
under the assumption that this equation is linear inu. Hence, we
only consider those cases in which the field quantities inu do not
appear in any of the matrices or operators in Eq.~1!. In particular,
this is why the termDu/Dt in the momentum transport Eq.~C7!
is replaced by]u/]t in ~C10!. Transforming Eq.~1! to the fre-
quency domain yields
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A~ j v1v•“ !û1Bû1Dxû5 ŝ, (2)

whereû5û(x,v) is the space and frequency-dependent field v
tor and ŝ5 ŝ(x,v) is the space and frequency-dependent sou
vector. The termv•“ should be dropped for linearized mome
tum transport~Appendix C! as well as for wave phenomena
nonmoving media~Appendix D!. Finally we remark that in a
number of cases matrixB contains temporal convolution kerne
in the time domain~Appendix B! or, equivalently, complex
frequency-dependent material parameters in the frequency do
~Appendices B and D!.

Modification of Gauss’ Divergence Theorem
The reciprocity theorem will be derived for a volumeV en-

closed by surface]V with outward pointing normal vectorn. Note
that ]V does not necessarily coincide with a physical bounda
Gauss’ divergence theorem plays a central role in the derivat
For a scalar fielda(x), this theorem reads

E
V

]a~x!

]xi
d3x5 R

]V
a~x!nid

2x, (3)

whereni denotes theith component ofn. In this section we will
modify this theorem for the differential operator matrixDx appear-
ing in Eqs. ~1! and ~2!. Note thatDx5Dx

T for all forms of Dx

appearing in the appendices~here superscriptT denotes matrix
transposition only; it does not denote operator transposition!. Let
DIJ denote the operator in rowI and columnJ of matrix Dx . The
symmetry ofDx implies DIJ5DJI . We define a matrixNx which
contains the components of the normal vectorn, organized in a
similar way as matrixDx , see the appendices for details. Hence
NIJ denotes the element in rowI and columnJ of matrix Nx , we
haveNIJ5NJI . For example, for matricesDx andNx in Eqs.~A3!
and ~A5! we haveD125D215]/]x1 and N125N215n1 . If we
now replace the scalar fielda(x) by aI(x)bJ(x), we may gener-
alize Eq.~3! to

E
V
DIJ@aI~x!bJ~x!#d3x5 R

]V
aI~x!bJ~x!NIJd2x, (4)

where the summation convention applies for repeated ca
Latin subscripts~which may run from 1 to 4, 12 or 22, dependin
on the choice of operatorDx). Applying the product rule for dif-
ferentiation and using the symmetry propertyDIJ5DJI , we ob-
tain for the integrand in the left-hand side of Eq.~4!

DIJ~aIbJ!5aIDIJbJ1~DJIaI !bJ5aTDxb1~Dxa!Tb, (5)

wherea andb are vector functions, containing the scalar functio
aI(x) and bJ(x), respectively. Rewriting the integrand in th
right-hand side of Eq.~4! in a similar way, we thus obtain

E
V
@aTDxb1~Dxa!Tb#d3x5 R

]V
aTNxbd2x. (6)

Finally we consider a variant of this equation. We replacea by
Ka, whereK is a diagonal matrix with the following property:

DxK52KD x , (7)

see the appendices for details. With this replacement, Eq.~6! be-
comes

E
V
@aTKD xb2~Dxa!TKb #d3x5 R

]V
aTKN xbd2x. (8)

Reciprocity Theorem of the Convolution Type
We consider two physical states in volumeV. The field quanti-

ties, the material parameters, the flow velocity as well as
source functions may be different in both states and they will
distinguished with subscriptsA and B ~of course the summation
146 Õ Vol. 71, JANUARY 2004
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convention does not apply for these subscripts!. We substituteûA
andûB for a andb in Eq. ~8!, apply Eq.~2! for statesA andB and
use the symmetry properties

AA
TK5KA A and BA

TK5KBA (9)

~see the appendices!. This yields

R
]V

ûA
TKN xuBd2x5E

V
@uA

TKŝB2sA
TKuBd3x

1E
V
uA

TK @ j v~AA2AB!1~BA2BB!#uBd3x

1E
V
@(~vA•“ !uA)TKA A

2uA
TKA B~vB•“ !]uBd3x. (10)

The first term in the last integral can be written as

~~vA•“ !uA
TKA AûB5“•~vAûA

TKA AuB

2ûA
TK

]~v i ,AAA!

]xi
uB2uA

TKA A~vA•“ !uB .

(11)

For diffusion ~Appendix A! the term](v i ,AAA)/]xi vanishes on
account of the equation of continuity. For acoustic wave propa
tion this term~with v i ,A replaced byv i ,A

0 , Appendix B! is negli-
gible in comparison with the spatial derivatives of the wave fie
ûA and ûB . For the other situations considered in the appendic
v i ,A is taken equal to zero. Hence, the term contain
](v i ,AAA)/]xi will be dropped. Substituting the remainder of th
right-hand side of Eq.~11! into Eq.~10! and applying the theorem
of Gauss for the term containing the divergence operator, yie

R
]V

ûA
TKN xûBd2x5E

V
@ ûA

TKŝB2 ŝA
TKûB#d3x

1E
V
ûA

TK @ j v~AA2AB!1~BA2BB!#ûBd3x

2E
V
ûA

TK @AA~vA•“ !1AB~vB•“ !#ûBd3x

1 R
]V

~ ûA
TKA AûB!vA"nd2x. (12)

This is the unified reciprocity theorem of the convolution type~we
speak of convolution type, because the multiplications in the
quency domain correspond to convolutions in the time domain!. It
interrelates the field quantities~contained inûA and ûB), the ma-
terial parameters~contained inAA , BA , AB , andBB), the flow
velocities (vA andvB) as well as the source functions~contained
in ŝA and ŝB) of statesA andB. The left-hand side is a boundar
integral which contains a specific combination of the field qua
tities of statesA andB at the boundary of the volumeV. The first
integral on the right-hand side interrelates the field quantities
the source functions inV. The second integral contains the diffe
ences of the medium parameters in both states; obviously
integral vanishes when the medium parameters in both state
identical. The third integral on the right-hand side contains
flow velocities inV; this integral vanishes when the medium p
rameters in both states are identical and the flow velocities in b
states are opposite to each other. The last integral on the r
hand side is a boundary integral containing the normal compon
of the flow velocity in stateA; it vanishes when this flow velocity
is tangential to the boundary]V. Depending on the type of appli
cation, statesA andB can be both physical states, or both mat
ematical states~e.g., Green’s states!, or one can be a physical stat
Transactions of the ASME
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representation integrals!. For further discussions on convolution
type reciprocity theorems in different fields of application we re
to Lyamshev@4#, De Hoop and Stam@1#, Fokkema and Van den
Berg @3#, Allard et al. @5#, Pride and Haartsen@6#, and Belinskiy
@7#.

Reciprocity Theorem of the Correlation Type

We substituteûA* andûB for a andb in Eq. ~6!, where* denotes
complex conjugation. Following the same procedure as in the
vious section, using the symmetry property

AA
H5AA , (13)

whereH denotes complex conjugation and transposition, we
tain

R
]V

ûA
HNxûBd2x5E

V
@ ûA

HŝB1 ŝA
HûB#d3x

1E
V
ûA

H@ j v~AA2AB!2~BA
H1BB!#ûBd3x

1E
V
ûA

H@AA~vA•“ !2AB~vB•“ !#ûBd3x

2 R
]V

~ ûA
HAAûB!vA"nd2x. (14)

This is the unified reciprocity theorem of the correlation type~we
speak of correlation type, because the multiplications in the
quency domain correspond to correlations in the time doma!.
The termûA

H contains ‘‘back-propagating’’ field quantities in sta
A, @2#. When we compare this reciprocity theorem with Eq.~12!,
we observe that, apart from the complex conjugation, the diag
matrix K is absent in all integrals and that some plus and mi
signs have been changed. In particular, the term (BA2BB) has
been replaced by (BA

H1BB), which means that the second integr
on the right-hand side no longer vanishes when the medium
rameters in both states are identical. Moreover, the term@AA(vA
•“)1AB(vB•“)# has been replaced by@AA(vA•“)2AB(vB
•“)#, which means that the third integral on the right-hand s
vanishes when the medium parameters contained in matrixA as
well as the flow velocities are identical in both states. For a d
cussion on the application of correlation-type reciprocity theore
to inverse problems we refer to Fisher and Langenberg@8# and De
Hoop and Stam@1#.

Conclusions
We have formulated a general differential equation in matr

vector form~equation~1!!, which applies to diffusion~Appendix
A!, acoustic wave propagation in moving fluids~Appendix B!,
momentum transport~Appendix C! and coupled elastodynami
and electromagnetic wave propagation in fluid-saturated po
solids~Appendix D!. For linear phenomena~which excludes non-
linear momentum transport! we have transformed the gener
equation from the time domain to the frequency domain~Eq. ~2!!.
Based on this general equation as well as the symmetry prope
~7!, ~9!, and~13! we have derived unified reciprocity theorems
the convolution type~Eq. ~12!! and of the correlation type~Eq.
~14!!, respectively.
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Appendix A

Mass Diffusion. The equation of continuity for speciesk in a
mixture of fluids reads

%
DY~k!

Dt
1

]Jj
~k!

]xj
5v̇~k!, (A1)

where Y(k) is the mass fraction of speciesk, Jj
(k) its mass flux

relative to the mixture,% is the mass density of the mixture an
v̇ (k) the mass production rate density of speciesk ~due to chemi-
cal reactions!. Fick’s first law of diffusion reads

Jj
~k!1%D~k!

]Y~k!

]xj
50, (A2)

where D(k) is the diffusion coefficient for speciesk. Equations
~A1! and ~A2! can be combined to yield Eq.~1!, with

u5S Y~k!

J1
~k!

J2
~k!

J3
~k!

D , s5S v̇~k!

0
0
0
D ,

(A3)

Dx51
0

]

]x1

]

]x2

]

]x3

]

]x1
0 0 0

]

]x2
0 0 0

]

]x3
0 0 0

2 ,

A5S % 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D and

(A4)

B5S 0 0 0 0

0
1

%D~k!
0 0

0 0
1

%D~k!
0

0 0 0
1

%D~k!

D .

MatricesNx and K , appearing in the modified divergence the
rems~6! and ~8!, read

Nx5S 0 n1 n2 n3

n1 0 0 0

n2 0 0 0

n3 0 0 0

D and

(A5)

K5S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

D .

Note that matricesDx , A andB obey Eqs.~7!, ~9!, and~13!. Other
diffusion phenomena can be formulated in a similar way.
JANUARY 2004, Vol. 71 Õ 147
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Appendix B

Acoustic Wave Propagation in Moving Fluids. The linear-
ized equation of motion in a moving fluid reads

%
Dv i

Dt
1bv* v i1

]p

]xi
5 f i , (B1)

with

D

Dt
5

]

]t
1vk

0
]

]xk
, (B2)

wherep is the acoustic pressure,v i the particle velocity associate
to the acoustic wave motion~which is to be distinguished from th
flow velocity vk

0 in the operatorD/Dt), % the mass density of the
medium in equilibrium,f i the volume density of external force
andbv a causal loss function~* denotes a temporal convolution!.
The linearized stress-strain relation reads

1

K

Dp

Dt
1bp* p1

]v i

]xi
5q, (B3)

whereK is the bulk compression modulus,q the volume injection
rate density, andbp a causal loss function.

Equations~B1! and ~B3! can be combined to yield the gener
matrix-vector Eq.~1!, with D/Dt defined in Eq.~B2! and

u5S p
v1

v2

v3

D , s5S q
f 1

f 2

f 3

D ,

A5S 1

K
0 0 0

0 % 0 0

0 0 % 0

0 0 0 %

D and (B4)

B5S bp* 0 0 0

0 bv* 0 0

0 0 bv* 0

0 0 0 bv*

D .

Matrices Dx , Nx , and K are the same as in Appendix A. Th
symmetry properties described by Eqs.~7!, ~9!, and~13! are easily
confirmed. Finally, note that in the frequency domain formulatio
the temporal convolution kernelsbp(x,t)* andbv(x,t)* in matrix
B are replaced by complex frequency-dependent functi
b̂p(x,v) and b̂v(x,v), respectively.

Appendix C

Momentum Transport. The nonlinear equation of motion fo
a viscous fluid reads

%
Dv i

Dt
2

]t i j

]xj
5 f i , (C1)

wherev i is the particle velocity,t i j the stress tensor,% the mass
density, and f i the volume density of external force. Stoke
stress-strain rate relation reads

2t i j 1h i jkl

]vk

]xl
5pd i j , (C2)

where h i jkl is the anisotropic viscosity tensor andp the hydro-
static pressure. The viscosity tensor obeys the following symm
relationh i jkl 5h j ikl 5h i j lk 5hkli j . For isotropic fluids the viscos
ity tensor readsh i jkl 5h(22/3d i j dkl1d ikd j l 1d i l d jk), whereh is
148 Õ Vol. 71, JANUARY 2004
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the isotropic viscosity parameter. Equations~C1! and~C2! can be
combined to yield the general matrix-vector Eq.~1!. To this end
we first rewrite these equations as

%
Dv

Dt
2

]tj

]xj
5f, (C3)

2tj1hj l

]v

]xl
5pdj , (C4)

with

v5S v1

v2

v3

D , f5S f 1

f 2

f 3

D tj5S t1 j

t2 j

t3 j

D , dj5S d1 j

d2 j

d3 j

D and

(C5)

hj l 5S h1 j 1l h1 j 2l h1 j 3l

h2 j 1l h2 j 2l h2 j 3l

h3 j 1l h3 j 2l h3 j 3l

D .

Note that

hj l 5hl j
T (C6)

on account of the symmetry properties ofh i jkl . Hence, we obtain

Ā
Du

Dt
1B̄u1CDxu5 s̄, (C7)

with

u5S v
2t1

2t2

2t3

D , s̄5S f
pd1

pd2

pd3

D ,

Ā5S %I O O O

O O O O

O O O O

O O O O

D , B̄5S O O O O

O I O O

O O I O

O O O I

D , (C8)

C5S I O O O

O h11 h12 h13

O h21 h22 h23

O h31 h32 h33

D ,

Dx5S O D1 D2 D3

D1 O O O

D2 O O O

D3 O O O

D and

(C9)

Dj5S ]

]xj
0 0

0
]

]xj
0

0 0
]

]xj

D ,

for j 51, 2, 3,I being the 333 identity matrix andO the 333 null
matrix. Multiplication of all terms in Eq.~C7! by the inverse ofC
and linearization of the termDu/Dt yields

A
]u

]t
1Bu1Dxu5s, (C10)

with

A5C21Ā5Ā, B5C21B̄ and s5C21s̄. (C11)
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MatricesNx and K , appearing in the modified divergence the
rems~6! and ~8!, read

Nx5S O N1 N2 N3

N1 O O O

N2 O O O

N3 O O O

D and Nj5S nj 0 0

0 nj 0

0 0 nj

D ,

(C12)

for j 51, 2, 3 and

K5diag~1,21,21,21!, with 15~1,1,1!. (C13)

Based on the structure of the matricesĀ,B̄,C, Dx , andK as well
as the symmetry relation~C6!, we find that the symmetry proper
ties described by Eqs.~7!, ~9!, and~13! are obeyed.

Appendix D

Coupled Elastodynamic and Electromagnetic Wave Propa-
gation in Porous Solids. We briefly review the theory for elas
todynamic waves coupled to electromagnetic fields in a diss
tive inhomogeneous anisotropic fluid-saturated porous solid,@6,9#.
The linearized equations of motion read in the frequency dom
~using the vector notation introduced in Appendix C!

j v%bv̂s1 j v%fŵ2
] t̂ j

b

]xj
5 f̂ b, (D1)

j v%f v̂s1h k̂21~ŵ2L̂ Ê!1“ p̂5 f̂ f , (D2)

with ŵ5f( v̂f2 v̂s). Here v̂s and v̂f are the averaged solid an
fluid particle velocities associated to the wave motion,ŵ is the
filtration velocity, f the porosity,t̂ j

b the averaged bulk stress,p̂

the averaged fluid pressure, andÊ the averaged electric field
strength. The source functionsf̂b and f̂ f are the volume densitie
of external force on the bulk and on the fluid, respectively. T
constitutive parameters%b and %f are the anisotropic bulk and
fluid mass densities, respectively,@10#. In the following we as-
sume that these tensors are symmetric, according to%b5(%b)T

and%f5(%f)T, which is for example the case when the anisotro
is the result of parallel fine layering at a scale much smaller t
the wavelength. The complex frequency-dependent tensork̂ is the
dynamic permeability tensor of the porous material, withk̂5 k̂T,
and h is the fluid viscosity parameter. Finally, the comple
frequency-dependent tensorL̂ accounts for the coupling betwee
the elastodynamic and electromagnetic waves. In the follow
we will assume that this tensor is symmetric as well, according
L̂5L̂T ~Pride and Haartsen@6# discuss the conditions for thi
symmetry!.

The linearized stress-strain relations read

2 j v t̂j
b1cj l

] v̂s

]xl
1dj“"ŵ50, (D3)

j v p̂1dl
T

] v̂s

]xl
1M“"ŵ50, (D4)

with 0 a 331 null vector anddj andcj l defined similar asdj and
hj l in Eq. ~C5!, i.e., (dj ) i5di j , with di j 5dji , and (cj l ) ik5ci jkl ,
with ci jkl 5cjikl 5ci j lk 5ckli j . Note thatcj l 5cl j

T . M, di j andci jkl
are the stiffness parameters of the porous solid.

Maxwell’s electromagnetic field equations read

j veÊ1 Ĵ2“3Ĥ52 Ĵe, (D5)

j vmĤ1“3Ê52 Ĵm, (D6)

whereĤ is the averaged magnetic field strength,Ĵ the averaged
induced electric current density,e andm are the anisotropic per
mittivity and permeability, withe5eT andm5mT, andJe andJm
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are source functions in terms of the external electric and magn
current densities. The induced electric current density is coup
to the elastodynamic wave motion, according to

Ĵ5ŝÊ2L̂ @“ p̂1 j v%f v̂s2 f̂ f #, (D7)

whereŝ is the complex frequency dependent conductivity, w
ŝ5ŝT. Substituting the constitutive relation~D7! into the Max-
well Eq. ~D5!, and addingL̂ times Eq.~D2! to Eq. ~D5! in order
to compensate for the term2L̂ @“ p̂1 j v%f v̂s2 f̂ f #, yields

j veÊ1~ŝ2hL̂ k̂21L̂ !Ê1hL̂ k̂21ŵ2“3Ĥ52 Ĵe. (D8)

Equations~D8! and~D6!, together with Eqs.~D1!, ~D2!, ~D3!, and
~D4! can be combined to yield

j vĀû1B̄û1CDxû5sC, (D9)

where

û5S û1

û2

û3

D , sC5S sC1

sC2

sC3

D , Ā5S Ā11 O O

O Ā22 Ā23

O Ā23
T Ā33

D ,

(D10)

B̄5S B̄11 O B̄13

O O O

2B̄13
T O B̄33

D ,

C5S I O O

O C22 C23

O C23
T C33

D and Dx5S D11 O O

O D22 O

O O D33

D ,

(D11)

where I and O are identity and null matrices of appropriate si
and

û15S Ê

Ĥ
D , û25S v̂s

2 t̂1
b

2 t̂2
b

2 t̂3
b

D , û35S ŵ
p̂ D ,

sC15S 2 Ĵe

2 ĴmD , sC25S f̂b

0
0
0
D , sC35S f̂ f

0 D , (D12)

Ā115S e O

O m
D , Ā225S %b O O O

O I O O

O O I O

O O O I

D ,

(D13)

Ā235S %f 0

O 0

O 0

O 0

D , Ā335S O 0

0T 1D ,
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B̄115S ~ŝ2hL̂ k̂21L̂ ! O

O O
D , B̄135S hL̂ k̂21 0

O 0
D ,

(D14)

B̄335S h k̂21 0

0T 0
D ,

C225S I O O O

O c11 c12 c13

O c21 c22 c23

O c31 c32 c33

D , C235S O 0

O d1

O d2

O d3

D ,

(D15)

C335S I 0

0T M
D ,

D115S O D0
T

D0 O
D , D05S 0 2

]

]x3

]

]x2

]

]x3
0 2

]

]x1

2
]

]x2

]

]x1
0

D ,

(D16)

D335S O “

“

T 0 D
andD22 equal toDx in Eq. ~C9!. Multiplying all terms in Eq.~D9!
by the inverse ofC finally yields

j vAû1Bû1Dxû5 ŝ, (D17)

with A5C21Ā, B5C21B̄5B̄ and ŝ5C21sC5sC. MatricesNx and
K , appearing in the modified divergence theorems~6! and ~8!,
read

Nx5S N11 O O

O N22 O

O O N33

D , N115S O N0
T

N0 O
D ,

(D18)

N05S 0 2n3 n2

n3 0 2n1

2n2 n1 0
D , N335S O n

nT 0D ,
150 Õ Vol. 71, JANUARY 2004
K5diag~21,1,1,21,21,21,1,21!, (D19)

and N22 equal toNx in Eq. ~C12!. Based on the structure of th
matricesĀ, B̄, C, Dx , andK as well as the symmetry relation
discussed above, we find that the symmetry properties descr
by Eqs.~7!, ~9!, and~13! are obeyed.

Finally, note that when the coupling tensorL̂ is zero, the matrix
B̄13 vanishes and hence equation~D9! decouples into the electro
magnetic wave equation for the wave vectorû1 and Biot’s po-
roelastic wave equation for the wave vector (û2

T ,û3
T)T, @11#. For a

nonporous solid the matricesĀ23 andC23 vanish as well, so Biot’s
wave equation reduces to the elastodynamic wave equation fo
wave vectorû2 . Obviously the symmetry properties described
Eqs.~7!, ~9!, and~13! are obeyed for the matrices appearing in t
electromagnetic wave equation, Biot’s poroelastic wave equa
and the elastodynamic wave equation, respectively.
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