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A Geometrically Nonlinear Shear
Deformation Theory for
Composite Shells

Wenbin Yu'

Post Doctoral Fellow A geometrically nonlinear shear deformation theory has been developed for elastic shells
to accommodate a constitutive model suitable for composite shells when modeled as a
Dewey H. Hodges two-dimensional continuum. A complete set of kinematical and intrinsic equilibrium equa-
Professor tions are derived for shells undergoing large displacements and rotations but with small,
Mem. ASME two-dimensional, generalized strains. The large rotation is represented by the general
finite rotation of a frame embedded in the undeformed configuration, of which one axis is
School of Aerospace Enginesring, along the normal line. The unit vector along the normal line of the undeformed reference
Georgia Institute of Technology, surface is not in general normal to the deformed reference surface because of transverse
Atlanta, GA 30332-0150 shear. It is shown that the rotation of the frame about the normal line is not zero and that
it can be expressed in terms of other global deformation variables. Based on a general-
ized constitutive model obtained from an asymptotic dimensional reduction from the three-
dimensional energy, and in the form of a Reissner-Mindlin type theory, a set of intrinsic
equilibrium equations and boundary conditions follow. It is shown that only five equilib-
rium equations can be derived in this manner because the component of virtual rotation
about the normal is not independent. It is shown, however, that these equilibrium equa-
tions contain terms that cannot be obtained without the use of all three components of the
finite rotation vector[DOI: 10.1115/1.1640364

Introduction dimensional generalized strain-displacement relations are nonlin-

. . . . ear while the two-dimensional generalized stress-strain relations
For an elastic three-dimensional continuum, there are two typRs, ot to be linear

of nonlinearity: geometrical and physical. A theory is geometri- o shel| is a three-dimensional body with a relatively small
cally nonlinear if the kinematicalstrain-displacementrelations  thickness and a smooth reference surface. The feature of the small
are nonlinear but the constitutivetress-strainrelations are lin-  thickness attracts researchers to simplify their analyses by reduc-
ear. This kind of theory allows large displacements and rotatioirgy the original three-dimensional problem to a two-dimensional
with the restriction that strain must be small. A physicaly problem by taking advantage of the thinness. By comparison with
materially) nonlinear theory is necessary for biological, rubbeithe original three-dimensional problem, an exact shell theory does
like or inflatable structures where the strain cannot be consider@@t exist. Dimensional reduction is an inherently approximate pro-
small, and a nonlinear constitutive law is needed to relate t§8SS- Shell theory is a very old subject, since the vibration of a
stress and strain. Although this classification seems obvious difg]l Was attempted by Euler even before elasticity theory was well

clear for a structure modeled as a three-dimensional continuume.Ig’(tab“Shed[(ﬂ' Even so, shell theory St'l.l recees a lot of atten-
iﬂ%n from modern researchers because it is used so extensively in

becomes somewhat ambiguous to model dlmenglonally fEdUCB many engineering applications. Moreover, many shells are now
structures—structures that have one or two dimensions Mythge with advanced materials that have only recently become
smaller than the othé) such as beams, plates, and shellsyaijaple.

[1]—using reduced one-dimensional or two-dimensional models.Generally speaking, shell theories can be classified according to
A nonlinear constitutive law for the reduced structural model cadirect, derived andmixedapproaches. The direct approach, which
in some circumstances be obtained from the reduction of a gewiginated with the Cosserat brothefg], models a shell directly
metrically nonlinear three-dimensional theory. For example, in tf&s a two-dimensional “orientated” continuum. NagH@] pro-
so-called Wagner or trapeze effef2-5], the effective torsional Vided an extensive review of this kind of approach. Although the
rigidity is increased due to axial force. This physically nonlineafirect approach is elegant and able to account for transverse and
one-dimensional model stems from a purely geometrically nonlifo'mal strains and rotations associated with couple stresses, it
ear theory at the three-dimensional level. On the other hand, where connects with the fact that a shell is a three-dimensional

resent paper focuses on a geometrically nonlinear analvsis at ody and thus completely isolates itself from three-dimensional
P pap Y y y oftinuum mechanics. This could be the main reason that this

three-cﬁmensmnal Ievel_whlch_ becomes a geometrlgally nonl'negﬁproach has not been much appreciated in the engineering com-
analysis at the two-dimensional as well. That is, the tWqyynity. One of the complaints of these approaches that they are
difficult for numerical implementation has been answered by
Ipresently Assistant Professor, Department of Mechanical and Aerospace Efgimo and his co-workers by providing an efficient formulation
neering, Utah State University, Logan, UT 84322-4130. “free from mathematical complexities and suitable for large scale

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF : ” i
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- computation, [9'10]' And more recently a similar theory was

CHANICS. Manuscript received by the ASME Applied Mechanics Division, June sdeveloped by lorahimbegov[d1] to include drilling rotations so
2002; final revision, June 10, 2003. Associate Editor: D. A. Kouris. Discussion on tfiBat not-so-smooth shell structures can be analyzed conveniently.
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal ljbwever, the main complaint remains that these approaches lack a
Applied Mechanics, Department of Mechanical and Environmental Engineering Unjx ; : - i

versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will ’gleeanmgfu' way to find the constitutive m.0d6|S which .Can O.”'V
accepted until four months after final publication of the paper itself in the AsMP€ €xperienced and formulated properly in our three-dimensional

JOURNAL OF APPLIED MECHANICS. real world,” [12]. Reissnef13] developed a very general nonlin-
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Fig. 1 Schematic of shell deformation

ear shell theory introducing 12 generalized strains by consideriagalogous two-dimensional constitutive law is postulated due to
the dynamics of stress resultants and couples on the referetizefact that even three-dimensional constitutive laws are inexact.
surface as the basis. He gracefully avoided the awkwardness ofhere is a sense in which the present approach can also be
finding a proper constitutive model by pointing out two possibleonsidered as mixed. The two-dimensional constitutive model is
means to establish them. It is recommendefdLB] that one could obtained by the variational asymptotic meth®AM ), [16], such
either design experiments to determine the constitutive constatitat the two-dimensional energy is as close to an asymptotic ap-
without explicit reference to the three-dimensional nature of th@oximation of the original three-dimensional energy as possible,
structure or derive an appropriate two-dimensional model frofi7]. The process of constructing the constitutive model defines
the given knowledge of the constitutive relations for the redhe reference surface and the kinematics of this surface are geo-
three-dimensional model of the structure. metrically exact formulated in an intrinsic format. The two-
Derived approaches reduce the original three-dimensional eldémensional equilibrium equations are obtained from the two-
ticity problem into a two-dimensional problem to be solved ovedimensional energy with the knowledge of the variations of the
the reference surface. Such reductions are usually carried ougeneralized strains. The only approximate part of our two-
one of two ways. The most common approach is to assumedianensional shell theory is the constitutive law which is not pos-
priori the distribution of three-dimensional quantities through thilated but is mathematically obtained by VAM.
thickness and then to construct a two-dimensional strain energy
per unit area by integrating the three-dimensional energy per unit ) )
volume through the thickness. Remarkably, classiaksio known Shell Kinematics

as Kirchhoff-Love type theopy first-order shear deformation The equations of two-dimensional shell theory are written over
(also known as Reissner-Mindlin type thepriigher-order, and the domain of the reference surface, on which every point can be
layer-wise shell theories all fall into this category, including theepresented by a position vectoin the undeformed configuration
theories proposed by Red{iy4], for example. Another approach andR in the deformed configuratiofsee Fig. 1 with respect to a
is to apply an asymptotic method to expand all quantities into ed pointO in the space. A set of two curvilinear coordinates,
asymptotic series of the thickness coordinate, so that a sequefice are required to located a point on the reference surface. The
of two-dimensional problems can be solved according to the difpordinates are so-calletbnvectedcoordinates such that every
ferent orders. _ point of the configuration has the same coordinates during the
The mixed approach is used|ib5] based on the argument thatgeformation (Here and throughout the paper Latin indices assume
all the three-dimensional elasticity equations except the constitll-2 3: and Greek indices assume values 1 and 2. Dummy indices
tive relations are independent of the material properties, such & summed over their range except where explicitly indicated.
the kinematical relations, equilibrium of momentum and forcesyjithout loss of generalityx,, are chosen to be the lines of curva-
The constitutive law must be determined experimentally, angdres of the surface to simplify the formulation. For the purpose of

hence it is avoidable that it is approximate. Libai and Simmonggpresenting finite rotations, an orthonormal triads introduced
[15] obtain exact shell equations for the balance of momentury the initial configuration, such that

heat flow and an entropy inequality from the three-dimensional
continuum mechanics via integration through the thickness. An b.=a,/A, bs=b;Xb, (1)

2 /[ Vol. 71, JANUARY 2004 Transactions of the ASME



wherea,, is the set of base vectors associated witrandA , are Bi 1o=B; »1. (11)

the Lameparameters, defined as . o o
These two vector equations lead to six independent compatibility

a,=r, A,=Va,a,. (2) equations equivalent to a form of those found18]. These equa-

. . ._tions are rewritten here for convenience in the present notation.
From the differential geometry of the surface and foIIowmtiirst’ from theB, components of Eq10), we obtain

[13] and[18], one can express the derivativestpfas

A2 A2
bi,0= AdkaXD; ®) (1+ ek~ (1+ 611)"21:( Z 123)’1— ( ;\ 213)’2
wherek,, is the curvature vector measuredinwith the compo- 12 e
nents + €13(Kop—Kyp). 12)
Ko=|—Kuo Ko1 Keal" (4) Next, from theB, components of Eg(10) we obtain two equa-

in which k, refers to out-of-plane curvatures. We note that tions for =1 and 2, respectively, as

=k,;=0 because the coordinates are the lines of curvatures. The (Azern) 1 [A(1+e9)]
geodesic curvaturels,; can be expressed in terms of the Lame (11 €2)Ki3— €15K 5= AA AA 2713k
parameters as 12 1
+27,K
e Ar, e Azy - Y2311 (13)
137 T A . KT A -
AA AA [A(lten)]1 (Ar€r),
s s - (1+ €19 Koz~ €15K 3= AA AA, 2viKa
When the shell deforms, the particle that had position vector 172 172
in the undeformed state now has position ved®liin the de- 295K 15.

formed shell. The triadh; rotates to beB;. The rotation relating o
these two triads can be arbitrarily large and represented in thially, from the three components of E4.1) we have nine iden-
form of a matrix of direction cosine§(x,) so that tities. However, there are only three independent equations, given

b
Bi:Cijbj Cij:Bi'bj . (6) y
(AK1p) 2 (Agkay) 1

A definition of the two-dimensional generalized strain measures +K13K o= k1K23=0
is needed for the purpose of formulating this problem in an intrin- A1A ArA;
sic form. Following[13] and[18], they can be defined as (A1) 2 (AKyo)
R o=Au(B,+ €,sBs+27,3B3) @) AA, AR, | Keku KaKis=0 (14)
and (AKy (AKz
Bi o= Aa( = Ka2B1+ KBy +K,3B3) X B; (8) AlA; AlA, 1022 K12k H

where e,z are the two-dimensional in-plane strains, atgl are  There are now 11 quantities which are related by six compatibility
the curvatures of the deformed surface, which are the summatiequations. This means that these strain measures can be deter-
of curvatures of undeformed geomety and curvatures intro- mined in terms obnly fiveindependent quantitiesret six

duced by the deformatior;; , andy,s are the transverse strains In the process of dimensional reduction[df7] to find an ac-
becauseB; is not constrained to be normal to the reference sugurate constitutive model for composite shells, the authors en-
face after deformation. Please note that the two-dimensional g@ountered the question whether one should inclageand «,, as
eralized strain measures are defined by H@s.and (8) in an two different generalized strain measures. This was determined by
intrinsic fashion, the symmetry of the inplane strain measurése following argument. Let us denote a new twist measuve 2
such thate;,= €,; does not hold automatically. Nevertheless, one- k;,+ k,;,. From Eq.(12) the difference betweer,; and «,

is free to sete;,= €54, i.€., can be obtained as
Bi'R> _ ByR ©) K127 K21
Az Ay 2

which is a constraint used {17] to make the three-dimensional A2 —(A,2
formulation unique. (A 723)’A1 A( ! 713)’2+512(K22— Kip) + w( €11~ €29)

At this point sufficient preliminary information has been ob- _ 172
tained to develop a geometrically nonlinear shell theory. (2+ €11t €2)

(15)

Compatibility Equations This difference is clearhD(eh/¢?) or O(&/R) disregarding the

It is well known that a rigid body in three-dimensional spac@onlinear terms(e is the order of generalized strains,is the
has only six degrees-of-freedom. Thus, the kinematics of an etbickness of the shell,is the wavelength of in-plane deformation
ment of the deformed shell reference surface can be expressednd R is the characteristic radius of shelDne can show that it
terms ofat mostsix independent quantities: three measures abntributes terms that ar®(sh? ¢?h/R) or O(gh?/R?) to the
displacement, say-b;, and three measures of the rotationByf three-dimensional strains. Clearly, such terms will not be counted
(since the global rotation tens@, which bringsb; into B;, can in a physically linear theory with only correction up to the order
be expressed in terms of three independent quantititmvever, of h/R and (/).
we have the 11 two-dimensional strain measwgs 2€4,, €y, Equations(13) can be solved for the in-plane curvatureg;
2Ya3: Kag, @Ndk .3 as defined in Eqg7) and(8). Thus, they are andx,3, and Eq.(15) can be used to expregs, and «,; in terms
not independent; there are some compatibility equations amonigw. Now, using these expressions, one can rewritehree Eqgs.
these eleven quantities. [9] and[13] appropriate compatibility (14) entirely in terms of thesightstrain measures,;, 2€1,, €55,
equations are derived by first enforcing the equalities 2vy13, 27953, K11, 20, andk,,. This confirms thabnly five inde-

R..—R (10) per)dent measures of displacemen; and rotation are necessary to
A2 21 define these strain measuras we will demonstrate conclusively

and below by deriving such measures.

Journal of Applied Mechanics JANUARY 2004, Vol. 71 / 3



Global Displacement and Rotation Variables

There is no unique choice for the global deformation variables.
For this reason, the importan¢eot to mention the beautyof an
intrinsic formulation is widely appreciated. On the other hand, for
the purpose of understanding the displacement field more fully,
for practical computational algorithms, and for easy derivation of

_ p3bt+26;
P2="5 0,

¢

(21)

virtual strain-displacement relations, it is expedient to introduce¥#1ereps can be understood as a change of variables to simplify

suitable set of displacement measures.

later parts of the derivation. Later on we will discuss the meaning

The displacement measures we choose are derived by expr&§sts for a special case. Finally, it is noted that the three rotational

ing R in terms ofr plus a displacement vector so that
R(X1,X2) =T(X1,Xp) + Uiby (16

Differentiating both sides of Eq(16) with respect tox,, and
making use of Eq(7), one can obtain the identity

Ba+ eaﬁBB+27a3B3=ba+ui;abi+uika><bi (17)

where (),=1/A,d()/da. The above formula allows the determi-

nation of the strain measureg,z and 2y,,s in terms ofC, u; and
the derivatives of u;. Introducing column matricesu
=luiupugl’, €=]100]", e=[010]", y=|ey €122y,
and y,=| €51 €2,27,3|", We can obtain the following identity in

matrix form:
ea+ ‘)/a:C(eaJru;a—"_E;u) (18)

where C is the matrix of direction cosines from E¢), k,, is
defined in Eq(4), and("); = — &k )«-

parametersf; are not independent but instead satisfy the con-
straint
62+ 05+ (1+ 65)%=1. (22)

When Eq.(21) is substituted into Eq(19), the resulting ele-
ments ofC can be expressed as functionséfand ¢4

(2+ 03— 03)cOSh3— 616, Sin g
2+ 6,

117~

(24 63— 65)Sin 3 — 616, COS 4
12~ 2+ 6,

C13: - 01 COS¢3_ 02 Sin (f)3

. - (2"" 03_ Gi)SIn ¢)3_ 0102 COS¢3
2= 2+ 05

Rodrigues parameter{20], can be used as rotation measures to

allow a compact expression &@. These are derived based on
Euler’s theorem, which shows that any rotation can be represented

as a rotation of magnitud® about a line parallel to a unit vector
e. Defining the Rodrigues parametgis=2e-b; tan@/2) and ar-
ranging these in a column matrix=|p; p, ps)", the matrixC can
simply be written as

T T
(17 % I—p+ %
C= i ﬁ 19)
4
Let us also denote the direction cosinesBafby
Csi =63+ 0, (20)

Hodges[21] has shown that, given the third row &f the Rod-
rigues parameters can be uniquely expressed in ternfs as

:P391_292
P10,

(24 65— 67)(1+ Ug;1— KigUp+KagUz) — 01 05(Up, 1+ Kygus)

(24 63— 65)COSh3+ 010, SiN g
2= 2404

(23)

C23: 01 Sin (,ba* 02 COS¢3
Ca1=0;
Cs=10,
C33: 1+ 03 .

This representation reduces to those[®2] when considering
small, finite rotations. There is an apparent singularity in the
present scheme whef;=—2 (i.e., when the shell deforms in
such a way thaBs; is pointed in the opposite direction bf). This
should pose no practical problem, however, sidge 6,=0 for
that condition, and none of the kinematical relations become infi-
nite in the limit asf;— — 2.

When these expressions for the direction cosines are substituted
into Eq. (18), explicit expressions for the strain measures can be
found as

€11~

+ 01(Kq1U; — Ug;1) [COS3

2+ 05
24 03— 02)(Uyp.1+KyaUy) — 610o( 14 Uq.— KyaUp+ KqqUs)
N ( 3= 65)(Ug;1+KqgUy) — 0105( 1:1~ Kyaua T KygUs T 0, (Kygliy— Ug.p) |sin by 1
2+ 03 !
(2+ 65— 9%)(1+U2;2+k23U1+k22U3)_9192(U1;2_k23U2)
€20= 51 o — 05(Uz,5—Koollp) [COSP3
3
2+ 03— 02) (Kpglp— Uq.) + 01 05(1+ Up. o+ Kogly + Kosllz)
N ( 3= 07)(KogUp—Uy;5) + 01.05( 2;27H KagUp + Kooz 0,y Koy |Sin a1
2+ 03 !
(24 63— 63) (Up 1+ Kyaly) — 0105(1+ Uy 3 —Kyslp+Kggug)
€10= 210 + 05(KyqU; — Ug;1) | COSh3
3
(2+ 63— 63)(1+ Ug.1— KygUp+KygUg) — 01 05(Up. 1+ KygUs) .
- 210, + 01(KqaU; —Ug;q) [SiN @3

4 | Vol. 71, JANUARY 2004
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(24 03— 67) (Ug.5— Koglip) + 01 05( 1+ Uy o+ Koglly + Kpsliz)
2+ 0,

€21= COS¢3

+ 01(U3;5—KaaUp)

(2+ 03— 03)(1+ Ug.o+ Kaglig + Kogliz) — 01 05(U1 5~ Kogll)

210, = 02(Uz;2— Kaallp) [SiN b3
2713= 01(1+Uy;3— Kyglp+KygUz) + 05(Up; 1+ Kyaly) + (14 63) (U, —KqgUs)
27237 01(Ug;2— Kaalip) + 05(1+ Ug; o+ Koy +Kaoliz) + (14 63) (Uz.2— Kaop). (24)
These expressions explicitly depend on girand cosps. It is evident that one can chooglg so thate,,= €54, yielding
and,— N1+ 05(Uz.1+ Kygy) = 03(Ug o~ Kaglip) + 01 05[ Uy, 1~ Up o+ (Kyg— Koo) Ug — Kaglly — Kyl ] (25)

where
N1=(2+ 03)[Ug;2— Up;1— 61 (U3, Kaollp) + 02(Uz;1 —Kpalp)
— Kaaly — Kol (26)
N2 =(2+ 03)[ O1(Uz;1—KqaUg) + 02(Usz;— Kagllp) —Ug;3— Up;p— 2

— 03— KUy — (Kot Ky Uz +KqgUs]

It is now clear that once the functions, u,, us, 6, and 6, are
known, the entire deformation is determined. Because of this, ope
should expect that a variational formulation would yield only five'«2™

equilibrium equationsrot six
For small displacement and small strain, one can obtaias

(AgUz) 1— (AqUq) »

$3= 2A.A,

27)

which is half the angle of rotation aboBt, the same as obtaine

in [23].
Although one can now find exact expressions &y, 2¢€;,,

€55, 2713 and 2y,3 which are independent ab;, such expres-
sions are rather lengthy and are not given here. Alternatively,

- 2 2
Ny+ 07(Ug;1+ KyaUz—Kaglp) + 05(Ug 0+ Koz +Kagly ) + 01 05(Ug 0+ Us: s — KogUp +Kygly)

01.400— 0165, -
1;aY2 12,+

Ka3= 3,0 210, 3
where
Kor=| Koz — Kaz0s kalﬁz) (6, SiN h3— B, COSh3) + K, SN h3
2105 2+0,
+K,1 COSh3
Kozt  Ka102 .
37216, 246, (61 cosgp3+ 0, sinh3) +K,p COSh3
—Kq1 SN (32)
Kag= —Ka201+ Kar 02+ Koa0s.

As before,¢5 can be eliminated from these expressions, so that all

dsix curvatures can be expressed in terms of five independent quan-

tities. Note thatx 3 are not independent two-dimensional gener-
alized strains. They will, however, appear in the equilibrium equa-
tions because of their appearance in the virtual strain-

oH;lgplacement relations derived later.

could leavegs in the equations and regard E@5) as a con- Two-Dimensional Constitutive Law
straint. This would allow the construction of a shell finite element

which would be compatible with beam elements which have three

rotational degrees-of-freedom at the nodes.
Expressions for the curvatures can be found in term§ a6

K,=-C.,CT+CK.C" (28)
where
Ka:L_kQZ kal kaSJT+l_Ka2 Kal KQSJT (29)

To complete the analysis for an elastic shell, a two-dimensional
constitutive law is required to relate two-dimensional generalized
stresses and strains. As mentioned before the constitutive law can
not be exact, however, one should try to avoid introducing any
unnecessary approximation in addition to the already-approximate
three-dimensional constitutive relations.

Among many approaches that have been proposed to deal with
dimensional reduction, the approach[iv] stands out for its ac-
curacy and simplicity. In that work, a simple Reissner-Mindlin

Following [24], the curvature vector can also be found using Rdype energy model is constructed that is as close as possible to

drigues parameters

(30)

Using the form ofC from Egs.(23), the curvatures become

03.,( 601 COSh3+ 0, Sin ¢b3)
2+ 65

Ko1= 01, COSPh3+ 0., SiN 3 —
+kal_kal
03;a( 0, Sin ¢p3— 6, COSP3)

=—0;.,Sing3+ 0,.,C0SP3+
K2 1 b3 2:a b3 2+ 05

+ ka2 - ka2 (31)

Journal of Applied Mechanics

being asymptotically correct. Moreover, the original three-
dimensional results can be recovered accurately. The resulting
model can be expressed as

2[1=€"Ae+ y"Gy+2€'F (33)

wheree=| e 2€1, €2 k11 k1ot Ko1 Kool @Nd y=[2y13275". It

is noticed that there is only one in-plane shear ste&ginin Eq.
(33). This is possible only after one uses the constraints in®g.
Moreover, the strain energy is independent«Qf; so that the
rotation about the normal only appears algebraically, making it
possible for it to be eliminated.

This simple constitutive model is rigorously reduced from the
original three-dimensional model for multilayer shells, each layer
of which is made with an anisotropic material with monoclinic
symmetry. The variational asymptotic methdd] is used to guar-
antee the resulting two-dimensional shell model to yield the best
approximation to the energy stored in the original three-
dimensional structure by discarding all the insignificant contribu-
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tion to the energy higher than the order &f/l)? andh/R. The =
stiffness matrices and G obtained through this process carry all oC=—dyC. (38)

the material and geometry information through the thickriisee | et us begin with the generalized strain-displacement relationship,

Egs.(63) and(73) in Ref.[17] for detailed expressiofsThe term Eq. (18). A particular in-plane strain element can be written as
containing the column matrik is produced by body forces in the

shell structure and tractions on the top and bottom surfaces, and it p=ep[Cle, +u,,+Ku)—e,]. (39)
is very important for the recovery of the original three-—, . : . ;
dimensional results. Interested readers can refer to [R&f.for Taking a straightforward variation, one obtains
details of constructing the model in E¢33) for multilayered e, p=ej 5C(e,+u.,+Ku)+C(du,,+K ou)].  (40)
composite shells. . . . . .
Having obtained the two-dimensional constitutive law frond N€ right-hand side contains,, and éu,, , which must be elimi-
three-dimensional elasticity, one can derive all the other relatioR@ted in order to obtain variations of the strain that are indepen-
over the reference surface of the shell, a two-dimensional cdtent of displacements. These are needed to derive intrinsic equi-

tinuum. librium equations.
Premultiplying both sides of E418) by CT, making use of Eq.
Virtual Strain-Displacement Relations (36), and finally using a property of the tilde operator that, for

In order to derive intrinsic equilibrium equations from the two@rPitrary column matrice¥ andZ, YZ=—ZY, one can make the
dimensional energy, it is necessary to express the variations{#$t term in brackets on the righthand side independent; pf
generalized strain measures in terms of virtual displacements gMe" @l this, one obtains
virtual rotations.

The variation of the energy expressed in E2p) can be written 5C(e,+ U, +RU)=5CCT(e,+ 7,) = — 8Y(€4+ 7,)
as ~ |~
=(€,t7a) 0. (41)
dll Jll dll all all ) . .
Oll= —— Sey+ —— Seypt —— Seppt —— Sy13+ —— Syag An expression for the second term in brackets on the right-hand
deg derp denn Y13 Y23 side of Eq.(40) can now be obtained by differentiating E@7)
o1 aM aM with respect tax,, and premultiplying byC. This yields
+ — Skt — Sw+ —— Skyy. 34 — — — —
Ik T G0 OCT Giy, N2 (34) C(8u.,+K,8u)=C(CT8q).,+ CKou= q.,+R5q.
It is now obvious that one must expre8s,,, . .. ,0ky,, in terms (42)

of virtual displacements and rotations in order to obtain the fingubstituting Eqs(41) and (42) into Eq. (40), one obtains an in-
Euler-Lagrange equations of the energy functional in their intrinrinsic expression for the variation of the in-plane strain compo-
sic form. Following Ref.[24], we introduce measures of virtualnents as

displacement and rotation that are “compatible” with the intrinsic — -

strain measures. For the virtual displacement, we note the form of Seop=epl 80+ K80+ (8, +7,) 6] (43)

Eq. (18) and choose where e}eNa vanishes wherw=p. This matrix equation can be

5q=Caéu. (35) written explicitly as four scalar equations:
VSvirriw;;Iarly, for the virtual rotation, we note the form of E@8) and S€11= 8q1.1— K 1300, + K 11003~ 21300 + €100
~ Se1= 001+ K 13001+ k1003~ 271301, — (1+ €19) 8¢
Sy=—oscCT (36) €157 0Up;1+ K360 + k12003~ 21364, — (1 + €19) l/f3(44)
Whereﬁ is a column matrix arranged similarly as the curvature — — — — —
column matrix in Eq(4) d¢=|— 8¢, o4, 05)". The bars indi- O€21= 001, KoadUp T k21603~ 223011+ (1+ €20) 53
cate that these quantities are not necessarily the variations of func- = — — — —
tions. Using these relations it is clear that 0€20= 602,21 K301+ K 2003~ 2723045 — €126Ys3.
Su=CTsq 37) The variationsde;, and de,; should be equal due to Eq@9);
N q hence, one can solve for the virtual rotation component aBgut
and as

= _ 802:1— 0012+ K13001 + K360+ (k10— K21) 803 = 2713080+ 2y2301

s 2+ et €exn (45)
I
It is now possible to write the variations of all strain measures in = 5 5. Zzg_qz_ +5q L,+K 3§_q - K235_qZ+ 2w5_q3
terms of three virtual displacement and two virtual rotation com- ! * _l' 1_ ! o
ponents as = 2713012~ 272361+ (€20~ €11) 643
with 8¢5 taken from Eq.(45).
€= 0.1~ K300+ K11003— 2715001 + €12003 Let us now consider the transverse shear strains
2ya3=e3[Cle,+ U+ Kou) —€,]. (47)
5522=5_qz;2+ K235_ql+ K225_qs—2y23,§pz— elzﬁ_z/xg Following a procedure similar to the above, one can obtain the

(46) virtual strain-displacement equation for transverse shear strains as
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257 ,3=€3[ 80, + K00+ (81 +72) 6] (48)

Explicit expressions for the variations of the shear strain compo- > x2
nents are now easily written as
207437 63,0t Oyt €403~ K500 (49) T

Finally, variations of the curvatures are found. First, taking the
straightforward variation of Eq28), one obtains

sc,,CT Cc,oCT

Sk.= - +8CK.CT+CK.6CT.  (50)

A, Ag

In order to eliminateSC ,, we differentiate Eq(36) with respect »

to X,
8¢ ,=—8C CT—5CCT. (51)

In order to eliminateSC, we can use Eq(38). Then, Eq.(50) ¢

b

ecomes ] F v

K= 0t K 00— UK. (52)

Using another tilde identity§(2=?272?) one can find the vir- X

tual strain-displacement relation as !

Sk :Ep +’K\/Ep (53) Fig. 2 Schematic of an arbitrary boundary
In explicit form
S - .
5K11:AL1’1— K138+ k12643 the boundary curve tangent to the reference surfads, . and
! M, . along the tangent of the boundary curweN,; along the
E/fz ) _ . normal of the reference surface. Then the principle of virtual work
OKoo= A =+ K301 — k21013 (54) (strictly speaking, the principle of virtual displacementan be
2 stated as:
250= 2012, V21 S et (K K1) 90 ot 30 N 3o +R.3a
©="p, TTA, K1Y Kaadthot (KoamKun) 6 f f (811801 f— 39,M,) As Agtlx; X, — f (N,,5q,+N,,8q,
s r
where 83 can again be eliminated by using Eg5). A A
+ NV36q3+ M VV5¢V+ M VT(Sl!/T)dF =0 (56)
Intrinsic Equilibrium Equations wheref; andm, are taken directly fronj17].

It is now possible to obtain intrinsic equilibrium equations and
nsistent edge conditions by use of the principle of virtual work
d the virtual strain-displacement relations derived in the previ-
ous section. The equilibrium equations are

In this section, we will make use of the virtual strain-
displacement relations in the variation of the internal strain energ
in order to derive the intrinsic equilibrium equations. Here w
define the generalized forces as

oIl oIl 1 911 (AN 1 [Ai(Npt N, KNy A)
den U Gep N2 35e, Nu A, A, iz
all " dll 1011 M (55) —Ka2gNgot+ Q1K 13+ Qoxpy+f1=0
— M T =Wl 57— =N
IK1 IK22 2 dw (A1N22) 2 [Az(le_M],1+K (Nt )
1 Il 1 Il AA, ALA, B2
i —— - —=Q,.
291 2072 +K1aN13+ Qak1o+ QoKppt+ f,=0
To use the principle of virtual work to derive the equilibrium
equations, one needs to know the applied loads. In addition to the (A2Q1) 1 (Ale),zi K Na— KooN
applied loads used in the modeling proces®; at the top sur- AA, AA, 1L ezt
face,8;B; at the bottom surface and body for¢eB; [17], one can
also specify appropriate combinations of displacements, rotations —20Nppt (k12— k) N+ 13=0 (57)

(geometrical boundary conditionsrunning forces and moments

(natural boundary conditionslong the boundary around the ref- (AoM1) 1 (AiM1)) 2 Q1(1+ €17) — Q€10+ 271N
erence surface. It is trivial to apply the geometrical boundary con- A1A; AlA; ! ! 2€127 27130
ditions. Although it is possible in most cases that natural boundary

conditions can be derived from Newton’s law, the procedure is +2723(N1gt N) = MoK y5~ MoK gt my =0
tedious and not easily applied here because the physical meanin%i Mo, (AMoy)

for some of the generalized forces are not clear. Thus, natural 2" !2'.! L2222 0,1+ €55) — Qqerat 2715 Nyp— A
boundary conditions are best derived from the principle of virtual A1A2 AlA;

work. .
Suppose on boundaiy (see Fig. 2, we specify a force result- + 272Nzt MK gt MyKogt my=0

antN,, and moment resultari¥l,, along the outward normal of where
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. (Ngo=Njp) o Nyo( €137 €30) + Moy — Mygkgpt M (K~ Kypp)

N 2 + 611+ €929 ’ (58)
I
The associated natural boundary conditiond oare For practical computational schemes, equilibrium equations and
- boundary conditions need to use the constitutive law to relate with
N,, = V§N11+ 2v1voN o+ vgsz the generalized two-dimensional strains. Finally a set of kinemati-
. cal equations is needed. Depending on how this part is done, the
N, .= v1v5(Noy—Nqqp) +( V%_ Vg)le—N analysis can be completed in either of two fundamentally different

ways: a purely intrinsic form, relying on compatibility equations,

N,,= qullJr 2v1voN o+ V§N22 and a mixed form relying on explicit strain-displacement rela-

R (59) tions.
N,z3=11Q1+v,Q, In the intrinsic form we have five equilibrium equations, Egs.
. (57); six compatibility equations, Eq$12)—(14); and the eight
M,,=12M 11+ 20, 0,M o+ ¥3M 5, constitutive equations—a total of 19 equations. The 19 unknowns
R are the eight stress resultantd;;, Ni5, Noo, Qq, Q,, Myy,
M,,=v1vo(Moy— M11)+(v§— yg)Mlz M1,, andM,,; and the 11 strain measuresg,, 2€1,, €5, 213,

2')/23, K11, 2(1)12, andKzz, a|0ng WithKl3, K23, andKlz_ Ko1 -
wherev;=cos¢, v,=sin¢, and¢ is the angle between the out-The |ast three strain measures appear in the equilibrium equations
ward normal of the boundary and thedirection as shown in Fig. put not in the constitutive law.

2. The terms Containing[ stem from consistent inclusion of the In a mixed formulation one would use the same five equi”b-
finite rotation from undeformed triad to deformed triad althoughum equations and eight constitutive equations_ One would also
the nonzerorotation abouB; is expressed in terms of other kine-need a set of strain-displacement relations among the 11 general-
matical quantities. Similar terms are found in the shell equatiofifed strain measures;;, 2€;, €, 2¥13, 2¥23, K11, 20, and
cjerived by Bgrdichevsk{flﬁ] where only five equilibrium equa- «,,, along withks, k»3, andxy,— k5, and the five global dis-
tions are derived. placement and rotational variables, u,, us, 6;, and6,. One

In a mixed formulation,\V can be shown to be the Lagrangepossible set of such equations is as follows: use five of B8,
multlpller that enforces Eq45) To further understand the natureusing eitherflz Or €51; USE the six Eqs(Sl) There are also the
of \one can undertake the following exercise: Setftig:0 and  two other rotational variableg; and ¢5, which are governed by
€1,= €, for the equilibrium equations given i13], (N21 Egs.(22) and(25), respectively. This way there are 26 equations
—N3)/2 can be solved from Reissner’s sixth equilibrium equaand 26 unknowns. This mixed formulation is capable of handling
tion. This shows that Reissner'dif;—N;,)/2 is the same as our houndary conditions on two-dimensional stress resultants and
N, and Reissner'sN,;—N3y)/2 is the same as oWM;,. Finally, displacement/rotation variables. At least in principle, one could
substitution of this sixth equation into the other five yleldS the ﬁV%Cover a disp|acement formulation by e|iminating all the un-
equilibrium equations given here in Eg&7). It is noted that knowns except the displacement and rotation variables.
Reissner’s equilibrium equations are derived based on the basis 0|§quations(57) and(58) contain terms that could be disregarded
Newton’s law of motion without consideration of either constitupecause of the original assumption of small strain. We will not
tive law or strain-displacement relations. However, the presemfdertake this simplification here, because it is out of the scope of
derivation is purely displacement-based. The reproduction @fe present study to actually implement the two-dimensional non-
those equilibrium equations by the present derivation illustratgfear theory. Therefore, our equilibrium equations and kinemati-
that, as long as the formulation is geometrically exact, one c@g| equations are geometrically exact; all approximations stem
derive exact equilibrium equations. from the dimensional reduction process used to obtain the two-

A few investigators have noted an apparent conflict between thenensional constitutive law.
symmetry of the stress resultants and the satisfaction of momentrpe present work is a direct extension[@8] to treat shells. If
equilibrium about the normal. In reality there is no conflict, bugne setsk;=0 andA,=1, all the formulas developed here will

one must be careful. We have shown herein that the Biacn reduce to those ifil8], which indirectly verifies that derivation.
always be chosen so that,=e,,. If this relation is enforced

strongly, there is only one in-plane shear stress resultgnt, that
can be derived from the energy. In that case the physical quant@pnclusions

associated with the antisymmetric part of Reissner's in-pIaneA nonlinear shear-deformable shell theory has been developed
stress resultants, While itis not availa}ble from Fhe constitutive Ia\% be completely compatible with the modeling proces$1if].

is nevertheless available as a reactive quantity from the momef, compatibility equations, kinematical relations and equilib-
equilibrium equation about th_e .normal. However, It must bfum equations are derived for arbitrarily large displacements and
stressed that the moment equilibrium equation about the normal i3-1ions under the restriction that the strain must be small. The
r?Ssulting formulas are compared with others in the literature. The

virtual displacements and rotations must be independent. following conclusions can be drawn from the present work:
In a somewhat similar vein, not being able to obtain the anti-

symmetric part of the moment stress resultants from derivatives ofl. The variational asymptotic method can be used to decouple
the two-dimensional strain energy is a result of the approximatiee original three-dimensional elasticity problem of a shell into a
dimensional reduction process in which it was determined, basede-dimensional, through-the-thickness analyfdig], and a two-

on asymptotic considerations agéometricallynonlinear three- dimensional, shell analysis. The through-the-thickness analysis
dimensional elasticity, that the antisymmetric tekq3— x,; does provides both an accurate two-dimensional constitutive law for
not appear as an independent generalized strain measure inttieenonlinear shell theory and accurate through-the-thickness re-
two-dimensional constitutive law with correction only to the ordecovery relations for three-dimensional displacement, strain, and
of h/R. However, if a more refined theory with respectiR is  stress. This way, an intimate relation between the shell theory and
required, thenc;,— k7 would appear as a generalized strain in théhree-dimensional elasticity is established.

two-dimensional constitutive law and a new generalized moment2. A full finite rotation must be applied to fully specify the
would be defined based on the constitutive law. displacement field. However, since the strain energy on which the
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formulation is based is independentsfs;, the rotation about the [9] Simo, J. C., and Fox, D. D., 1989, “On a Stress Resultant Geometrically Exact

; ; ; Shell Model. Part I: Formulation and Optimal Parametrization,” Comput.
normal is not independent and can be expressed in terms of other Methods Appl. Mech. Eng72, pp. 267304,

_quantities- Thus, it_ can be chosen so that th_e tWO‘dimenSion"{LO] Simo, J. C., and Fox, D. D., 1989, “On a Stress Resultant Geometrically Exact
in-plane shear strain measures are equal. This way all the strain Shell Model. Part II: The Linear Theory; Computational Aspects,” Comput.

measures can be expressed in terms of five independent quantities; l’\getzpdz Appl. MXch-lgng-?f»étpp- 53;?—92-It . ically Noni Shell
H H ranimpegovic, A., , ress Resultan eometrically Nonlinear e
three displacement and two rotation measures, and only one str Theory With Drilling Rotations—Part I. A Consistent Formulation,” Comput.

resultant for in-plane shear can be derived from the two-  ethods Appl. Mech. Eng118 pp. 265-284.
dimensional energy. [12] Kratzig, W. B., 1993, “Best’ Transverse Shearing and Stretching Shell Theory

3. OnIy five equilibrium equations are obtainable in a for Nonlinear Finite Element Simulations,” Comput. Methods Appl. Mech.
. ) o . - Eng.,1031-2), pp. 135-160.
d|5p|acement based variational formulation. Moment equmbrlu 13] Reissner, E., 1974, “Linear and Nonlinear Theory of Shel&hin Shell Struc-

abou.t T—he normal is satisfied implicitly. If one does not include th tures Y. C. Fung and E. E. Sechler, eds., Prentice-Hall, Englewood Cliffs, NJ,
full finite rotation, but rather sets the rotation about the normal  pp. 29-44.

equa| to zero, the correct equ“ibrium equations cannot be olh14] Reddy, J. N., 1997Mechanics of Laminated Composite Plates: Theory and
: . : « il Analysis CRC Press, Boca Raton, FL.
tained. This should shed some “ght on the nature of d“”mg [15] Libai, A., and Simmonds, J. G., 1998he Nonlinear Theory of Elastic Shells
degrees of freedom. 2nd Ed., Cambridge University Press, Cambridge, UK.
[16] Berdichevsky, V. L., 1979, “Variational-Asymptotic Method of Constructing a
Theory of Shells,” Prikl. Mat. Mekh.43(4), pp. 664—687.
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Numerous accelerometer configurations have been proposed and implemented by previous

K. R. Fyfe researches to determine parameters of the motion of the body to which the accelerometers
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1 Introduction to find the geometrical conditions on the minimal configurations

As accelerometers become cheaper and smaller, a proc%fs ccelerometers that yield subsets of the possible information

driven by the application of the technology in mass-produced Coé—r he case of planar motion. Once similar analysis is completed

X o e : X “for spatial motion, all feasible accelerometer configurations will
sumer items, the possibility of designing practical proprioceptive, -0 -ined within a general framework. Rather than designing a
units (sensor combinations that are able to sense their own moti

and positio, is becoming a reality. o(fgr(‘ifcgigﬁ“r%rllezy trial and error, it will be possible to follow a set

| oEr\ézntht:a?:Ol:g ei%ie:jeg%r:jrﬁitﬁirﬁ be;g;it grge?)?’ mrgtfgr?rg[]g{]s ?f'his paper proceeds by first developing a useful expression for
P gp e planar acceleration field in Sec. 2. Section 3 then presents

angular velocities and accelerations, and employed Ir“eqratlgnnfigurations of single-axis accelerometers for the determination

B et o Rostons. An =W angular moton parametes, i separatey o togeter, The
ometer configurations of varying complexity to determine the rgnalor plroblerl? of ?eterm!nlrtlﬁ all Epsstlbll?slnforTag\(l)ln frolm .th?
tational parameters of the spatial acceleration field, suggestiw#&'mfknum ero _axels IS te subjec to ec. . analysis 1s
that it would be feasible to remove the gyroscopes from the tre o AKEN USINg simple vector geometry.

ditional inertial navigation system. In 1973, Morf| presented a

five-axis accelerometer scheme to assess human gait. This was

closely followed by Kane et al. in 19743], who used a 12-axis 2 The Planar Acceleration Field

configuration to study the dynamics of a tennis racquet. This con-
figuration was later used by Hayes et al. in 1983 to study human
gait, [4]. Another configuration, this time composed of nine axe%n.
was developed by Padgaonkar in 19[/, to determine angular i !
and translational acceleration for general spatial motion. This ¢
figuration was used by Chou and Sirléd to study the kinematics

Consider a rigid bodyk, undergoing planar motion relative to
inertial framey,, as shown in Fig. 1. We identifg+ 1 points
=0,1,2 ... ,n fixed within E. Position vectorsy from R to
olﬁi_(rOi=Ri—R0) are used to identify each of the points. &s
moves, the points have non-zero velocity and acceleration relative

of the head of a crash-test dummy. Later Mital and Kj@igpre- to 2 The position vectors of the points relative to an arbitrary
sented an integration scheme for the configuration that allowB@int fixed in> are denoted; , thus
the computation of spatial orientation. Also concerned with the
kinematics of crash-test dummies, Nusholtg,9] presented
schemes for planaffour axe$ and spatial motion(with nine  The acceleration vector &; is found by a double differentiation
axes. A very similar system was used by Shea and Vi@ for  of Eq. (1):
the same purpose. Recently, Chen ef Hl-13 have discussed a
six-axis scheme that enables the determination of angular accel- Ai=Ag+ as— wry, )
eration and, with numerical integration, translational acceleration. ) ) . .
Schaectef14] has considered the problem of designing acceleherew is the angular velocity and is the angular acceleration
ometer configurations that will yield the acceleration vector of @f bodyE relative toX. The vectorsy is obtained through & m/2
point on a rigid body with the condition that the configuratiofotation ofr;, and A, is the acceleration vector at poif,.
should still yield the desired information should one of the axe3ince there is an acceleration vector for every poirif,iwe have
fail. This brief review indicates the interest in the use of accelef time-varying vector field. It is easily confirmed that the choice
ometers in determining parameters of rigid-body motion, and al§h Ro in E is arbitrary, and this point is exploited in the analysis.
the large range of configurations that have been used. In the following, an accelerometer axis at a pdiytparallel to

Up to a numerical limit, it is generally true that the more axednit vectora; is modeled as a perfect operator that gives as out-
that are used, the more information that can be determined abBUf Mi, the scalar product of the total acceleration vectoRat
the motion. Even below this limit, however, one can add axes théith oy . ) )
yield no additional information. It is the contribution of this paper The total acceleration vector Bf, T;, is the vector sum of the

inertial and gravitational acceleration vectors at the point,

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF :Ai +0, thus the output of theth axis can be written:
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 4, 2002; mi=0;- (Ag+ ) + a oS — 020 Ty . 3)
final revision, June 9, 2003. Associate Editor: O. O'Reilly. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligfince the accelerometers are fixed in the body, the coefficients

Mechanics, Department of Mechanical and Environmental Engineering, Universify . o : f : ; oy
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepggti Soi anda;rq; are time invariant. This paper shows how a mini

until four months after final publication in the paper itself in the ASMEJENAL OF mal number of scalar meaSPfemem,, can be used to find the
APPLIED MECHANICS. parameters of the acceleration field.

Ri:R0+rOi i:1,2, LN (l)
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my—my= 0 (To+ aSp;— 0oy — 0 (To+ S~ 07Ty
=0 (a(Sp—S02) — @ (o1~ T02)
=0 (aSy— w’ry) (6)
and it is seen that, sinag; andr,; are orthogonal, it is possible to
select, for everyo, relative positions for the two accelerometer
axes so that the differences in the outputs is linearly proportional
to « or .

To determinex using two accelerometers, E®) states that we
must haveor,;=0, i.e., the line between the two accelerometer
axes must be orthogonal to the sensing direction of the axes. Con-
versely, to determine?, the line between the two accelerometer
axes must be collinear with the sensing directions.

To determine bothe and w? it would be possible to use a
o0 e combination of the configurations described abovedérand «,
requiring four accelerometer axes. It is possible, however, to use
fewer than four axes, as is now demonstrated. Since two param-
eters are now desired, two linearly dependent equations are re-
o ) quired. These equations must both be independentyof The
3 Finding Rotational Parameters minimum number of accelerometers that can be used to generate

This section discusses simple configurations of scalar measuM0_Such equations is three, where all have the same orientation
ments that may be used to determine the rotational parameterg’ofl © Prove this, consider the following discussion. Assume that
the acceleration fieldd, w?) first separately, then together, using: @nd o, are non-parallel, then for the equation
the minimum nu_m_ber of measurements. , N1+ N0+ N3o3=0 (7)

When determining a single parameteror »*), the approach . ) . )
is to design configurations so that linear combinations of the od: have a solution.; must be nonzero, in which case the equation
puts of the accelerometers result in an expression involving orfin be rewritten as , )
the parameter of interest. To achieve this, one can alter the relative Mot N 0= 03 (©)

not for the moment interested in determinifig=Aq+g, the mo- e are only working in two dimensionsEmploying a parallel
tion parameters which are independent of position, the orientgair of axeso, = o,, with o3# + oy has only the solutionX;

tions of the axes must be arranged so as to remove the effects )\ , ) ,=0). Finally if three parallel axes are used, then there
from the outputs. A general linear combination of accelerometgfe two distinct solutions\;=—X,, A3=0) and ;= —\3,

Fig. 1 Definitions

outputs is of the form \,=0), the solution X;=0, A\,=—\3) being obtainable as a
n n n n linear combination of these. The differences in outputs for the
> ami=2 Mo To+ a2, Nioyssi— 02>, NigiTo . case of three parallel axes may be written as
i=1 =1 =1 =1
I I I I () M=M= a0 (S~ %) — 0’0 (r,—r,) ©)
Clearly for the combination to be free df,, which is a time M —My= a0 (S~ )~ 0’0o (1, —Ty).
varying vector, the orientation vectotg i=1,2,... n must be

If (ry—ry)#N\(r;—r3) these equations are linearly independent,
and it is possible to solve fap? anda. Geometrically, this means
n that the three parallel axes are positioned so that there is not a
Z \io;=0. (5) single line through their locations. Since it is not possible to use
i=1 any less than three axes to generate two linearly independent
The smallest configuration that may be used to this end is a pgAuations without the effect df, present, the three parallel axes
allel pair, o, = ,, with the outputs differenced, i.e\;=—\.,. arze the minimal configuration required to determine batAnd
Denoting the orientations of the two axes by the equation for @ -
their difference is

such that it is possible to selekf i=1,2, ... n such that

4 Planar Configurations

W—91?1\ O, In this section, the configurations of accelerometers that yield
/ the full set of motion parametersu(w?,T,) are discussed. As
/JR\Z shown above, théh measurement, i.e., the output of the acceler-
AR Gy ometer axis aR; with orientationo; is linear in the motion pa-
o R, 7 rameters:
20, RS 4 M =Ty 0+ a(0i-5) — w*( 07T ;) (10)
S~ T thus yielding an equation in four unknowrig, comprising two of
K R" o these. In order to solve for these unknowns, it is required that four
‘ 0 . measurements be taken such that the resulting equations, formed
"By ’ by multiple instances of Eq10) are linearly independent in the
12 acceleration parameters, i.e., the only set of constgnts=1, 2,

v 3, 4 that satisfy the equation
X

4
_ S > Nm=0 (12)
Fig. 2 The construction of circle ¥, i=1
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for all possible motions ar®;=0 i=1, 2, 3, 4. Equivalently we
must demonstrate the non-singularity of t@nfiguration matrix
C with general row:
T T T
G=lo] oy 071¢]
where (o7 ,ro; ,S;) are coordinate matrices ob{,rq; ,S;). Using
m to denote the column matrix of measurements add

The general method of solution for each stage is to findi,

for a particulareo,, ., and then find the associateg,. ;. If the
solution for{\;}[_, is unique for eacts,,, , then there is only one
infeasible position for each axis. However, if there are an infini-
tude of solutiong\;}_, that satisfy Eq(13) then there is also an
infinitude of infeasible positions for each axis. The results of the

=[TJ a »?] to describe the acceleration parameters, we can wrg@alysis are summarized at the end of each section.

the four measurement equations in the faZm=m, which shows

4.1 Infeasible Configurations for Two Axes. For two axes

that we can only solve fox if C is nonsingular. The nonsingular- 1o pe arranged in an infeasible configuration, it is necessary that
ity of the spatial analogue of this configuration matrix is thene measurements of the two axes be multiples of each other for
method that Tan et 812,13 used to prove the feasibility of their 5| time and all possible motions. Considering Eg3) for the
six-axis configuration. The advantage of the present approach oy¥gken=1, the only possible solutions alg =1 in which case

the use of a configuration matrix is the geometric insight offereg,

»=07 Or \;=—1 ando,= — 0. Substituting these two solu-

In the following, rather than identify the conditions ontjons into(16) gives
(Ry,07) i=1, 2, 3, 4 such that the equations are linearly indepen-

dent, the converse is undertaken, i.e., the configurations for which
at least one\;#0 are found. This is performed incrementally.

First the configurations of two axes which lead to linearly depe
dent equations are found. Next two axes are assumed to be pla
so that the equations are linearly independent, and the positi
and orientations of a third axis which yield three dependent equa-4 2

in

ros=(71To) 71+ (01 Tg) 01 =T (17)

both cases. The equivalence of axefRawith orientationsor
Eﬂ —o leads us to identify them as identical in the following
elopment.

Infeasible Configurations for Three Axes. If, as

tions are studied. Similar analysis is completed for four axeshown in Fig. 2,0,; is the angle of rotation betweew, and o,
Upon completion of each stage of this analysis, sets of configuig., o, must be rotated by,; counterclockwise so that it is
tions which yield linearly dependent equations for two, three angigned with ;. then

four axes can be identified. A configuration yielding linearly inde-

pendent equations is any that is not a member of these sets.

A configuration ofn axes which yieldsh linearly independent

equations is defined as being a feasitaxis configuration. If a

particular position,R,,,, of an axis o, renders a feasible
n-axis configuration an infeasiblen ¢- 1)-axis configuration, then
R,. 1 is referred to as an infeasible position for an axis of orien-

tation o7, 1 .

Before undertaking the analysis, some general equations that
are useful in all the following cases are introduced. If we have a
feasiblen-axis configuration, then there are no non-zero constants

that satisfy=" ;\;m;=0. In order for the i+ 1)-axis configura-

tion to be infeasible, there must be nonzero constants that satisfy

n+1

i—1Ajm;=0. Since then-axis configuration is feasible, the con-

stant\,, ; associated with the measurement of thel must be
nonzero, and the equation may be rewritten

n

21 NiMi=Mp g (12)
“

j=23. (18)

Now, we can identifyA ; and\, such thatoz=\ 0+ \,05 from

O =C0$011~0'1+ sin 01] kg

0'3:)\10'1“1‘ )\20’2: ()\1“1‘)\2 003012)0'1"1‘)\2 sin 0127'1

=C0S01301+SiN 137, (29)
rom which
NSNS L J 20
1=C0S013 sin 012005 12 (20)
Sin 643
27 sing,, (1)

Since there is only one pair of scalans,(\,) for eachos, we
conclude from Eq(16) that there is only one infeasible position
Rs( o) for each orientatioro;. Now the general equatiori16)
for ros(o3), the vector fromR, to the uniqueinfeasible position,
Rs(o3), for the axis with orientatiorr; can be written as

where the\; constants are different than those above. AllOWING 1 (g) = (N1 01T g1+ N 20T 02) 3+ (N 1 71T g1+ Mo T+l g0) 7.
arbitrary variation in the motion parameters, and considering the (22)
form of Eq. (10), this scalar equation is seen to be equivalent to

the following set of equations:

n
21 Nioi=0n,, (13)
“
n
2, M(07%0) = O 1°Sn 1 (14)
“
n
21 Ni(07r ) =01 1°Tons1- (15)
“

A given o, ; constrains the set of scalafs;}{_, satisfying Eq.
(13). Equationg14) and(15) are then used to solve fog, ., the
infeasible positiofs), relative toR,, for the axis with orientation
o,, 1. The method of solution for Eq$14) and (15) is to note

We placeR, at the center of the circléV ,,, of radiusr, defined
by the three pointsR;, R, and X5, the point of intersection of
the linesL; drawn througtR; parallel too; fori =1, 2 (we assume
for now thato, and o, are not parallel With such a choice of
Ry, we know from a well known theorem on angles measured at
the center and circumference of circl¢$s], that the angle be-
tween the vectorX,R; andX;,R,, and hencer; ando, (61,) is
half that betweemy; andrg,, (see Fig. 2 Thus, definingy to be
the angle by whichrg; must be rotated to bring it parallel @, ,
we immediately have/— 6., as the angle between, and o,.
Thus Eq.(22) becomes

loz( 03) =1 (COY f— 013) 3= SIN(Yh— 013) 73) (23)

which demonstrates that the unique infeasible posiiegfv-;) for
the axis o3 has the same relationship t®R{,0;) as R,,0)
does, i.e., extending a line parallel &g throughX,,, the infea-

that oy-5o; = — 71, Where; is the vector obtained by rotating siple position forar, lies at the intersection of this line and the

o;m/2 radians counterclockwise. Then, singg ; and o, are
orthogonal unit vectors, we have

n n

I’0n+1:}21 }\i(Ti'rOi)Tn+1+21 Ni(oirg)ons,.  (16)
i= i=

12 / Vol. 71, JANUARY 2004

circle, ¥1,, as is shown in Fig. 3. The infeasible position for an
axis o can therefore be found by extending the line throdXghto

V¥ ,.(0o) the point of intersection with the circd¥';,. Thus, in the
case of three axes, at least two of which are non-parallel we know
that the axes form an infeasible configuration if the lines drawn
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Fig. 3 The infeasible positions and orientations of a third axis i - .
X,
12
through the positions parallel to the axes intersect at a single point Fig. 4 Construction of F

on the circle drawn through the positions of the axes.
Now we consider the special cases. We have already seen when
considering the minimal configuration for the determinatiorwof
and w? that three parallel axes are infeasible if it is possible to V(03)= (4101 Tort n202T02) O3+ (171 Tort a2 T 02) 73
draw a line through their locations. This line may be considered as —r (29)
the circle of infinite radius through the accelerometer positions 03
and the poiniXy, at infinity. It is also easily confirmed, using Eq.Now, we can identifyu;=\; from the previous section, so
(16) that any three axes at a point are infeasible. In this dase, _ o _
R,, Rs, andX,, exist at a single point, which may be considered V(03) =T104(073,0) = I g3= V15 03) — R3 (30)
a circle of zero radius. Thus the above stated result on the infead
sible configurations for three axes is seen to hold in all cases. Ra(03,N3) =V 1 03) + N 3(V 15 03) — R3) (32)
SummaryThree axesR;,07) i=1, 2, 3 are in an infeasible ; . : - g :
configuration if the lined.; drawn throughR: parallel toe; i.e., the infeasible positions for an axig lie on the line through

. . A A ! Rsz, the position of the axiso;, and ¥i,(03), the position
gterzﬁgtRat a single point, which is on the circle throdih deemed infeasible by the configuration of the first two axes. Since
2 3

this relationship is valid for alk 5 there is, unlesgr; is tangent to
4.3 Infeasible Configurations for Four Axes. Now we Vi,atW;(eo3), another pointF on ¥y, at which it is infeasible

have to express, as o,=3>_,\;0; where the constants for a © place an axis with orientatioars, as is shown in Fig. 4. Now,

given o are no longer unique. We assume tlgt and o, are  Writing o,4( ) to mean the vector obtained by rotatiog by 6 we

nonparallel then we can find constants, (x,) and (i7;,77,) such Know thatv(ey(6)) is obtained by rotating/(as) by 6 while
that roa(04(0),0) is found by rotating y4( o3,0) by 29, hence we have

U101+ 0= O (24) the same geometry as was encountered in the previous section,
and the lines of infeasible positions are seen to all pass thrBugh
Ot 05= 0y (25) Thus the general expression for the infeasible positions for an axis
then Eq.(13) becomes with orientationo, is
Ra(04,\3) =V 15(04) + N3(V 1 04) —F). (32)

04=N1(N3) o1+ Ny(h3) 02+ N 3073 (26)
This equation shows that there is a line of infeasible positions
) o . throughF for every orientation of axisr,, as is shown in Fig. 5.
Ni(ha)= 7= Nty 27) Conversely for every point excludirfg in the plane, there is one
Now, Eq.(16) for the determination of ,( o), the vector from infeasible orientation of axigr,. Since every line of infeasible
R, to the infeasible position of an axis with orientationy, be- positions passes throudgh any axis af will render the configu-
comes ration infeasible. As was previously discussed,Rf=R, (o
o 0 N3 = {( 9101 T s+ 720 03) Gat (717 T # o) then the circular distribution shrinks to a point, which is
04 T4, A3) =T 01 01T 72027 02) T4 {17171 01 alsoX,, andF. If a third axis is located at a distinct poifRg, the
+ Dot 02) Tat — Na( 10T o1+ 20T o three axis configuration is immediately feasible. A fourth axis may
also be added &; if it is not parallel to the third and we see that
—03103) 04— N3(1 Ty Tor T Mo To T 02— 73T 03) T4 a configuration consisting of two pairs of nonparallel axes at two
ol 00,0) + N V() (28) distinct points is always feasi_ble. This_ is of interest since biaxial
o4t T s Tal: accelerometers are commercially available.
This is the equation of a line parametrized Ry. Using the The assumption at the beginning of the analysis was that two of
analysis from the previous section, identifyiggwith \;, we see ¢ i=1, 2, 3 were nonparallel. These two non-parallel axes are
thatrg4(04,0) is the vector fronR, to the point¥ (o), i.e., the required to generate the circular distribution of infeasible axes,
intersection of the circle througR;, R, and X, with the line then the third axis is used to find the poift, If this is not the
through X, parallel too,. Thus, the infeasible positions for ancase, i.e., the three axes are parallel, and in a feasible configura-
axis with orientationo, lie on a line through? (o). Note that tion, it has already been shown that there must not be a line
the coefficients of the vector(o,) are constants, fixed by the throughR;, R, andR;. For a fourth axis to yield an infeasible
configuration of the first three axes. Consequently rotating configuration, it must be parallel to the first three, in which case
causes an identical rotation ofo;) and knowledge of the vector there are two degrees-of-freedom in the selectionm\gf X,,\3).
for someer is sufficient to specify for all orientations. Choosing For instance); and\, may be chosen arbitrarily, while; must
o,= 03, We get satisfyh3=1—X\;—\,. The equation fory, in this case is

where
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Fig. 5 Some of the infeasible positions and orientations for a fourth axis given three
axes, at least two of which are nonparallel.  (The totality fill the plane. )

Foa O A1, A 2) =0 (A1l o1 Aof oot (L= A1 = N)Fog) 0+ 7 (Nqfgy DY Tan et al{_l?,], alth_ough _there is no geo_metric i_nterpretation of
the infeasibility configurations. Another interesting area of re-
FNoloat (L=N1—=A)rog) 7 search is the determination of robust configurations; configura-
tions that are least sensitive to placement errors and manufactur-
=N1(roa—rog) +Na(ro2—Tro3) +ros (33) P

ing errors in the accelerometers.
and sincerg;—ro3 and rg,—roz are not parallel, it is seen that
every point in the plane is an infeasible position for a fourth

parallel axis, as would be expected. References
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Elasticity Solutions Versus

Asymptotic Sectional Analysis of
vy | HOMOgeneous, Isotropic,
oo - Prigmatic Beams

Dewey H. Hodges

Professor The original three-dimensional elasticity problem of isotropic prismatic beams has been

Mem. ASME solved analytically by the variational asymptotic method (VAM). The resulting classical

model (Euler-Bernoulli-like) is the same as the superposition of elasticity solutions of

School of Aerospace Engineering, extension, Saint-Venant torsion, and pure bending in two orthogonal directions. The re-
Georgia Institute of Technology, sulting refined model (Timoshenko-like) is the same as the superposition of elasticity
Atlanta, GA 30332-0150 solutions of extension, Saint-Venant torsion, and both bending and transverse shear in two

orthogonal directions. The fact that the VAM can reproduce results from the theory of
elasticity proves that two-dimensional finite-element-based cross-sectional analyses using
the VAM, such as the variational asymptotic beam sectional analysis (VABS), have a solid
mathematical foundation. One is thus able to reproduce numerically with VABS the same
results for this problem as one obtains from three-dimensional elasticity, but with orders
of magnitude less computational cost relative to three-dimensional finite elements.

[DOI: 10.1115/1.1640367

Introduction of Ciarlet and Destuynddr2] to construct mathematical models

The variational asymptotic methoAM ) is a mathematical feonrgri(r)](;se.r'sl'helrwork is oriented more toward mathematicians than

approach applicable to any problem governed by an energy func-

tional havi " i Cont to the f In accord with the theory behind it, VABS can perform a clas-
lonal having one or more smafl parameters. Lontrary 1o the 1ofi | analysis for initially twisted and curved inhomogeneous, an-

mal asymptotic me_thods_, VAM applies the asymp_totlc e)_(pans'c?gotropic beams with arbitrary geometry, material properties, and
to the energy functional instead of the system of differential equgsterence cross sections. It captures both trapeze and Viasov ef-
tions, [1]. Hence, dropping a small term in the functional igects which are useful for specific beam applications. VABS is
equivalent to neglecting such quantities in several differentigls aple to calculate the one-dimensional stiffness matrix with
equations simultaneously. This implies that, when applicablggnsyerse shear refinement for initially twisted and curved, inho-
VAM is more compact and less cumbersome than standaithgeneous, anisotropic beams with arbitrary geometry and mate-
asymptotic methods. The VAM includes the merits of both varigia| properties. Finally, the three-dimensional stress and strain
tional (systematig and asymptoti¢without ad hoc kinematic as- fields can be recovered, if required, for finding stress concentra-
sumptiong methods. It allows one to replace a three-dimensiongbns, interlaminar stresses, etc.
structural model with a reduced-order model in terms of an There are a lot of beam theories in the literature. However,
asymptotic series of certain small parameters inherent to the strefimost all published work is of the ad hoc variety, especially in
ture. Although there are different forms of this method, e.g., Ciake area of modeling composite structures. Because VABS devel-
rlet and Destuynddi2] and Berdichevsky3], the method used in ops stiffness models that use the same fundamental types of de-
the present work is more closely aligned with the latter. formation that appear in traditional beam theorissch as those
The application of the VAM to model beams with general gesf Euler-Bernoulli, Timoshenko, and Vlaspvsome researchers
ometry and material has been demonstrated in the theory assatay be tempted to believe that VABS is nothing more than a
ated with the computer program VAB&ariational asymptotic computerized adaptation of elementary theories. However, VABS
beam sectional analy$isVABS was first mentioned in4]. Its is really very different from the traditional beam theories, and the
development over the past ten years is describefd#10 and assumptions behind it are far less restrictive. The fact that VABS
takes the variational asymptotic meth®¢AM ), [3], as the math- uses the traditional types of deformation winds up creating a
ematical basis. By means of the VAM, a general threeimple and smooth connection to traditional beam theories, so that
dimensional nonlinear elasticity problem for a beam-like structutbe one-dimensional beam analyses will remain essentially the
is rigorously split into a two-dimensional linear cross-sectiongame. A large body of additional information regarding three-
analysis and a one-dimensional nonlinear beam analysis. It is fimensional behavior of the beam, which need not be considered
teresting to know that Trabucho and Viafid] applied the VAM  at all in a one-dimensional beam analysis, is actually taken into
account by introducing three-dimensional warping functions that
" Tpresently, Assistant Professor, Department of Mechanical and Aerospace Erfie Subsequently calculated.
neering, Utah State University, Logan, UT 84322-4130. In view of this, the main purpose of the present work is to take
e o s o s e e reader, who is presumed to have a basic understanding of
CHANICS. Manuscript receivercjl by the Applied Mechanics Division, Aug. 30, ZOOZ?IaStICIty and_ cal_culus of varlatlo_ns, through an analytical den\_/a-
final revision, June 16, 2003. Associate Editor: D. A. Kouris. Discussion on the padé@n and application of the equations used by VABS for a special-
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligded case so that its relationship with traditional theories will be

Mechanics, Department of Mechanical and Environmental Engineering, Universj ; ; Q@ i
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep; Jearer and its mathematical ba M) wil appear less arcane.

until four months after final publication in the paper itself in the ASMEJBNAL OF is paper is in essence analytical validation of VABS against
APPLIED MECHANICS. the well-established theory of elasticity. Although numerous nu-
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Undeformed State

—

Deformed State

Fig. 1 Schematic of beam deformation

merical validation examples have been provided6r7,10,12, The spatial position vectar of any point in the undeformed
the present extensive and rigorous validation is required to debeam structure can be written as

onstrate conclusively its versatility and accuracy. This paper then .

should increase the reader’s confidence in results obtained from F(X1,%X2,%3) =T (X1) +XaDy @)

VABS. wherer is the position vector of the points of the reference line.

To accomplish the above, the present work specializes tRgye for a prismatic beam, the beam axis in the undeformed state
VABS general formulation for the analysis of isotropic, prismatic, straight. Finally,r’=b, and ()’ means the partial derivative
beams. Starting with the governing differential equations and g, respéct tox, | ' !

sociated boundary conditions of elasticity theory, we set out to After deformation, the particle that had pgsition vedtan the

prove(a) that the results from the classical model of VABS are t Endeformed state now has the position vedoain the deformed
gy X d bending i h L di Qate. Another orthonormal trial; is introduced to express the
Saint-Venant torsion, and pure bending in two orthogonal diréfeormed configuration, and ti unit vectors are not necessarily
tions; and(b) that the results from the Timoshenko-like model ot yant 16 the deformed beam coordinates. However, for the con-
VABS are the same as the superposition of the elasticity So'““"@énience of applying VAM, we choosB, to coincide V\;ithb- in
of extension, Saint-Venant torsion, and both bending and tranfe case of zero deformatioB, to be tangent to the deformed
verse shear in two orthogonal directions. beam reference axis, amj, determined by a rotation abo, .
ThenB; can be related td; by a rotation tensor which is called

Three-Dimensional Formulation the global rotation tensof13], such that

As sketched in Fig. 1, a beam can be represented by a reference CBP=Bb;. 2)
line r measured by,, and a typical cross sectigwith hasits _ .. ) ) ) )
characteristic dimension and described by cross-sectional Cafte- IS the inverse rotation to bring; back tob; which means
sian coordinatex, . Note that here and throughout the paper, CBb.CbB | A3)
Greek indices assume values 2 and 3 while Latin indices assume
1, 2, and 3. Repeated indices are summed over their range exaeperel is the identity tensor. Please note that wendbmake any
where explicitly indicated. For the convenience of comparing witfestrictive assumption here by choosiBg to be tangent to; .
elasticity solutions, the locus of all cross-sectional centroids alohgstead, the transverse shear deformation will be included in the
the beam is chosen as the reference line. An orthonormaltifiadwarping functions introduced below and will be explicitly brought
is chosen for the purpose of resolving tensorial quantities in conmto evidence when we fit the asymptotic model into an engineer-
ponent form for actual computation. For convenierzés chosen ing model that can account for this type of deformation, such as a
to be tangent t;, respectively. Timoshenko-like model.
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The position vectoR can be represented as where (), means the partial derivative with respecitp. For an
isotropic elastic body with Young’s modulis shear modulu&
and Poisson’s ratio, twice the three-dimensional strain energy
whereR is the position vector to a point on the reference line gber unit length can be written ajs4],
the deformed beam, ang, are the components of warping, both
in and out of the cross-sectional plane. By introducing the un-
known three-dimensional warping functions into the formulation,
one takes into account all possible deformation.

One should note that E¢4) is four times redundant because of ~ 2II= E(T2)+4G(I'2,+T%,+T3)
the way warping was introduced. One must impose four appropri-

R(X1,X2,X3) = R(Xq) +XoBa(X1) +Wi (X1, X0, Xg) Bi(X1)  (4)

ate constraints on the displacement field to remove the redun- T1l—vw v
dancy. The f traints applied h + = {"rlﬁrzz}
ancy. The four constraints applied here are (A1 )(1-20) \ | 7T1+T s Y 1—y
(w;)=0 5)
ry+T
XoW3— X3Wo) =0 6 vigamlan
(XaW3—X3Wo) (6) X[VF11+F33]>' (12)

where the notatiof ) means integration over the reference cross

section. The implication of E(q5) is that warping does not con-

tribute to the rigid-body displacement of the cross section. This

leads to one-dimensional displacement variables for extension afilm energy principles, we know that the exact warping functions

bending that have easily identifiable_ geome_tric meanings: thgé{tisfying the constraints, EqE) and (6), should minimize the
cprrespond to the measure numbers mhhbasn_s of_the average o ain energy in Eq(12). However, the same difficulties as one
displacement of the cross section. Equati{éh implies the tor- > . 4 ) ’

aboutB; . be encountered if one tries to solve this minimization problem
To formulate this problem in an intrinsic form, we need thdlirectly. Fortunately, as demonstrated in publications related to
definition of the one-dimensional generalized Lagrangean straiVsBS, the VAM can be used to solve for the unknown warping
functions asymptotically to avoid the difficulty of the original
y=CPB-R'—b, (7) three-dimensional formulation. This will be illustrataedalytically
in the following sections.
B/ = «;B;XB; (8)
where the column matrices of the “force-strain” measurgs
=[y1,0 0|" and «; are the “moment-strain” measures. Based on
the concept of decomposition of rotation tengag), if the local
rotation is small, which is the case for all the framework of VABS|assical Model

except the trapeze solutiofmot considered in this paperthe ) )
Jaumann-Biot-Cauchy strain components are given by Before applying the VAM, one must define the small param-
eters of the problem. It was mentioned above that products of the

one-dimensional generalized strains and warping are assumed to
be small because of the small-strain assumption. The assumption
of small strain is adopted for the purpose of deriving a geometri-
cally nonlinear beam formulation. It will be assumed and subse-
quently validated from the results that the warping is of the order
of he with h as the characteristic dimension of the cross section.
The smallness of the one-dimensional generalized strains is taken
Fij= Bi-Gkgk-bj . (10) into account as follows. The stretching of the beam reference line
(ijs denoted byy,4; the maximum strain induced by twist is of the
configuration andj*= by for prismatic beams. order ofhx,, while the maximum strain induced by bending is of

Because of the small strain assumption, which is applicable grﬁe order .ofh;cﬂ. ThIS. observation |s.con5|stent with the small
the framework of a geometrically nonlinear formulation, we ma{Pc@l rotation assumption used to derive £8). Now, let us de-
neglect all terms that are products of the warping and the orfédte the order of the maximum strain as-max(y.;,h«;). This
dimensional generalized strains. Thus, one obtains the thrégall parameter is then utilized when deriving the three-
dimensional strain field as dimensional strain field, Eq11), so that the smallness efneed

not be used in the rest of derivation. Another small parameter is
[11= Y117+ Xgko— XK+ W) h/l wherel is the wavelength of beam axial deformation. This is
the only small parameter one needs for prismatic beams for the
2T 1= Wy o— Xakq + W) purpose of solving the unknown warping functions asymptotically
' and obtaining a strain energy asymptotically correct up to a cer-
tain order.

The classical model of a prismatic beam is represented in terms
of a strain energy per unit length that is asymptotically correct up
to the order ofue? where u is of the order of the maximum
material constant. All the prime terms in E4.1) are of orderh/|
higher than the rest and do not contribute to such an energy. Then
this energy, which is called the zeroth-order energy, can be ob-
Faz=wss (11)  tained from Eq(12) as

1
Lij=5 (Fij+Fji) =4 9)

whereg;; is the Kronecker symbol, anfé; the mixed-basis com-
ponent of the deformation gradient tensor such that

Here szﬁli/ﬁxk is the covariant basis vector of the deforme

2T 3= Wy 3+ Xk + W3
Foo=wy,

2l 3= W3 ot Wy 3
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7

Fig. 2 Sketch of a clamped prism

2H0: ESyil-l- ElaKlzy‘i‘ G<(W1’2_ X3Kl)2+ (le3+ X2K1)2+ (W32+W2’3)2>

N E [V( )’11"‘X3K2_X2"<3)"‘Wz,zlT
(1+v)(1—2v) \ [ ¥(y11F+XaKk2—Xok3) T W33

1—-v v

[ v( Y11+ X3k — XoK3) +W2,2] >

13
v( Y11t Xgko—XaK3) T W33 (13)

v 1-v

with VK =1
. 3 2= I3
, , W2:W2:_V(X2711+X2X3K2)+T(Xg_x.§,+ S )
S=(1) l=(x3) I3=(x3) (14)
. . L R VK l,—1
whereSiis the cross-sectional area ahgdare the principal area  wa=Ws= — p(Xgy11— XoXaks) — —z(xg—x§+ 2 3
moments of inertia about,. The warping functions that mini- 2 S

mize the above energy are governed by the Euler-Lagrange equa- (22)

tions of this energy functional, given by Having obtained all the warping functions, the three-dimensional
strain field can be recovered by H4l) up to the zeroth order as
W1 20+ Wy 35=0 (15)
I'11= y11+Xako—XaK3
2(1—v)Wp o+ (1= 2v)W; 33+ W3 23— 2vk3=0 (16)
2T 1,= Wy ;= X3k
2(1—=v)W3 331+ (1= 2v)W3 o+ Wy o3+ 2k, =0 a7) 2T 1= Wy 5t Xok1

and the associated boundary conditions
[po= = v(y11+XaKo = XaK3)

N3(Xpk1+ Wy g) +Na(Wy o~ X3k1)=0 (18) 2T ,3=0
2n, [ag=— + Xako— XoK3). 23
N3(W 3+ W3 o) + 172V[V(711+X3K2_X2K3)+VW3,3+(1 35= ~ V(KoK XoKs) 23)
If one takes the definition of torsional rigidity from elasticity
— V)W ,]=0 (19) texts, which is

2n; GI=G(X5+ X5+ Xo 11 3~ Xathy ) (24)
Ny(Wy 3t Wy o)+ ——[v +XaKko—Xok3) + YWy o+ (1 . . . .
2(Wa gt Wa 2+ 377 T ( 710t Xara = Xors) 22+ whereJ is the Saint-Venant torsion constant, then the asymptoti-
cally correct three-dimensional energy, up to the ordeuef,

—V)W34]=0 (20)  can be written as

wheren,, is the direction cosine of outward normal with respect to 211o=ESyiy+ GIwi+Elps+Elaxs. (25)
Xo. Here, to maintain a simpler derivation, we do not use
Lagrange multipliers to enforce the constraints of E§sand(6).  This energy coincides with the result of classical beam theory;
Instead, we keep these constraints in mind and check whether tigyever, it is obtained without any ad hoc kinematic assumptions
can be satisfied by the solution. It can be observed that @§5. whatsoever. Such ad hoc assumptions as assuming the cross sec-
and(18) are just the equations of Saint-Venant warpic,,X3)  tion to be rigid in its own plane or setting=0 are common in the
in elasticity textbooks such akl5|, except development of traditional beam theories in the literature.
R For a straight beam clamped ®{=0 and under the tip load
W1 (X1,X2,X3) =Wq(X1,X2,X3) = (X2, X3) k1(X1).  (21) F;, M; atx;=L (see Fig. 2, the one-dimensional strain measures

] o . can be solved with the help of the strain energy &%) as
Hence the first approximation of the out-of-plane warpmgcan

be solved by the methods given in elasticity books. According to Fi M, M, M,

the theory of elasticitys can be determined up to a constant, and YUTEg 1T a3 "2=E_|2 K3=E_|3- (26)

one can choose the constant so that the const{ainf=0 is

satisfied. The following functions ofv, satisfy the other con- If a linear beam theory is used, the three-dimensional displace-
straints as well as Eq$16), (17), (19), and(20): ment field can be recovered as
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F. Mj M, 1 By a simple algebraic derivatior; and G can be expressed in
u; ESXl EI3x2xl EI2X3X1 l/IGJ terms of the components & B, andC as
r 2
= M, VM3( . |2—|3) Mj X2 E? Cals  Cadlols
Up= — VXgma— VXoXg=— + X5— X3+ +—= GC=——77
2= T PREgT VRS T oE, | 12T 8T TS El; 2 CaslCas—C% | Cadols  Cud?
F M M I,—1 M, X3 -
Ug=— vx3E—é+ Vx2x3E—|3 + ;E_IZ ( X5—x3 %) - E_|2 ?l (B41C33—B31Ca4)l3  (B31Cas—BaiCai)l
: 2 2(27) . E (B42Ca3—B3:Ca4)l3  (B3xCas—BaxCsil
which is essentially the superposition of elasticity solutions for C33Cas— C§4 (B4sCaz~BaiCals  (B3aCas—BaxCadl>
extension, pure bending in two directions and torsion. The only | (B44C33—B3Csa)ls (B3sCas—BulCsil

exception to this statement is that there is a difference of a con- (32)
stant from the elasticity solutions far, due to differences in the

way the clamped boundary condition is handled. Published elggrere the subscripted terms involviligand C are specified ele-
ticity solutions enforce the clamped condition at the beam refefiants in those matrices. Here. one can conclude Ghist deter-
ence line. In our case, however, since the one-dimensional Vaflined by the coefficients associated W“DK,E in the asymptotic

ables implied by the VAM solution are averages of the threes,o o “anF is determined by the coefficients associated with
dimensional displacement, the most straightforward solution i,

our framework constrains the average displacement to be zefo11 and KaKi '_Th's observation is very important _because i
Clearly, by enforcing a modified boundary condition in the on%gads to our finding a closed-form solution for the Timoshenko-
dimensional beam theory, so as to mimic the clamped conditigk¢ Mmodel for isotropic, prismatic beams. To obtain the second-
used in the elasticity solutions, the two solutions will becom@rder energy, we perturb the warping functions as

identical; in particular, the constant termstuipandus will simply
drop out.

From the above, it is clearly shpwn t.hat the above cla}ssm\%erevi is of the ordereh/l. Substituting the perturbed warping
model stores the complete three-dimensional energy of pr'smafgj%ctions back into Eq(11), one obtains
g ,

beams due to uniform extension, uniform torsion, and pure be
ing in two directions obtained by elasticity theory. The linearized
three-dimensional displacement field recovered by VABS is the
same as that obtained from elasticity theory.

Wi = \;Vi + Vi (33)

Fy=ynt X3K2_X2K3+‘7Vi+\41

2F 12~ \’lez_ X3K1+ V112+ Wé + \Lé
Timoshenko-Like Model o

Elasticity theory has another set of equations to solve for the 2L 5= Wy 3+ XoK+ Vi gt Wat+ V3

so-called flexure problem, which involves both bending and trans-

verse shear. For this VABS provides a Timoshenko-like model. [ =Wy 5+ Vs,

Because a Timoshenko-like model can at most approximate the -

original three-dimensional energy up to the ordepef(h/1)?, a 2T p3=Wg o+ W, 3+ V3 o+ Vy g

strain energy that is asymptotically correct to the second order of ’ o

h/l is sought first Ta=Ws 3+ Vs (34)
2U;=€'Ae+2e'Be’ +€'"Ce’' +2€'De” (28) T

) ) where the underlined terms are of the orddr/|, the double
where A, B, C, and D are matrices carrying the geometry anq,nqerfined terms are of the orden?/I2, and the rest of the terms
material information of the cross section, elements ©f 4 of the ordee. Substituting this perturbed strain field into the

— T i i i i . .
=|v11 K1 k2 k3| are the generalized one-dimensional strain me@nergy functional Eq(12) and neglecting all the terms of order
sures of Euler-Bernoulli beam theory. For isotropic prlsmatlﬁigher thanw(h/1)2s2, one obtains

beams, in which the locus of cross-sectional centroids is taken a
the reference line and cross-sectional principal axes are alpng 211 = 2114+ 211, + 211, (35)
A becomes a diagonal matrix with diagonal terms given by the

extensional stiffnesgS, the torsional stiffnes§J, and bending wherell, is the energy obtained for the classical model, @5)
stiffnesse€1, andEl;. A Timoshenko-like model is then createdgng

out of the energy, Eq.28), as

2U= €/ Xe+26]Fy+7'Gy (29) IT; = E(W3( Y21+ X3k2— X2K3))

where €, are the classical strain measur@ut defined slightly
differently because of the framework of Timoshenko-like madel

and y=|2y,327,3|" transverse shear strains. The stiffness matri- - ny A -,
ces)zl, FL, gr%SGyégln be found bysee[9]) +{(W 2= Xgieq)Wa (Wy gt XK1 ) W3)]. (36)

+ G[((Wy 5~ X3k1) Vi o+ (Wy 3+ XoK1) V1 9)

— Ta-1 -1 -1
G=(Q'ACAQ) It is easy to prove that the underlined terms vanish for arbitrary

F=B'TA 1QG V;. According to Eq.(32), the double underlined terms will not
affect the Timoshenko-like model constructed from the second-
X=A+FG™'F' (30) order energy. Thus, the only terms of interest are
where T =E(Wi(X3k2— X2K3))- (37)
0o o 1"

Q:{O 0o -1 0} - (31) Note these terms will not necessarily vanish unless the Saint-
Venant warping, for which we have already solved, possesses
€, and e are related by, =e— Q1. some kind of symmetry. Thus, the second-order energy becomes
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201 ,=2E(V](y11+ X3k — Xakz) + W)+ G((Vq o+ W5)?

+ 2V (Wy 5= X3k1) )+ G{(Vy 3+ W3) 2+ 2V5(Wy g+ Xok1)

’
VK, l,—13
Vgt vkoXars+ —- ( X3—x3+

N3

VK 1,—1
+(V2,3+V3,2)2> =—Ny Vl,27 VX2X3K£+ T3(X§7X§+ 25 3)}
E VW4V, T[1-v v
Tarna-2 )<[u\7v}+v2'2 [ 1 (48)
(I+»)(1-2v trrss LY v One can introduce a special function as
YWy + Vs, VKS l,— 13
X{ WL+ Vg [ (38) Vi vXoXarh+ —- ( X5— x5+ S )
The underlined terms create difficulty to solve this problem in the = 3+ (1+ )Xo+ f(X3)
two-dimensional cross-sectional domain. However, our goal is to ' (49)

find an interior solution without consideration of boundary effects
at the ends of the beam. Hence, integration by parts with respect

’
VK, lo—13
Vigt vXoXari+ —= ( X5—x3+ S

to X, can be used, and the residual terms at the ends can be 5
considered as having no effect on the interior solution. This argu- == ¢ (L+v)X5K5+9(X2)

ment can be illustrated mathematically if one constrains the wary satisfy Eq.(47) automatically, wherd(x;) andg(x,) are arbi-

ing V; in such a way that

(Va(y11F Xak— Xak3) |y, =0) = (V1 Y11+ Xaka—XoK3) [x =L)-
(39)

trary functions. The advantage of introducidgis that Eq.(48)
can be made much simpler based on the choicd(gf) and
g(x,). Using Eq.(49), the boundary condition, E¢48) becomes

The effect of such a constraint will die out after a small distance — = —[f(X3) +(1+ ¥)x3k5]1N,—[g(Xo) — (1+ v)X3k5]N3

from the ends according to the Saint-Venant principle. Then, the

Euler-Lagrange equations for the functiond} are

V1201 V1 331 2(y11+ X3k~ Xok3) =0 (40)
2(1=v)Vo 0+t (1= 2v)Vy 33+ Vi st (20— 1)Xgkq + Wivzz 0
(41)
2(1-v)V333+ (1= 2v)V3 20+ Vo o5+ (1= 2v)XK]
+(1-2v)W; =0 (42)
and the associated boundary conditions given by
Na(VyatW3)+ny(Vy ot ws)=0 (43)
. . 2n, .,
n3(W213+ W3'2) + 1_—21/ [ VV3V3+ (1— V)V2'2+ VWl] =0
(44)

. . 2n .
No(Wp g+ Ws o) + l——23v [¥Vo ot (1= v)V3 3+ vwi]=0.
(45)

It is observed thaV, is decoupled fronV,; V, should be some
function multiplying x; and V, will be a linear combination of
v1, and k.. The terms associated with, will not affect the

Js

(50)
wheresis the contour coordinate along the cross-sectional bound-
ary. If the arbitrary functions are chosen such that on the boundary

—(1+v)X5k}4 if n,#0,
f(x3)= . . _
arbitrary if n,=0
(1+v)x3x,  if ng#0,
Xo) = 51
90x) arbitrary if n;=0 ®1)

then the right-hand side of E@50) vanishes andp is constant
along the boundary. For simply connected domains, one can
chooseq to vanish along the boundary. The governing differential
equations forgp can be deduced from E¢9) as

. dg(xp) . df(xg)
120t h135= —2VXoK+ d—)(2_2VX3K3_ ax (52)

This equation is the same as that governing the flexure problem in
both directions if one expresses, in terms of the tip transverse
force and multiplies¢ by the shear modulu&. Therefore, all
flexure problems that are solvable by elasticity theory can also be
solved analytically by the VAMthe procedure on which VABS is
based. After ¢ is obtained, one can find, up to a constant using
Eq. (49), where the constant can be determined by the constraint
(V1)=0. The portion of asymptotically correct energy E&8)

that is needed for constructing the Timoshenko-like model can be

Timoshenko-like model as shown in E@2). (In fact these terms found from Eqs.(35) and (46).

are related with the Vlasov theory and will be studied in later Although it is necessary to carry out an integration by parts
papen Hence, one can s&f, to be zero and drop all terms thatwith respect tox; for the sets of terms in the first bracket of Eq.
have no effect on the Timoshenko-like model. Then, after recalt6) to render the present problem as a purely cross-sectional

culatingIl,, one finds

2I1,=2E(V(X3Ka— X2K3))

o
vof
(46)

Then the corresponding Euler-Lagrange equation, (E6), and
boundary condition, Eq43), will be modified to

’ 2
VK3 l,—13
V1= vXoXars+ —- ( X5— x5+ S

VKé

2

Vl,3+ VX2X3Ké +

V120+ V135= 2(XoK3— X3K5) (47)
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problem, this operation should not be applied at the step where the
strain energy is obtained. Previous publicatidns9], are silent

on this seemingly inconsistent practice because a reasonable ex-
planation had not been formulated. However, for the present prob-
lem, the transverse shear energy is completely represented by the
last two sets of terms and the first set of terms is part of the energy
due to extension. If one integrates this first set of terms by parts,
this energy represented by it will be transformed into transverse
shear energy according to E2), which is at least physically
inappropriate; and, in the worst case, the total transverse shear
energy will turn out to be negative. Nevertheless, if one does the
integration by parts and also keeps the residual terms at the ends,
the fictitious transverse shear energy caused by integration by
parts will be canceled by the residual terms at the boundaries,
which means the final three-dimensional results will not be af-
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fected by this operation. Based on this fact and @§), the first
set of terms in Eq(46) for the present problem will not affect
the final Timoshenko-like model and will be discarded in later

calculations.
After constructing the Timoshenko-like model using E(32)

and(30) and using it to solve the one-dimensional beam problem,

the three-dimensional strain field can be recovered usind 3.
and the displacement field can be recovered similarly agZ0.

This procedure will be given in detail for some example cross

sections that follow.

Example Cross Sections

In this section two typical examples listed in the elasticity text
of Timoshenko and Goodidid5] are studied here using the ana-

lytical procedures formulated in previous sections.

Elliptical Section.
axesa andb in the directions ofx, and x5, respectively, ang

=al/b as the aspect ratio, the Saint-Venant warping is found to be

(b?=a?)x,X3

= 53
a’+b? 3)
If one chooses thé(xs) andg(x,) according to Eq(51)
2
2 1 X3 2 1
f(xg)=—(1+v)xeks=—(1+v)| 1— bz 3K
X3
9(%2) = (1+v)X3r5=(1+v)| 1— = | bk} (54)
a
then both Eqs(50) and (52) will be satisfied by
X5 x5 X5 X3
d=m ¥+E_l X3z+nNn ;‘Fg—l Xo (55)
with
P vt (1+w)p? , |
=———F5—D%;
1+3p?
vp?+(1+v
_ [ i )] 2. (56)
3+p
Then one can obtaiN; by Eq.(49) as
X3K£ XzKé
Vi=p 2 2 (57)
24(3+p*) 24(1+3p°)

with

p=—4x3[4+ v+ (2—v)p?]—12X5(2— v+ vp?) + 3bY 16+ 8p?
+13v+2vp?+ vp*
13v+2vp“+vp”)] (58)
q=4x3[(4+v)p?+2—v]—12x3[(2— v)p?+ v]—3b%[16p*
+8p2+13vp*+ 2vp2+v)].

Then the energy of the ordeh/1)? excluding the terms that do

not affect the final Timoshenko-like model can be computed as

211,

EAL'

[p*12+2p%(1+v)2+5(1+ V)Z]Kéz
12(3+ p?)(1+v)

P V24 2p%(1+ v)%+5p*(1+ v)?] k52
+
12(1+3p?)(1+v)

(59)
The final Timoshenko-like model can be expressed as
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For an elliptical cross section with semi-

ifES 0 0 0
Y1 Y11
K1 0 GJ O 0 K1
2U=
K2 0 0O EI, O K2
K3 0 0O 0 Elg]"*s
2y 1S, 0](2
{712] [7’12} (60)
2y13) |0 S5](2713
where
B madhs T T
S=mab J= 21 b2 I Zab I3—Zab (61)
and
5= 3a%(3a’+b?)(1+»)°GS
2[b*v?+5a*(1+ v)?+2a%b?(1+v)?]
3b%(a®+3b?)(1+v)°GS
(62)

T o[a%2+ 5bA(1+ v)2+ 2a%0%(1+ 1)7]

The results are the same as thosd 1], but in that work the
results are obtained by using the Ritz method and assuming a
third-order polynomial which is of the exact form as shown here.
This result is the same as what ig[it6] which has been obtained
through elasticity theory. However, the result provided ii] is

an approximation of the exact solution.

Rectangular Section. For a rectangular section of widtha2
in x,-direction and height B in x;-direction (see Fig. 3, the
Saint-Venant warping can be expressed in a form of infinite series
such as

h=—XoX3
i 2n+1 7TX2
32 S (1" T2 b ,(2n+1ﬁx3
w2 a0 (2n+1)3 2n+1 ma sin 2 b
cos —_—
2 b
(63)

To solve for¢, we should choose the arbitrary functidi{x) and
g(x,) first. Along x,==*a, n,#0, so we can choosé(xs)

—(1+v)a%kj andg(x,) can be arbitrary. Along=*b, ng

#0, we can choosg(x,) =(1+ r)b?«x, and f(x3) can be arbi-
trary. Solving Eq.(52), one finds

14
¢:—§(x§—a2)xzxé
7TX3 ) n7TX2
3, « (—=1)"cos sin
4va KZE a a Vo,
) ) r(nv-rb) 3%
n° cosh —
a
(1" }‘( wx) _(mwx3)
3, = (—=1)Mcos sin
k! b b b
sTe = 3 I{mwa
m* cosh ——
(64)

Then one can deriv¥; to be
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Fig. 3 Sketch of a rectangular cross section
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v 1|, ) 5a%v by VXoX3 ,
+ 6+§X2_ a“+ 6 _?XZ_TK3
v 1 5b%y  a’v UX2X
|[5+3pe- o T T e 2
(65)

Then the energy of the ordeh/l)? excluding the terms that do
not affect the final Timoshenko-like model can be computed a

2I1, | 16v?ba+96b%a(1+v)? 32v%a°

G 45 5
bnw
» tan T
XE ETE— K5
n=1 n
16v2b%a+96a°b(1+ v)?
45
¢ ammr
320%8 & M b ,
- > K52, (66)
775 m=1 m5
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The final Timoshenko-like model can be expressed ad .
with
S=4ab J=pab® | 2 b3 | 2 *p s—GS
=4a 7Ba 273a 3*33 o ka
(67)
where 8 can be found in elasticity textbooks such[a§] andk,
are the so-called shear correction factors, given by

6 vy \2 |1 18 & tanhmm
k2:—+( . Hmp)

5 1+v 5 o1 mP

6 v \2 |1 18 tanhnarp 1)

=—+ 4 __ _ - - 7
ka=3 (1+v Pls" e (68)

Although the form of the shear correction factors are different
from those of Rentol6], the numerical values for different as-
pect ratios are the same. The reason the two results are of different
form is because in16] the flexure problem is solved by using a

Jouble trigonometric series while here hyperbolic series are used

along with the trigonometric series which converge to a fixed
value more rapidly. Please note that altho{gH is also based on
the VAM, the shear correction factors presented therein for the
rectangular section are approximations of the elasticity solution.

Conclusions

The variational asymptotic method, on which the finite-
element-based cross-sectional analysis VAB@®ariational
asymptotic beam sectional analysis based, has been used to
analytically solve the isotropic prismatic beam problem. The same
governing equations for Saint-Venant warping and the general
flexure problem have been shown to correspond with those of the
theory of elasticity. Identical results have been found between
elasticity and VAM solutions for beams with elliptical and rectan-
gular cross sections. It has been proven mathematically that for an
isotropic prismatic bar with an arbitrary cross section the classical
model of VABS is the same as the superposition of elasticity
solutions for extension, pure bending in two directions and tor-
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sion. Moreover, the Timoshenko-like model of VABS consists of [6] Cesnik, C. E. S., and Hodges, D. H., 1997, "VABS: A New Concept for
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The fact that the numerical procedure in VABS reproduces the " ~opesc: B. and Hodges, 1999, On Asymptotically Correc

. Timoshenko-Like Anisotropic Beam Theory,” Int. J. Solids Strusf(3), pp.
results of elasticity theory clearly demonstrates that the VAM, the  gz5 g
mathematical foundatl_on of VA_B_S, IS a valid m?thOdc_)lOgy that [g] popescu, B., Hodges, D. H., and Cesnik, C. E. S., 2000, “Obliqueness Effects
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go beyond the limitations of three-dimensional elasticity, VABS  New York, pp. 487-974.
may also be considered as a means for going beyond those limit€] Volovoi, V. V., Hodges, D. H., Cesnik, C. E. S., and Popescu, B., 2001, “As-

when considering the cross-sectional analysis of beams. sessment of Beam Modeling Methods for Rotor Blade Applications,” Math.
Comput. Modell.,33(10-11, pp. 1099-1112.

[13] Danielson, D. A., and Hodges, D. H., 1987, “Nonlinear Beam Kinematics by

References Decomposition of the Rotation Tensor,” ASME J. Appl. Mecb4(2), pp.
[1] Le, K. C., 1999 Vibrations of Shells and Rogdést Ed., Springer, Berlin. 258-262.
[2] Ciarlet, P. G., and Destuynder, P., 1979, “A Justification of a Nonlinear Model[14] Hodges, D. H., 1999, “Non-linear Inplane Deformation and Buckling of Rings
in Plate Theory,” Comput. Methods Appl. Mech. En§7/18, pp. 227-258. and High Arches,” Int. J. Non-Linear Mech34(4), pp. 723-737.
[3] Berdichevsky, V. L., 1979, “Variational-Asymptotic Method of Constructing a [15] Timoshenko, S. P., and Goodier, J. N., 19TBgory of Elasticity McGraw-
Theory of Shells,” Prikl. Mat. Mekh.43(4), pp. 664—687. Hill, Maidenhead, UK.

[4] Hodges, D. H., Atilgan, A. R., Cesnik, C. E. S., and Fulton, M. V., 1992, “On “ : : ; »
a Simplified Strain Energy Function for Geometrically Nonlinear Behavior of[lG] Renton, J. D., 1991, “Generalized Beam Theory Applied to Shear Siffness,

Anisotropic Beams,” Composites ENG(5—7), pp. 513-526. Int. J. Solids Struct.27(15), pp. 1955-1967. . . .
[5] Cesnik, C. E. S., and Hodges, D. H., 1993, “Stiffness Constants for Initially[lﬂ Berdichevsky, V. L., and Kvashnina, S. S., 1976, “On Equations Describing
Twisted and Curved Composite Beams,” Appl. Mech. Ré@(11, Part 2, pp. the Transverse Vibrations of Elastic Bars,” Prikl. Mat. Mek#Q, pp. 120—

$211-5220. 135.

Journal of Applied Mechanics JANUARY 2004, Vol. 71 / 23



Nanoscale Domain Stability in

Z. Suo' .
v e | Organic Monolayers on Metals
Mechanical and Aerospace Engineering Certain organic molecules, such as alkanethiols, can adsorb on metals to form monolay-
Department ers. Sometimes domains appear in the monolayers. For example, an incomplete mono-
and Princeton Materials Institute, layer may form islands, and a mixed-composition monolayer may separate into distinct
Princeton University, phases. During annealing, the molecules diffuse on the metal surface. The domain bound-
Princeton, NJ 08544 ary energy drives the domains to coarsen. The contact potential between the dissimilar

domains drives the domains to refine. On the basis of existing experimental information,
we suggest that the competition between coarsening and refining should stabilize certain

G. Scoles domain patterns. We formulate a free energy functional to include the effects of mixed
Chemistry Department and species, domain boundary, and contact potential. An approximate energy minimization
Princeton Materials Institute, estimates the equilibrium domain size. We derive a diffusion equation consistent with the
Princeton, University, free energy functional. The numerical solution of the diffusion equation follows the evo-
Princeton, NJ 08544 lution of the monolayers from a random initial concentration field to patterns of dots and

stripes. We also discuss the practical implications of the theory and, in particular, the
possibility of guided self-assembDOI: 10.1115/1.1640366

1 Introduction theoretically, even though definitive experiments are lacking. A
predictive theory will point to fruitful experiments with alkanethi-
ols on gold, as well as with other molecule-substrate systems.
This study was also prompted by the observation of equilibrium
omain pattern formation in monolayers of several types. Ex-
\mples include atomic monolayers on solid surfagE3+—19, and
lecular monolayer at the air-water interface, i.e., Langmuir

An alkanethiol molecule, H&EH,) X, consists of a thiol group
HS at one end, an alkyl chain (G} in the middle, and a tail
group X at the other end. As illustrated in Fig. 1, when a cle
gold substrate is in contact with an alkanethiol solution, the mo,
ecules adsorb on the gold surface to form a self-assembled mo

layer(SAM), [1-3]. The thiol groups bond to the gold surface, th‘?ilms, [2,20-23. The adsorbed atoms or molecules are mobile.

alkyl chains attract one another through the van der Waals for(ﬁomainscoarsento reduce the total length of the domain bound-

and the tail groups are exposed at the surface. Alkanethiol MONKes. The residual stresses, or the presence of electric dipoles in a

.nﬂmnolayer, induce an elastic or electrostatic field, so that the do-

(e.g., adhesion and wetting4]. Patterned SAMge.g., by MiCro- a4 | is the competition between the domain boundary energy
contact printing are used to fabricate devices, and to confine cel

d bi lecules in desired ; bsif& d the field energy that leads to the equilibrium domain patterns,
and biomolecules in desired regions on a substf&te7]. 23-30. The observed domain sizes range from nanometers to
Under certain conditions, a SAM spontaneously forms dg-

undreds of micrometers.

mains. For example, for an incomplete monolayer, patches of t €omains in a Langmuir film change by viscous flow in the

lrponolayer EOEXiSt with patches of the bare me_[tﬁlTlo]. (The monolayer and water, although molecules may also diffuse on the
bare metal” can actually be covered by the lying-down phas%urface,[21,31,32. Domains in a SAM on a metal change by
[1].) Also, when a monolayer of dissimilar alkanethiols fully cov+qiecyar diffusion. Electronic transport in the metal is much
Iers thﬁ n:jeta_l surface, different phases_”ma;f/ coe{ﬂz{lz])_ Ur:" faster than molecular diffusion on the surface. Consequently, as
(;sss the |bst|nﬁt|on 1S |rc?portant, r‘]"’e WII re e(; to ehpatc €S Holecules diffuse on the surface, electrons flow in the metal rap-
omelun_?ﬁ z they Start') mg-ug) p ?seh ying-cown p ?‘SG'f Or DY, the electric potential in the metal equalizes, and the electro-
metal. The domains observed so far have sizes ranging Tom Q@3c field in the space above the monolayer adjusts accordingly.
nometers to micrometers, and do not _form any _regular pattern. Isgection 2 discusses phase separation, domain coarsening, and
_theodgmalm s%e set byéhermgdgnan}lc equilibrium, olr by kine omain refining, drawing on experimental data of alkanethiols on
ICS " an the Oma']?s e guide }O 'orm ?(ije ’)re\?vg ﬁ.r p?]tter Bld. Section 3 formulates a free energy functional to describe the
such as an array o Stf'pes ora at_tlce 0 o_ts. ithin the “effects of mixed species, domain boundaries, contact potential,
kanethiol family, properties vary considerably with the alkyl chaigl\y e|ectrostatic field. In Section 4, we minimize the free energy
length and the tail group, giving rise to a large parameter spagt, ss ming sinusoidal concentration fields, arriving at an esti-
which can be used to tailor experiments. Regular domain patte Ste of the equilibrium domain size. In Section 5, we derive a

of a controllable size would open new applications of theses Sy ision equation compatible with the free energy functional, and
tems. Consequently, it is significant to consider these ques“%?merically simulate the annealing process

1To whom correspondence should be address. Present address: Division of Engi- . . i i
neering and Applied Sciences, Harvard University, Cambridge, MA 02138. e-maZ: Phase Separauon, Domain Coarsenlng, and Domain

suo@deas.harvard.edu A
2Present address: Division of Engineering, Brown University, Providence, iﬁefmmg
02912. When a gold substrate is in contact with an alkanethiol solution,

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF : . . . .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- two kinds of mass transport, 1.e., adsorptlon desorptlon and diffu

CHANICS. Manuscript received by the Applied Mechanics Division, Sept. 4, ZOOZS;iO_nv procegd simL_JItaneousI)_/. First conside_r the_c_ase that the so-

final revision, July 8, 2003. Associate Editor: H. Gao. Discussion on the paper sholilifion contains a single species of alkanethiol. Initially molecules

be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechagdsorbed on the surface form islands. As more molecules adsorb,

ics, Department of Mechanical and Environmental Engineering, University h ; i

California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted L?n ? islands connect, and the.remalmng bare gOId Su.rface appears
four months after final publication in the paper itself in the ASMEL@NAL OF @S monolayer-deep vacancy islands. Further adsorption causes the

APPLIED MECHANICS. vacancy islands to shrink and disappear. Finally a monolayer com-
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alkanethiol solution
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Fraction of molecule B in monolayer, C
Fig. 2 The free energy of mixing for a monolayer composed of

two molecular species, A and B. The pair has a large enthalpy

of mixing, so that the free energy of mixing has two wells at Cq
and Cg, corresponding to two phases. When the average con-
centration of the monolayer, C,, is between the two wells, to
reduce the free energy, the monolayer separates into the two
phases.

Fig. 1 When a metal is in contact with an alkanethiol solution,
the alkanethiol molecules adsorb on the metal surface to
form a monolayer. The structure of a HS (CH,),OH molecule is
illustrated.

pletely covers the gold surface. A necessary condition to form @8sulting in an electric dipole normal to the surface. Now consider
equilibrium domain pattern of an incomplete monolayer is tgyg gold substrates, one covered with a monolayer of pkase
break the contact between the solution and the metal before Higy the other with a monolayer of phageWhen the two sub-
monolayer completes. In subsequent annealing, molecules diffuggytes are connected, electrons flow from one substrate to the
on the surface to change the domain patterns. _ other, until the chemical potentials of electrons in the two sub-
Similar considerations apply to the case that the solution cogrates are equilibrated. Due to the difference in the two monolay-
tains two alkanethiol species, A and B. As pointed out by Folkeggs, the electric potential in space neadiffers from that neag,
et al.,[32], if gold is kept in contact with the solution, allowing say ¢ < 4. The differencelU= ¢~ &, , is known as the con-
the molecules on gold to exchange with those in the solution, ifct potential, and can be measured by the Kelvin metf@xk-
equilibrium the monolayer will have a single phase. Again, a negg]. The contact potential sets up an electrostatic field in the
essary condition to stabilize two phases in a monolayer is to bre%ce, and a charge density field on the metal surfad,
the contact between the solution and the metal at some point. Th‘?:igure 3 illustrates a monolayer composed of two kinds of do-
mOI’lOlayer covers the entire Surface, and the amount of the tw%inS,a and B The period)\ represents the domain size. The
components in the monolayer has a suitable ratio. For the tygstg] occupies the lower half spagg<0, and the monolayer
phases to equilibrate in annealing, the enthalpy of mixing has ¢gjincides with the X, ,x,) plane. The space above the monolayer
overcome the entropy of mixing. L& be the concentration of the s occupied by air. The electrostatic energy stored in the space

monolayer, namely, the fraction of surface sites on gold occupigdpends on the magnitude of the contact potential, but not on how
by B-alkanethiols. During annealing, the molecules can diffuse on

the surface, but the amount of either species remains constant, so
that the average concentration of the monolaggr, remains in-
variant. Figure 2 illustrates the free energy of mixigp@C) for a
homogeneous monolayer. The two well€atandC 4 correspond

A3

to the two phases. Whe@,<C,<Cg, the monolayer separates X,
into the two phases in equilibrium.

Alkanethiol molecules form strong bonds to gold surface, ar P ?s P Py .
are not very mobile at room temperature. The diffusivity of al 1
kanethiols on gold is estimated to Be= 10" m?/s, [33]. For the
concentration field to change over a length schjethe time
needed scales ds-L?/D. For example, if the domain size is 10
nm, the time scale is-10° s. It has been observed that nanoscal
islands in an incomplete monolayer under atmospheric conditio

coarsen at room temperature in daj@]. To accelerate pattern R S A - = -
formation, the monolayer can be annealed above room tempe Iﬁl

ture, as long as the molecules do not evaporate appreciably, i

the phases are still stable. gold

The excess free energy of the domain boundaries, i.e., the i
tension, drives coarsening. For domains to be stable, a refini
action must exist to prevent domains from growing too large. We
now examine how the contact potential drives domains to refing, 3 The contact potential U= ¢y— b, causes an electro-
Regard the monolayer and a few top layers of gold atoms as &#ic field in the air, a positive charge on the metal surface
interfacial system. Across the thickness of this system, the poghder domain B, and a negative charge under domain  a. Rep-
tive and the negative electric charges are unevenly distributedsent the domain size by the period  A.
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the contact potential is set up. Imagine that the contact potent” -
can be varied from zero to its final magnitute This can be
accomplished, for example, by starting with a parphase mono- U
layer, and gradually converting some patches into fhghase.
When the contact potential is zero, the charge on the metal surf:

is zero. As the contact potential increases, electrons flow in t
metal, setting up a net positive charge& on the metal surface
under theB domains, and a net negative charg€® under thea
domains. Because the electrostatic field equations in the space a)
all linear, Q is linear inU (Fig. 4@)). The slope of the line is the
inverse of the capacitance of the system. When the contact pot

tial changes from 0 toU, the electrostatic energy stored in lUQ
the space above the monolayer isQI2. It is always a positive
quantity.

In reality, the contact potentid) is held constant by the mo-
lecular difference between the two domains. The contact potent
acts like a battery, and thé and « domains act like two elec- Q
trodes. The metal substrate serves as a wire connecting the e
trodes. When transporting an amount of cha@edrom the «
domains to thg8 domains, the constant voltagkedoes workQU.
Having done this work, the “battery” reduces the free energy
Consequently, the electric free energy, of the combined system
the electrostatic energy in space minus the work done by the cc U /11 < )“z |
stant contact potential, namely, QP —-QU=—1/2QU. The 2
electric free energy is always a negative quantity. At a conste
voltage, the higher the capacitance, the larger the charge, and
lower the free energy. That is, to reduce the electric free energy b)
the constant contact potentiél, the system evolves toward a
configuration of high capacitance.

We can now understand the refining action due to the cont¢
potential. In the discussion above, we kept the domain patte
fixed. Now allow the domain pattern to change by molecular di
fusion. In this procesgd) is constant, but both the char@eon the . —
metal surface and the electrostatic field in space change. As 0, (0 )
domain size decreases frons to A4, the capacitance increases
(Fig. 4(b)). The trend is analogous to a parallel-electrode capacit
(Fig. 4(c)). The chargeQ increases as the domain size decrease
The electric free energy is reduced if the domain size decreas
so that the contact potential drives the domains to refine.

3 Free Energy as a Functional of the Concentration

Field -0
Similar to the Cahn-Hilliard mod€I38], we represent a poly-

domain monolayer by a continuum concentration fi€lx, ,x»), c) E 1

and a domain boundary by a gradient in the concentration fie U
First consider a surface of gold covered with a homogeno ‘

monolayer of concentratio@. Denote¢ as the contact potential
between this surface and a reference surface, say, a gold suri
covered with a monolayer of pure A. We assume that the cont:
potential is linear in the concentration:

¢=¢C. (1) F

That is, the dipole moment of an individual molecule, either A or
B, is assumed to be unaffected by the presence of other molecules
on the substrate. The metal is covered by pure £at0, and by
pure B atC= 1. Consequently, the slogén (1) equals the contact
potential between a substrate covered by pure B and another sgil§- 4 (a) The charge Q accumulated under either domain in-
strate covered by pure A. creases linearly with the contact potential between the two do-

Figure 5 illustrates the interface between the air and the meteiiains, U= ¢;z— ¢, . The area of the triangle is the electrostatic
We assume that the thickness of the interfacial system is sm@iiergy stored in the space occupied by the air. The slope of the
compared to the domain size, and is negligible in calculating g€ is inverse of the capacitance of the system.  (b) The Q-U
electrostatic field. Denote the electric potential in the space ByES for wo domain sizes, ~X;<A,. At a constant voltage, the
W (xq,X2,X3). The electric potential in the bulk of the metal is2 aller the domain size, the larger the charge, namely, @

1:72,73/ P o . >>0,. (¢) In a parallel-electrode capacitor, the electric interac-

constant, taken to be zero. In the space, at a point immediatgly, ‘causes the attraction between two electrodes. To keep the
above the monolayex;=0", the electric potential equals thetwo electrodes in place, one has to apply a pair of forces to pull
contact potential: the electrodes apart.

W(X1,X2,0)= (X1,X2) = {C(X1,X2). 2

+0
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) keep the third term linear imr, but neglect terms which are higher
air order ino. As discussed in Section 2, whehis held a constant
for the interfacial element, the work done Byto add charger to
the element isr¢, which reduces the free energy.

The excess free energy of the interfacial object is the integral of

¥Y=¢, D;=0 I" over the area of the surface. The free endegef the system—
interface ———————————— 3 the SAM on metal and the space above—is the sum of the elec-
object L "': trostatic energy stored in the space, ), and the excess free
e e 4 energy of the interfacial object, namely,
¥Y=0, D,=0 1
G=J g+h|VC|2—§¢U dA. (7)

In summary, this section defines a thermodynamic system by
prescribing a procedure to calculate its free energy. The free en-
ergy is a functional of the concentration field. Given a concentra-
tion field C(x4,X,), one determines the electric potential
W (x4,X5,X3) by solving the Laplace Ed4) subject to the bound-
ary condition(2), and then calculates the surface charge density
o(X4,X,) according to(3). Equation(7) gives the free energy of
the system. The concentration field evolves to minimize this free
energy.

Fig. 5 The boundary conditions at the interfacial object be-
tween the air and the bulk of the metal

Let the electric charge per unit area on the metal surface be

a(X1,%2). Applying Gauss’s law to a small volume containing a4 An Approximate Analysis of Equilibrium Domain
element of the interfacial system, one confirms that the electr

displacement component in the space immediately above the o ) )
monolayer isDs(X; ,X»,0)= o'(X,X,). Consequently, the surface AN equilibrium domain pattern corresponds to a concentration

charge density relates to the electric potential in space as  field that minimizes the free energy functiori@). To estimate the
equilibrium domain size, we minimize the free energy over a par-

v ticular family of concentration fields:
0(X1,%0) = ~807—,  Xs=0. 3) g
3 ) 27TX1
The field equations are standard. The electric field relates to the C(X1,%2) =Co+ Cy Sin| ——|. ®)

gradient of the electric potential &=—VW. The electric dis- . ) o . .
placement is linear in the electric field, namely= ¢,E. We as- This family represents an array of periodic stripes oriented along
sume that the upper half space is free of charges, so that theX. direction. During annealing, the metal is no longer in con-
electric displacement is divergence_fr%,D:O_ Consequenﬂy’ taCt W|th the alkaneth|0| Sp|L!tIOI’I, SO that the aVerage COﬂ_Centra-
the electric potential in the air satisfies the Laplace equation: tion of the monolayerC,, is fixed. The amplitude of fluctuation,
) C1, and the period), are varied to minimize the free energy.
Ve =0. 4) A combination of(1) and(8) gives the contact potential

The electrostatic energy stored in the space is the same as the 27X,
work done in building up the contact potential from zerogp $=(C, sin( ) 9)
namely, A

1 1 Matching this boundary condition, the solution to the Laplace
f EE.DdV: f EdwdA- (5) equation gives the electric potential in the upper half-space:

The integral on the left-hand side extends over the volume of the v=(C,y sin( 27TXl)exp( - 27TX3). (10)
half space above the surface, and the integral on the right-hand A A
side extends over the area of the surface. Equd&ipnan also be The electric potential decays exponentially>as-«, the decay
confirmed by using the field equations and the divergence thdength being\/27. The surface charge is calculated according to
rem. We assume that the system as a whole is neuttedlA  (3), giving
=0. Equation(5) shows that the electrostatic energy in the space
above the monolayer vanishes when the contact potential is uni- o= £0lC 2_77 Sin(ZWX:L (11)
form over the surface, as expected. 05™11 )\ N
Next we examine the free energy of the interfacial system. T L .

interfacial energy density;, takes an unusual from. Assume thartﬁ‘1e surface charge is in phase with the contact pote(@jalas
I' is a function of the concentratid@, the concentration gradient expected. . . .
VC, and the surface charge density Expanding the function T_he average energy per unit area is thg |nt¢g'r'}1lover one
into the Taylor series to the leading order term¥i@ and o, we period, divided by the period. The calculation gives
have — _ c? 20

I'=g+h|VC|*~ g0, (6) G=9*73 x) -

whereg, h, and¢ are in general functions . The termg(C) is The average energy of mixing, is independent of the wave-

the surface energy density when the concentration is uniform alesgth. The two terms in the bracket result from, respectively, the
the surface charge vanishes. Indeed, the fungi@®) is the free domain boundary and electrostatics. The trends discussed in Sec-
energy of mixing(Fig. 2), taken to be an input of the model.tion 2 can now be seen clearly {{12). The domain boundary
Because the interfacial energy density is independent of the direntergy reduces when the wavelength increases, and drives the
tion of the concentration gradient, the leading ternVi@ is qua- domains to coarsen. The electrostatic energy reduces when the
dratic, withh being a positive constant. In the expansiéh we wavelength decreases, and drives the domains to refine.

2

2
Zh(T) —gol? (12)
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The free energy is quadratic {27/\), and reaches its minimum  When both the surface stress and contact potential are present,
at the wavelength a combination of the above analysis and tha{28] gives the
equilibrium domain size:

\ 8wh
0: .
eol?

Using £,=8.85<10"*?F/m, h=10"%'J and {=0.5 V, we find
thatAo=11 nm. Before taking this estimate seriously, we shouldhere u is the shear modulus; is Poisson’s ratio, and is the
discuss the validity of the analysis, and the field of variability oflope of the surface stress as a function of the concentration. The
the parameters. relative importance of the electrostatic and elastic interaction is
In reaching(13), we have sought the energy minimizer amonguantified by a dimensionless ratio
candidates of a very small family of concentration fields, 3. 5
The sinusoidal concentration profile is a reasonable approximation R— el
when the domain size is not too large compared to the domain C(1-v)e?
boundary width. This happens when the refining action is stron_g )
or when the coarsening action is weékg., when the binary he surface stress has been measured for alkanethiols on gold,

monolayer is held just below the critical temperajut@hen the 9iving 0.017 N/m per CH unit, [40]. The available data indicate
domain size is, say, more than ten times the domain bounddhgt the effect of the surface stress and that of the contact potential
width, however, the concentration profile is close to a squafé€ comparable for alkanethiols on gold. However, if one intro-
wave, which should be represented by a Fourier series of mayces high-permittivity dielectrics in the space above the mono-
wavelengths. An analysis following this line of thought shows thaayer, and incorporates polar groups into the molecules, the elec-
the equi”brium domain size is |arger than that g|ver(b8)’ [39] trostatic interaction can be altered by orders of magnltude.

In the limit that the domain size is much larger than the domain

boundary width, the line tension model is appropriate, giving ap- . ; ;
other estimate of the equilibrium domain siZ25,26: Eyn?rlr]:f:'j)l/on Equation and the Need to Break

In this section, we consider the diffusion process, in which the
, (14) monolayer starts from an arbitrary initial concentration field, and
evolves to a stable domain pattern. We derive a diffusion equation,
. ) . . following a standard procedure in nonequilibrium thermodynam-
where a is a cutoff radius(close to molecular dimensions, jcs (28,39 Imagine a curve on the substrate surface. When some
~ 1 nm), y the line tension, andl the contact potential between ,,mper of A-molecules crosses this curve, to maintain the integ-
the two domains. The step jump of the contact potential at thgy of the monolayer, an equal number of B-molecules must cross
domain boundary makes the electrostatic energy unbounded, g curve in the opposite direction. Denote the unit vector lying in
the cutoff radius is mtroduced_to regularize the problem. Takinge syrface normal to the curve by. Let| be a vector field in the
y=10"’N andU=0.5V, we find that..=292 nm. surface, such thdtm is the number of B-molecules across a unit
Next we discuss the variability field of the parameters that dkngth of the curve.
termine the equilibrium domain size. We have assumed that theyyhen the concentration on an element of the surface varies by
space above the monolayer is occupied by air. If a highsc, the same number of B-molecules must move into the element

permlttIVIty dielectric fluid lies above the monolayel’ during anfrom the neighboring regions on the Surface’ name|y’
nealing, the equilibrium domain size will reduce accordingly. Of

course, the presence of a dielectric fluid, rather than the air, may ASC=—=V-(dl), (17)
modify the contact potential and the domain boundary energyhere A is the number of surface sites per unit area. Combining
somewhat. Independent measurements of these quantities havgzfyng (17), we find the variation of the free energy:

be made. Similarly, if one places a high-permittivity dielectric

solid at a small gap above the monolayer during annealing, one 1

can, in principle, even tune the equilibrium domain size by adjust- 6G= Kj (an)-v
ing the gap. o . .

Contact potentials have been measured for alkanethiols on gdfyderiving (18), we have used the fact that the teghor in (7) is
[35,36. The potential increases linearly with the alkyl chairfluadratic inC. We h_ave als_,o (_:ilscarded |ntegral_s_ along curves on
length by 0.0093 V per Cunit. The potential changes also wherfhe surface, assuming periodic boundary conditions. )
the tail group changes; variation betwee.75 V to+0.60 V has Defl_ne the _d|ffu5|on driving forcé_as the free-_en_ergy reduction
been reported. One can even incorporate polar groups in %soc.lated yv!th a molecule relocatl_ng by a unit d}stance. Compar-
middle of the alkyl chain to increase the contact potential withotR9 this definition and18), we obtain an expression for the dif-
compromising the functionality of the tail group. fusion driving force:

We are unaware of any measurement of the domain boundary 1 _(dg
energy in alkanethiol monolayers. The line tension of the phase f=——V|—=—
boundary in Langmuir films has been measured experimentally, a A “\oC
representative order of magnitude beipg 10" 12N, [22]. Con- When the diffusion driving force vanishes, the free energy varia-
sidering the similarity of the inter-molecular forces involved irtion vanishes, and the concentration field reaches equilibrium. The
Langmuir films and in SAMs, we expect that the magnitude of thguantity in the parenthesis is a chemical potential. A concentration
line tension should be comparable in the two systems. Note thid is in equilibrium when the chemical potential is constant over
the line tension decreases as the temperature increases, and tensurface. Obviously, a homogeneous monolayer is an equilib-
ishes above the critical temperature. Because the inter-moleculam state, which can be unstable. We are interested in stable,
forces are weak, the critical temperature is not too high, and ilthomogeneous equilibrium states.
typically within experimental reach. In general, for an arbitrary concentration field, the driving force

Given the large variability in the parameters, one should expedbes not vanish—it drives the diffusion flux. Assume that the
very different equilibrium domain sizes in different systems. Thatiffusion flux, J, is linearly proportional to the driving force,
is, the equilibrium domain size should be tunable. namely,J=Mf, whereM is the mobility of the molecules on the

(13) . 8mh
_—
oy A0

(15)

(16)

2wy
No=27aex| 2+1
80U

&—gfzhvchg dA (18)
19C g .

2hV2C— (o). (19)
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surface. The conservation of molecules requires that/dt Normalizing the time byr and the spatial coordinates fbyin
=—V-J. These considerations lead to the diffusion equation (20), and taking the Fourier transform on both sides, we obtain

7C_M o2 % ohyee 20 ©_ k2P — 2k*C+ pk3C 29
T a2 o {o]. (20) F pk°C, (29)
To evolve the concentration field numerically, we need twherep=8wb/\, is a dimensionless parameter, a%(;kl,kz) is
specify the free energy of mixing(C). Any function with two a Fourier component of the function
wells, as shown in Fig. 2, will serve the purpose. To be specific,

we assume that the binary monolayer is a regular solution, with _ C w
the free energy of mixing given by P(C)=log 1-C * kBT(l 20), (30)
g(C)=AkgT[ClogC+(1-C)log(1-C)]+AwC(1—C), which comes from the derivative of the free energy of mixing

(21) (21.

wherekg is Boltzmann’s constant, afldthe absolute temperature.. Remarkably, Eq(29) is identical to that of a monolayer on an
The parametes, measures the maanitude of the enthalpy of mixSCtroPic elastic substrate, where the surface stress drives domain
in \F;Vhena)/k T<2 the entro %f mixing brevails a%{C) refining, [29]. We will use the same numerical method to evolve
hags' a single vSeII. V\’/hem/kBT>p)2/, the entr?allopy of rﬁixing pre- the concentration field. The functid®(C) is nonlinear inC, so
vails, andg(C) has two wells. that P at a given point in theky ,k;) plane depends o€ at all
A comparison of the first two terms if20) leads to a length: points in the k;,k,) plane. Consequently?29) evolvesC at all
points in the kq,k,) planes simultaneously, in a coupled manner.
b= h 22) Numerical simulation proceeds as follows. Start with a known
AkgT concentration fieldC(x4,x,,tg) at timet,. CalculateP according
B

This length scales the distance over which the concentratilfh (30, andP by using the fast Fourier transfort¥FT). Also
changes from the level of one phase to that of the other. Fe@n ©obtainC by FFT. Equation(29) updates the field for a small
and (21), we note that the diffusivity scales &~MkgT/A. To time step. Take an inverse FFT to obtain the updafetield.
resolve events occurring over the length sdaléhe time scale is Repeat the procedure for many time steps to evolve the concen-

1/2

b2/D. This consideration defines a time scale tration field over a long period of time. More details of numerical
implementation can be found [129,41].
h In numerical simulations, we take/kgT=2.2, so thatg(C)
=—. (23)  has two wells aC,=0.249 andC;=0.751. We take=2, so that
M(kgT) No=4mb, and the equilibrium domain size is about one order of

To evolve the concentration field according @0), at each magr_1itude_ Ia_rger than the domain wall width. We restrict the cal-
time-step, for a given concentration field, we need to solve tg&llation within a 256 < 256b square cell, and choodeas the
electrostatic boundary value problem, and calculate the surfddiéd size. Periodic boundary conditions are used to replicate the
charge field. This can be done by an area integral of a Greef@/l to the entire monolayer. Figure 6 shows two simulation results
function. The integral is singular, and extends over the entire siken from[29], which was originally intended for patterns stabi-
face. This approach would take a great deal of computation tinfged by surface stress. Now if we interpeeg by (15), the same
Rather, we will solve the electrostatic boundary value problem fimulation describes pattern evolution under combined actions of

the Fourier space. Consider the Fourier transform surface stress and contact potential. _
Figure Ga) shows the concentration field after the annealing

AR IR . . time t=10°7. The initial concentration field randomly fluctuates
ClxeXz,t)= jfx wa Clku ko Dexplikpx tikaxo)dkadke- 560y the average valu@,=0.5. At aroundt=10°r, the con-
(24) centration field has already separated into two phases of meander-

) ) ing stripes. The pattern and the feature size hardly change between
To ensure tha€(xy,x;,t) is real-valued, the two Fourier compo-1; to 16F+.
nentsC(Kky ,kp,t) and C(—ki,—k;,t) must be complex conju-  Figure §b) shows a pattern at time=4x 16°r, initiated from
gate. Because the electrostatic field is governed by linear eqgaconcentration field randomly fluctuated around the average
tions, we only need to determine the electrostatic field for afhlue Coy=0.4. The dots are established arourel0?r. Further
individual Fourier component, and then superimpose all the comgnnealing does not change the size of the dots appreciably, but
ponents. For a pair of component§(ky,k,,t) and C(—k;, improves the spatial ordering of the dots.tAt4x 10°7 shown in
—kj,t), the concentration field is Fig. 6(b), the pattern consists of grains, each grain being a trian-
gular lattice consisting of fewer than ten dots across.

C=2Re C(ky ky, t)explikyxy +ikaxa) ], (29) Both meandering stripes and disordered dots have been ob-
where Re stands for the real part of a complex number. The céirved in alkanethiol monolayer§§—12. Some of these experi-
tact potential is ments were carried out with the monolayers in contact with the

R alkanethiol solution at room temperature, so that the adsorption
d=2¢ R C explikx; +ikyxy)]. (26) process affected the domain patterns. Alkanethiol molecules dif-

fuse slowly on gold at room temperature, so that the observed
domains may not be of the equilibrium size.
atFigure 6 also clearly shows the effect of symmetry on pattern
formation. The model is isotropic, with no preferred orientation in
— ~ ; ; _ the plane of the monolayer. Consequently, stripes of all orienta-
W=20RECexplikx +ikoxo—kxg) ], 7) " tions are equally possible, so are lattices of all orientations. Im-
wherek=\kZ+k2. This electric potential matches the boundaryroving the long-range order by annealing alone takes a long time.
condition(26), and vanishes as,— + . The surface charge den-A powerful way to form patterns with long-range ordering is to
sity is break the symmetry. In a series of papdB9,42—44, we have
. studied the effect of symmetry breaking of various modes on do-
o=2gok{ R C explikx; +ikyx,)]. (28) main patterns, assuming surface stress stabilizes the domains. Do-

This prescribes the boundary conditionxgt=0 for the electro-
static field in the upper half-space. One can readily confirm th
the solution to the Laplace equation is
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ordered domains of controllable sizes would open new possibili-
ties for applications. Further experiments and theoretical work
need to be carried out to ascertain the premises, and to explore
new opportunities, particularly those of guided self-assembly. The
concepts are also applicable to monolayers of other molecules.
Provided molecules on surfaces are mobile, the combined effects
of surface stress and contact potential may be strong enough to
stabilize domains of desired sizes.
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Mechanical Modeling of Fabrics
r...1ahey | 1N Bending

G. R. Heppler

A fabric bending model that includes contributions from nonlinear elasticity, and viscous

and Coulomb friction with hysteretic effects is presented. The model allows the recovery
of the loading, unloading and hysteresis behaviors observed in the Kawabata evaluation
system (KES) bending tests and provides the ability to simulate a continuum of property
curves and to extrapolate to loading conditions not covered in the KES regimen. Model
results are compared to experimental results. It is found that hysteretic behavior is ob-
served due to friction between the yarns, and that nonlinear elastic behavior arises from
jamming of the yarns and their subsequent compresgio@I: 10.1115/1.1629757

Systems Design Engineering,
University of Waterloo,
Waterloo, ON N2L 3G1, Canada

Introduction sample is in pure bendinfl1]. The characteristic values recorded

y the system areB, the bending rigidity per unit length, and

lem in that there is no clear “best” experimental protocol to es-.HB’ the moment of hysteresis per unit length. Note that in ad-
ition to measuring these values for the weft and warp directions,

tablish the values of the set of parameters that uniquely define %y are also measured in the forward and backward directions.
material model. Nor is the parameter set defined and agreed upon:

Abbott [1] have compared five different bending stiffness tests:

the cantilever test, the heart loop test, the Schiefer Flexometer, thgbric Bending Friction and Hysteresis
Planoflex, and the M.I.T. Drapemeter. The cantilever test was pre- . . .
ferred to the other tests due to its simplicity and its high correla- The_re are a “.“mbef of meCh@”'sms th_at_ influence the bending
tion to the subjective measurements. Subsequently, Grosberg ﬁgawor of fabric. As illustrated in Fig. 4 it is generally the case

: . hysteresis is exhibited in KES-FB test results and that the
Abbott [2] discussed the apparatus of Livesey and O&rand Peding and unloading portions of the curve are seldom linear. The

r n alternativ r nhInrnTn|§L h . . P :
proposed an alternative apparatus based on the Instron Te absence of linear loading and unloading paths implies that a linear

Tester. In a contemporaneous papédi, they discussed the sig- -~ - ; > ;
nificant contribution that friction makes during the bending prosP1ing model is not an adequate for the *elastic” part of the fabric

cess and noted that large errors are present if a linear bendLﬁ‘g?qnse' The shapes of the Ioadlng and unloading portions of the
approximation is used. ding curve indicate that there is more than a linear elastic

The effect of friction was modeled by Grosbel§] and by behavior present so an additional cubic spring element is included

Grosberg and Swarli6] as a Coulomb-type frictional restraintin the model. . N -

momentgat the yarn Egltt]arsections. Once t%lps frictional moment w sT.he hyster_eS|s loop |mpI|e_s that friction and rate effects S.hOU|d
overcome the yarns could be bent and that bending was mode éad'ndUdEd |n_the constitutive mod_el yet _there_ Is a paucity of
with a linear moment-curvature relationship. The inclusion of C>y_vork on modeling hysteretic effects in fabric. It is clearly neces-
clic bending behavior was presented by Zhou and Gligsn a sary to |nclude.th|s ef'fgct ina mpdel for it to be ablg to accurately
more developed model of fabric bending which used a piecewi %?Lodfu_c?_ fabric t()jendTg 2ehav_|or. L|r|1dbergt et 2e] |trtl1tr(_)dulceg
linear model of the bending behavior that included hysteres c.’f mt:' lon argj | r?‘ff(b?mp'.rt‘r? I'e fimdens In _le_:qr oad- t
This model is illustrated in Fig. 1. lllustrated in Fig. 2 is the mor elormation modet of tabric with fimitéd success. The curren
recent model of Shi et a]8] who used a rheological model that echniques used in fabric S|m_ulr_:1t|ons are unable to_captun(erall
included curvature-spring and curvature-friction elements. The&¥eN most of the characteristics of the mechanical property

elements allow for the inclusion of friction and hysteresis effec _rrvhes.f_ . del dh is based dification to th
in the fabric model. Other investigations of bending include thﬁlimaen r;%gmsglrionee fﬁ(?t?on gg&:[lgielaor}ﬁsm;;c;g? ilgndeo- €
linear bendm_g model of Hu and_Chuﬂjg] which examined the icted in Fig. 5 and the governin le uatién for the model is
effect of vertical seams on bending stiffness and the work of Hl 9- 9 9 €q
et al. [10] which examined the effect that orientation plays in mk=—dx—k;k—kza®—M¢(k) — M gy (1)
bending hysteresis.

The Kawabata, evaluation system fabric bendikdES-FB)

Characterization of fabric bending remains an unresolved pro,

The frictional moment ternM¢(«) is defined by[15],

test, [11], is perhaps the most frequently encountered and cited x=Ax+Bk, x(0)=0 2)
test used to determine the bending characteristics of fabric. In the
KES-FB test the test sample is mounted vertically, to eliminate the M (k) (t)=Cx(t) 3)

effect of gravity, and the bending moment is measured as thg o
sample is bent, at a constant rate of 0.57¢fs, forward and

backward through a range of curvatures[—2.5,2.9cm™* as it 0 fy
shown in Fig. 3. The apparatus used to conduct the KES-FB test_| X1 _ Iel| = _ — _
. . = , A=——| 7 , B=—| |, C=[1 1].
has been designed to ensure, that over this range of curvatures, the| X, et o 1 er| _s
— 12
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Moment, M (gf.cm/cm)

Curvature, K (1/cm)

Fig. 1 Zhou and Ghosh (1999) bending model

Bending Moment

be satisfied. The model can represent both dynamic and static
friction through the selection df;, f,, 7, ande; . With reference
to Fig. 6, the static friction threshold is given by

pf,) 7=
R A K e Q
where the steady-state kinetic friction is 0
Curvature
M =f;—f,. (8) ) )
The value of the curvature at the peak static friction is Fig. 4 A representative KES-FB result
17 f1
= log| — /
1y ( nf, @)

Kr = (1-7) (12)

i ,72f2 7l(1—1n)
isn

f1

5% of the steadysng the maximum slope of the moment versus curvature curve is
given by,[16],

while the 5% settling curvatur@lefined to be the curvature where

the friction moment is within, and stays within,

state dynamic friction valu#l,) is given by
Sp=3s¢. (10)

The minimum slope of the moment versus curvature curve is K
given by,[16],

fi—fon

+
F
net

(12)

k,x +kx*
_/\/\/\__pMext
=]

d

T D——

8f ’n aflle

Fig. 5 Model of fabric bending

M(x)

Fig. 2 Shi et al. (2000) bending model

k<0

Fig. 3 KES: bending measurements Fig. 6 Bliman and Sorine second-order model
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Warp yarn \

Weft yarns

Fig. 7 Warp-float satin (4X1) weave cross section

Further discussion of this friction model can be found in Lahey
[16].

The differential equation form of the friction model, as given by
Eq. (2), is useful if the curvature history is to be calculated. The
integral form, found by solving the differential equation, is useful
if the curvature history is known. If it is assuméat known) that Fig. 8 Warp-float satin  (4X1) weave pattern
there is no initial curvature at rest the frictional bending restraint
can be modeled by

Mi()(O)=(T1=T2)signix(1) eration for the experiment were precalculated to facilitate the op-
+sign(k(0)) (e~ 3Werf,—e~s/7erf 1y (13)  timization procedure. The parameters that need to be identified are
, T2, &6, Ky, d, andks. It was assumed that the duration of
ch acceleration/deceleration phase is a constant for the test
equipment and was set a priori to a value of one second.
The objective function to be minimized is

This integral form is useful here because, during the KES-FB teé
the curvature is prescribed over time. The quargfty in Eq.(13)
is the total curvature that the fabric has experienced at tiarel

is given by
" R(k)= >, (M M 2 16
s(t)= j P (14) ()= 2 (Mmool 1) = Mosgf ))2. (16)
0
Because M,,was not available as a continuous function, separate
Determining the Model Parameters fourth-order polynomials were fiin a least-squares senge the

It is necessary to find the best set of parameter values for lﬁi(giti_zed experimental loading, unload/reverse loading, and re-
model to agree with the experimental results obtained fromrt%adlng paths. These polynomial approximations to each of the

KES-FB test. The curvature is prescribed by the test and is thefdexo Paths were used because the simulation results are calculated
fore known throughout the duration of the experiment. Hence tha"0udh a time-stepping procedure and it is necessary to be able to

task is to find the set of model parameters that yields the b .tlluatg dthf e_lz(r[])erlm%ntlal rg?ﬁlts at pplntstthat Ilelbett\./veen lthe
agreement between the model computed external moment and {ff!Z&d data. The model and the experiment approximating poly-

experimental external moment. Looking at the problem differentfi'/olr?n'alsltwere sampledt %t |_ntedrv?I_s| ?f O?ﬁ mllll?teg_ondi_ f thi
to that in Eq.(1), the new problem can be written as esults are presented in detail for the wett direction ot this

) _ fabric, with some warp results presented for comparison purposes.
M o= Mk + ki k+ d i+ ka3 + M¢(k) (15) Additional results for the warp direction of this fabric are given in
where M (x) is determined by Eq(13). The KES-FB test pre- detail in Lahey and Heppldd8]. The parameters and plots of the

scribes a constant curvature rate of 0.5 &fs, [11], but fails to results for the full model for a cotton twill are also presented
specify, the acceleration profile that is needed to go from rest I?gre:‘ni.nlajg]detalls on the results for the cotton twill fabric are
the constant rate, the deceleration/acceleration profile nee :

when the curvature rate changes sign, and the deceleration profil hg parqmetglr S determlneq thr?]UQh trf][edpptlmlzatlon procedure
that is needed to come to a stop at the end of the test. Th & given in Table 1. Comparing the weft direction parameters to

regions of non-constant curvature rate are referred to as transi;]émSe of the warp, we see a number of interesting results. First, the

regions. The present model depends on the curvature accelerat) r?]e"?f th;avr;eef:e??/glﬂlg?orp?t:gvvztrdrlfhfizlmagf ?ha:elfvx?gfttrl]iﬁear
curvature velocity, and curvature value; this makes the transiti pIng p P,

regions important. The acceleration profiles in the transition rgP"d constark, is roughly tljre?-qua_rters of the warp \(1alue, and
gions are modeled by quadratic polynomials which are chosen ¢ cubic spring constark is five times greater in the warp
satisfy the velocity and acceleration continuity conditions at trb

beginning and end of each region.

Irection than in the weft. If the cubic spring behavior is caused
y jamming of the yarndi.e., the yarns are in a compressive
configuration with no space to moyehis could be explained by
Model Parameter Identification. Because the equipmenta greater spacing of yarns in the warp direction than in the weft.
necessary to perform the experimental tests was not available té&=xamining the friction model parameters in Table 2 we see that
the authors a digitization of Deng’§17], experimental data was the maximum frictional momerit ¢ in the weft direction occurs at
used for the purpose of illustration. The data is for a 100% polg curvature value of,=10.49 m ! which is approximately half-
ester satin fabric that was bleached, dyed, and pre-shrunk irway through the loading path while the curvature vasjere-
resin finish. More specific details of the weave and finishing praired to reach within 5% of the kinematic friction threshdiig,
cess were not available to us but it is likely that the fabric is B only approached at the end of the initial loading path. The
warp float satin similar to that illustrated in Figs. 7 and 8. Figurpronounced difference between these two values demonstrates the
7 shows a cross section of a4 warp-float satin weave while utility of using a friction model that incorporates both static and
Fig. 8 shows the pattern. The warp is represented in gray while tkieematic friction. The friction in the warp direction, where only
weft is represented in white. dynamic friction is encountered, is considerably different to that
The values of the model parameters that produce a model teatountered in the weft direction.
best approximates the experimental results were found by applyFigure 9 shows the frictional contribution, for both the warp
ing a simulated annealing optimization method to a nonlinear leastd the weft directions, throughout the KES test. Region 1 is the
squares minimization problem. The curvature, velocity, and accébading portion of the test, here we see, for the weft direction, that
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Table 1 Model parameters

ParametefUnits) Satin Weft Value Satin Warp Valu¢l8] Twill Weft Value Twill Warp Value

f1 (N-m/m) 4.450< 101 6.064< 10! 4.291x 1071 4.266< 10!
f2 (N-m/m) 4.438<10°! 6.045< 107! 4.291x 1071 4.240<10°1
i 9.939x 10! 9.998<10 ! 9.969x 107! 9.908x 10!
gr (MY 7.316 7.302 1.009%x 10°% 7.207

d (N-m-s) 2.094<10°° 5.681x 10°° 5.506x 10°° 1.445<10°4
kq (N-m) 4.47310°° 6.257x 10°° 3.582x 107° 1.133x10°4
ks (N-m®) 1.587x10°1° 8.489x 10710 5.520% 10 *° 1.069x 10 °

the maximum static frictional moment M=1.849 the friction model is behaving in a manner that is analogous to an

% 103 N-m/m) occurs at the curvatusg=10.49 nT * as given in overdamped system and that there is no “overshoot” behavior of
Table 2. The unloading region is marked as region 2. Here we d8€ form shown for the weft direction in Fig. 9. _

that when the experiment passes through zero curvature there iigures 10-13 each show a comparison of three different
no frictional moment. Region 3 consists of bending the fabric isurves. The dash-dotted line is the digitized version of experimen-

the opposite direction. Note that due to the characteristics of thg results from Dend17]. The dotted line is constructed from
test, we do not see any static frictional effects in this regio

Finally, region 4 consists of unloading from this negative curv nhree separatg fogrth-.order polynomi.al fits to the digitized data.
ture. Here, once again we see the static and kinematic frictié¥ie polynomial is fit to the loading path, another to the
behavior with a final frictional set in the fabric. The material beunloading/reverse loading path, and the third to the reverse un-

haves differently in the warp direction. The warp friction parampading path. The solid line shows the model simulation results.
eters in Table 2 show that the curvature vayeorresponding t0 4 is of interest to examine the contribution of each of the parts

the maximum static friction valui ¢ is greater than the val . .
required to reach the kinematic friction threshald, . This of the model to the overall system response. To begin, consider

would, in view of Fig. 6, appear to be counterintuitive but itFig. 10 which shows the model behavior that would be obtained if
should also be noted that there is no difference between the st&itinear viscoelastic material were assumed such that
and dynamic friction values. This can be interpreted to mean that

Table 2 Supplementary friction results

ParametefUnits) Satin Weft Value Satin Warp Valu¢l8] Twill Weft Value Twill Warp Value

Se (M™Y) 10.49 83.98 1.007x 107t 11.76
S, (m™1) 21.95 21.85 3.027x 107! 21.62
My, (N-m/m) 1.200x10°2 1.986x10°° 3.708< 1078 25121073
M (N-m/m) 1.849< 103 1.986<10°° 4.983<10 4 3.276x1073
x107° Kawabata Bending Test and Friction Simulation for Polyester Satin
2.5 T 1 T T T T T T I
: : . : : : . : —- Weft
— - Warp

Bending Moment (N-m/m)

1 L 1 L 1 ] L

0.5 L
250  -200

1
-150 -100 50 100 150 200 250

Curvature (m")

Fig. 9 Polyester satin—frictional contribution to the bending moment
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Kawabata Bending Test and Simulation for Polyester Satin — Weft

0.02 T I T T T T T T
— Model Fit ' : : : : :
— - Piecewise Polynomial Fit
- — - Experimental Data : : : : : :
0.015[ j ﬁ : e : : : P
0.01F -
3 |
£ z
£ 0.005} : -
£ !
@ .
£ :
3 ;
g, oF / .................................... -
< :
c
7]
-0.005F Pty e T L AT e SRTRRR e .
-0.01 -
0015 i ; ; ; ; ; ; ; .'
250 -200 -150  -100 -50 0 50 100 150 200 250
Curvature (m")
Fig. 10 Polyester satin—weft direction  (no friction and no cubic )
M o= Mk + Kk +dk. (17) the experimental results due to optimization over the entire ex-

perimental procedure. Also in Fig. 10, one can see that the experi-
Of particular note is the straightness of the unloading portion #fental results demonstrate a different slope and loop width which
the response predicted by the model and its poor fit in the regiomgkes fitting the model difficult, as the model does not include
where the direction of bending is changing or where the test different material properties for positive and negative loading
coming to a stop. The slope given by the model does not matdirections.

Kawabata Bending Test and Simulation for Polyester Satin - Weft

T 1 T T T T T T

0.02

T
— Model Fit
— - Piecewise Polynomial Fit
- — - Experimental Data

0.015

0.01

0.005

Bending Moment (N-m/m)

-0.005

-0.01

0,015 . i . ; ; ; i ; ;
250 -200 -150 -100 -50 0 50 100 150 200 250
Curvature (m")

Fig. 11 Polyester satin—weft direction  (no friction )
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Kawabata Bending Test and Simulation for Polyester Satin — Weft

0.02 T I T T T T T T
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Curvature (m‘1)
Fig. 12 Polyester satin—weft direction  (no cubic )
Kawabata Bending Test and Simulation for Polyester Satin - Weft
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— Model Fit : : : : :
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Fig. 13 Polyester satin—weft direction full model

Table 3 Polyester satin-weft direction: model comparison

Test Case ResidualN-m/m)?
Full model 1.898x 1072
No friction term 3.730% 1072
No cubic term 2.056% 1072
No friction or cubic term 4.303%x 1072
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Kawabata Bending Test and Simulation for Polyester Satin - Warp
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Fig. 14 Polyester satin—warp direction full model
Kawabata Bending Test and Simulation for Cotton Twill - Weft
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Fig. 15 Cotton twill-weft direction full model
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Kawabata Bending Test and Simulation for Cotton Twill - Warp
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Fig. 16 Cotton twill-warp direction full model

In contrast to Fig. 10 consider Fig. 11 where the viscous damip-Fig. 15. Note that only static friction is present in the model and
ing as been retained and a cubic spring has been added to akesuch does not fit the final frictional moment. As with the weft
model so that in this case direction of the satin fabric, the model has a poor fit in the nega-

. . tive curvature region, but a fair fit to the positive loading region.
M = Mict-ky s+ dictkare, (18)  This is in contrast to the fit to the warp direction given in Fig. 16
The addition of the cubic spring does little to improve the overaihich gives a good fit throughout.
fit, although it does improve the fit in the initial unloading phase
from 150 mto O m L. Conclusions

In Fig. 12 is shown the model behavior that is obtained when
the Bliman and Sorine friction moddll3—-15 is included but the
cubic spring is nofEq. (19)).

It is believed that the friction arises due to the slipping of the
yarns with respect to each other and therefore comes into play
once larger curvaturgslisplacemenisare reached. Since this fab-
(19) ric is comprised of a monofilament yarn it is assumed that the

Thi h iceable i both of th friction internal to the yarn is small. However, in some fabrics the
Is case shows a noticeable improvement over both of the pigziiony seen is more likely to be a combination of both intrayarn

vious cases. We now see a closer approximation everywhere, giy interyarn friction. The cubic term is believed to arise from the
cept for the initial acceleration region from 0 thto 50 m %, and

h i< a final h d of th h hibi djamming of the yarns and their subsequent compression because
there is a final set at the end of the test that was not exhibitedif, o pic contribution is greater in the negative curvature region
the previous cases.

h | btained f h of th h ial d here (with reference to Fig. J7the weft yarns will be forced
The results obtained from each of these three partial modgiyeher as a result of the negative bending moment. Some of the
suggests that by combining them together a single, superior moged ) ;nse may also be due to a nonlinear yarn bending response.
should result. This is the case, as may be seen in Table 3 where w

. - .""The model provides the ability to simulate a continuum of prop-
can compare the quality of the model fit, as measured by the sig& «;res and to extrapolate to loading conditions not covered in
of the residual for each of the different test cases. The compl

He KES regimen.
model provides the best fit and the importance of the friction term regimen

is evident by comparing the magnitude of the residual for f
cases that include it to those that do not. Iﬁomenclature
The results obtained when all the above features are combined\,

M o= Mk + Ky k+d+ M¢( k)

are illustrated in Fig. 13 where it may be observed that there isB, C =

only a marginal improvement over the last case. Considering that d
the cubic term contributed little to the improvement of the fit, this  f;
result is not surprising. fy

While the results for the weft direction are not as close as one k;
might prefer, the complete model provides an excellent fit for the kg
warp direction as shown in Fig. 14. m

The parameters for a 100% cotton twill fabric that has beenMg,; =

bleached, dried and pre-shrunk in a pure finish are given in Tables M;
1 and 2. The resulting simulation for the weft direction is shown

Journal of Applied Mechanics

state-space friction model matrices

material damping coefficient

friction model property

friction model property

linear spring curvature stiffness

cubic spring curvature-stiffness

rotatory inertia parameter

external moment calculated by model

friction moment generated by the internal friction
model
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M, = steady-state kinematic friction moment
Mmodel = €xternal moment calculated by model
Meyp = KES-FB measured moment
¢ = static friction threshold moment
Se = curvature at the maximum static friction
Sp = curvature for 5% settling oM to M
x = friction model state vector
g¢ = friction model property
n = friction model property
K = curvature
Kk = curvature rate
Kk = curvature acceleration
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Predicting Oscillatory
Fluid-Elastic Instability of a
Tongue-in-Groove Leakage Joint

This paper describes the application of the small boundary displacement model (SBDM)

David J. Manko

Myron M. Sussman

Bechtel Bettis Corporation, of fluid-structure coupling for predicting oscillatory fluid-elastic instability of a tongue-
Bettis Atomic Power Laboratory, in-groove leakage joint. This coupling model extends structural small displacement theory
P.0.Box 79, to fluid-structure interfaces, eliminating the need for temporally changing meshes when
West Mifflin, PA 15122-0079 structural motion is small compared with joint dimensions. The SBDM algorithm accu-

rately predicts the onset of oscillatory instability for a tongue-in-groove leakage joint
when compared with experimental data. Even though the methodology is specifically
applied to a tongue-in-groove joint, the approach is equally suitable for evaluating the
fluid-elastic stability of leakage joints in generdDOI: 10.1115/1.1640368

1 Introduction ergy at the fluid-structure interface, making it a good candidate
gpethod for predicting the onset of unstable oscillation.

Mechanical fluid-structure interactions arise from the transf o . . -
eakage joints[4], are a mechanical design feature that mini-

of mechanical energy across the fluid-structure interface where th . .
generated fluid forces deflect the structural boundary. As the stru [ze unintentional f'OW aroun_d components that have necessary
ture displaces, the fluid experiences a change in boundary velo&t§arances to enable installation and removal. Examples of leak-
which affects the fluid forces and the cycle continues. Coupling 88€ Ioints include a tube-in-tube slip joint, a piston ring and a
fluid and structural systems in an analytical model involves appl§2Ngue-in-groove joint. In service, leakage joints have exhibited
ing the appropriate structural motions to the fluid boundary whilghstable behavior that is a function of flow through the joint. This
concurrently imposing the fluid boundary forces onto the adjacef,lwd-elastlc instability behavior can occur in an excursive or o0s-
structural surface. Although simple in concept, coupling the strugillatory manner.
tural equations of motion and the Navier-Stokes fluid equations isExcursive instability is characterized by a steady growth, usu-
difficult because the governing equations have fundamentally dé#lly rapid, of a structural displacement without oscillation. For an
ferent forms. Displacements are the primary solution variables fexcursive instability, the destabilizing fluid force overwhelms the
the structural problem while velocities and pressures are the umstoring structural force to produce the abrupt deflection. Un-
knowns for the fluid problem. Therefore, the resulting discretizestable numerical techniques can result in excursive behavior
equations are not immediately compatible. A fluid-structure cowhere the destabilizing force is a numerical artifact.
pling algorithm is needed to enforce compatibility between the Oscillatory instability is typified by vibrations of the structure
fluid and structural equations. with steadily increasing amplitude. In this case, the energy input
The study of fluid-structure interaction has long been of intereg the structure by the destabilizing fluid forces exceeds the me-
to engineers, and treatments based on simple models appeagHanical energy dissipated in the systéerg., damping, viscous
textbooks such as Blevingl]. More fundamental approaches,gissipation. From a design perspective, identification and avoid-
based on the equations of motion, appear in journal articles agflce of an unstable response is essential for a component or sys-
conferences such as Ziada and Sta{iB]i This paper first Pre- tem to function properly.
sents a model based on loop pressure drops that is used to identifig e iction of oscillatory instability is more difficult than predic-
th‘? critical components, and then a}flnlte difference model for they, ¢ excursive behavior because excessive numerical damping
fluid coupled to rigid structural motion and pressure drops for tr}:edn contribute to system damping and can artificially suppress an
rest of the loop. otherwise unstable oscillatory response. Numerical damping can

The small boundary displacement mod8BDM) is a stable ) " . . - i
and efficient algorithm formulated to couple the fluid and struc"’}ISO shift the onset conditions of an oscillatory instability to re

tural representation$3]. It extends structural small displacemenf‘.UIre h|gher th‘?‘? obser\_/ed flow rates. A_ccurate 5”.““"”‘“0” O.f 0s-
theory to the fluid-structure interface by assuming that fluid an(al_latory instability requires that n_umerlcal damping be mini-
structural velocities agree at the interface but that net structuFﬁFeQ’ at least near fde-structu_re mterfaces. )
displacement is small compared with structural dimensions. Fluid 'S Paper describes the application of the SBDM for predict-
forces at the interface contribute to the structural motion. BotA9 the onset of oscillatory fluid-elastic instability. Experimental
fluid and structural meshes are stationary in time, and the fluid afgpults are available for a tongue-in-groove leakage joint which is
structural equations are simultaneously solved without iteratioffaracterized by a simple two-dimensional geometry. The test
The SBDM has been showfs], to mathematically conserve en-Setup is described in Section 2. A stability model based on a
hydraulic representation of joint flow is analyzed in Section 3. The
Contributed by the Applied Mechanics Division offf AMERICAN SocleTy o hydraulic model of joint flow is replaced with an SBDM repre-
’V'ECHAN'ﬁ;ﬂi’:g‘i’\‘ff:csgglggug'ictﬁgogsi&?i ASH'\QE ;’A‘éz“]‘::&FéiziF’sLi:;D "S"E'temsentation and results from this simulation based on first principles
g:rA]’\.‘g,:SZIOOZ: final 'r)evision, Jung 10, 2003. As?s%ciate Editor: D. A. Sigin’er. giscu@—re provided in Section 4. Some technical details in implementing
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekilge SBDM are discussed in the Appendix. Even though the meth-

Journal of Applied Mechanics, Department of Mechanical and Environmental E”Qﬁdology is specifically applied to a tongue-in-groove joint the
neering, University of California—Santa Barbara, Santa Barbara, CA 93106-5070 hi I itable f luati the fluid-elasti ,t bil
and will be accepted until four months after final publication of the paper itself in th@pproac IS equally suitable for evaluating the tuid-elastc stabil-

ASME JOURNAL OF APPLIED MECHANICS. ity of leakage joints in general.
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Fig. 1 Tongue-in-groove leakage joint bench test section

2 Problem Description
The test section shown in Fig. 1 consists of a 0.30501127 m

(12

=2768 kg/m) that is clamped at one end with a tongue-in-groove
joint at the opposite en@see Fig. 2 The dry natural frequency of
the plate was measured by impulse test[i3g, to be 270 Hz with

inX5 in nomina) rectangular plate made of aluminufp

0.4% material damping.
This plate configuration was chosen to ensure two-dimensioRg@knnel indicated by I, (2) horizontal channel indicated by

flow of de-aerated water(p=1000 kg/m" and »=0.984 |, : (3) vertical channel indicated by
10" ¢ m?/sec) through the joint. Dependent on loop conditionsndicated by /le; and (5) vertical channel indicated by
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Fig. 3 Curtiss-Wright tongue-in-groove joint geometry. This

joint can be regarded as five channels in sequence:

the plate experiences either oscillatory or excursive behavior
when flow is increased. Prediction of oscillatory instability is the
more demanding case and this case is investigated below.

mechanical vibrations. Flow was generated by a 2.24 (BWp

section.

10.16 mm

| 16.00 mm
S
28.96 mm 1&45 mm

SOONNNINNN

42 /

| ————— }27.00 mm ————]
25.40 mm

Fig. 2 Plate geometry (schematic )
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(1) vertical

I34; (4) horizontal channel

Isg .

> J through the test section was essentially two-dimensional and is
The loop was configured for the bench test with an accumulatggsropriately simulated using a two-dimensional fluid dynamics

to maintain the pump inlet pressure at 482.65 KBauge (70
psig and heat exchangers to keep the loop temperature belowrhe plate was positioned so that the upper gap spaaigdn(
65.6°C(150°R. The loop was connected to the test section with iy 3) was 0.401 mni15.8 milg for zero joint flow. As the pump
flexible 63.5 mm(2.5 in) fire hose to mitigate the transmission ofspeed was increased, the pressure drop across the joint and the
! edge flow increased, causing the upper gap spacing to decrease
DC variable speed pump and the loop flow was controlled hy,e o the increasing force on the plate. The joint exhibited an
pump speed. Loop flow was redundantly measured with Rotosciliatory instability for the set of test conditions defined by a
eter and Annubar flow meters, and venturis upstream of the test g5 kPa(3.14 psj pressure drop, a 0.316 I/sé¢6 gpm edge

flow and a 0.232 mn{9.15 mil) upper gap spacing for a speed

The tongue-in-groove joint geometry is shown in Fig. 3. Leaksontrolled pump without bypass flow. At these conditions, the
age flow around the sides of the plate was restricted by placemgpiie oscillated at a frequency of 2.5 Hz.

of side blocks so that the side leakage flow was negligible com-
pared to flow through the tongue-in-groove joint. As a result, flow

code.

3 Hydraulic-Based Stability Model

This section discusses the modeling and hydraulic-based stabil-
ity analysis of the tongue-in-groove joint described in the previous
section. The point of this model is to show that the destabilizing
fluid force is associated with hydraulic conditions within the joint
and it is not attributed to details exterior to the test section, thus
setting the stage for the fluid-structure interaction model in the
next section. The stability analysis accounts for the joint pressure
drop-flow relationship, plate structural characteristics, pump head-
flow, loop resistance, and loop inertia. Fluid compressibility is
neglected since water is essentially incompressible at subcritical

flows.
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The approach taken here is to use the analytical models dis- l3,=0.404 102 m,
cussed below to generate a closed-form symbolic representation in

Mathematica. Once assembled, the eigenvalues stability of l56=0.848 102 m,
the system are evaluated for the range of test parameters. Sym- _ _, g
bolic analysis enables detailed assessment of the conditions that l,e=0.84810"°+0.631:10" "5, m,

lead to joint instability. Once the instability mechanism is undegng

stood, the hydraulic model of joint flousee Eq.(2) below) is

replaced with an SBDM representation and a first principles-based le=0.848 107 °+0.631: 10" "5 m.
simulation conducted as described in Section 4.

Cross-sectional dimensions of the 0.30318 in) wide plenum The joint pressure drop equation was obtained by idealizing the

tongue-in-groove joint as five connected channels shown in Fig. 3

with transition and friction losses for each channel. Kygterm

section acts as an elastic hinge and the remainder of the plat‘?e'gresents the loss transitioning from charirtel channej while

essentially rigid. As a result, the plate responds as a cantileveied 5. represent the entrance and exit losses for the joint,

“g_'lfjthdy' lized di h d ibe the ol respectively. Friction losses were modeled by the Darcy-Weisbach
e generalized coordinate chosen to describe the plate mot ﬂ:ltionship,[G], for laminar flow where the channel lengths were

ii the displz?\cement O.f i.ts f[rehe end, ch?ra((:jterizingfthehpositiqntﬁ justed for the expansion and contraction regions for each chan-
the tongue-in-groove joint. The generalized mass for this varniali@| ‘the friction factor changes from the laminar relationship to

definition and plate geometry is derived to Me=1.03kgM ¢ gjasius relationship for turbulent floy6], at Re=2042.

=0.0059 Ib-seffin). Once the mass is defined, a stiffness value of The transitional loss coefficients;; were initially estimated
K=2.97.10° N/m (K=1.70 10" Ib/in) and damping coefficient of ysing handbook valuek7], for idealized channel geometries. The
C=14.0N-sec/mC=0.08Ib-sec/in) are determined from thecoefficientK ,; represents a smooth contraction plus an expansion
measured frequency and damping values, respectively. The piigsy |ossless channel. This is similar to the treatment of a U-bend
sure difference between the plena results in an equivalent folgg|delchik[7]. Results from the joint pressure drop equatiBq.
acting on the plate where the generalized force is half the plats) ysing the frictional losses and the estimated transitional losses
area times the pressure drop across the plateFer0.194 \yere compared to CFD calculations to produce improved values

-10"* APjgc. The plate equation of motion is for the Ky, Kg4, andK s transitional loss coefficients. The fric-
M+ Cx+Kx=0.194 10 'AP,,, ) tional loss contributions were assumed to be sufficiently accurate
! and these terms were not altered.
wherex is the displacement of the plate tip. The pump head-flow characteristics were determined by mea-

The following joint pressure drop versus flow relationship, cosuring the pressure head produced by the pump for several flow
responding to the joint description in Fig. 3, is based on hydrauliates. The fitted pump head-flow equatidty. (3)) is applicable
theory, and accounts for transitional and friction losses in tHer different speed control settings.

theo
Join AP pymy=0.07771pm)2— 0.138 10(rpm) Qioop
—0.288 10'%Qf,,, 3

where rpm is rpm of speed controlled pump, a@gd,, is loop
flow m%sec. The pump head was measured in combination with

APy K K+ K K KastK K
2]0|nt: 121 ALY ' 3, 323 4 RaafRas | Bss
dep 201, 24, 253 257 25%

f I12 |34 |56 Iue IIe . . .
st —+—= (2) loop flow to produce the following expression for loop hydraulic
ée12 ‘5334 56 ‘5\3 b‘f’ resistance:
whereQj,; is joint flow m’/sec,
C L L p K
Qe is volumetric joint flow per unit widtk Qjen/0.305 nf/sec, APjoop=5 _2Qﬁ>0p (4)
p is fluid density,p=1000 kg/n3, 2A
. . 5
oy IS upper gap spacing0.401: 107"y, m, where K/A2=0.649 10’ m~*. The loop inertia was determined
K1,=0.50, from a transient test where the main throttle valve was initially
K,,=0.47, closed, then rapidly opened and the loop flow was measured as a
function of time. The test section was replaced with a short length
B 0.401:10 %) 2 of pipe that had a negligible pressure drop for the loop inertia test
Kas=| 1+ 5, ' because the joint pressure drop would otherwise dominate the
response. The calibrated loop inertia is given below.
K (1+ 0.226 sik 22°) 2 L do
= - a5 |
# 2634 APiertia= p K %) (5)
K3,=0.30, whereL/A=0.11310°m™ 1,
K,s=1.10, The loop equilibrium equation is obtained by summing the
Keem1.0 pressure losses around the loop as follows:
557 +-Y

A I:)pump: A I:>joint+ A Ploop+ APinertia-

It is important to note that the total loop flow is equal to the joint

5,,=0.140102 m,

83,=0.27910% m, leakage flow plus a contribution to account for plate motions with
5=0117102— 8, m, the corresponding swept volume of fluid.
— — 1,

556: 0.140 1072 m, - Qloop_ Qjoint+ 0.19410" *x (6)

wherex is the velocity of the plate tip. The relationships for pump
o 96/Re Re=2042 head-flow, loop resistance, and loop inef@as.(3), (4), and(5))
f is friction factor=} , o) 10025 Ras 2042 are functions of the total loop flo@q., While the joint pressure

drop versus flow representati¢Bg. (2)) is a function of joint flow

1,,=0.84810 2 m, Qjoint - Substituting the equation for loop inertiee., Eq.(5)) and

Journal of Applied Mechanics JANUARY 2004, Vol. 71 / 43



Plate Tip Displacement A second result of this study is the conclusion that the reduction
0.0002 of plate frequency from an air to a water environmérg., 270

Hz versus 2.5 Heis due to the swept volumér added mags
contribution described above. The loop inertia couples the swept
volume of water and the structural motion causing the frequency
reduction.

The natural frequency of the immersed plate predicted by the
hydraulic-based stability analysis is greater than the measured fre-
quency(i.e., 4.23 Hz versus 2.5 HizThis over-prediction of im-
mersed frequency is attributed to neglecting the hydrodynamic
mass of unrepresented water in the loop that is external to the
plena volume. Sensitivity studies were conducted with various
swept volumes and it was concluded that the stability point is
minimally affected by the over-prediction of frequency for the
range of parameters evaluated.

To summarize, the symbolic evaluation of the hydraulic-based

0.0001

20

10

-10

—2.0

0.0004

0.0006

Leakage Flow 00008 stability analysis identified the destabilizing fluid force in the joint
) - ) ] pressure-drop flow relationship. This force is associated with hy-
Fig. 4 Stability map showing the structural eigenvalue's real draulic conditions within the joint and it is not attributed to details
component as a function of flow rate and upper gap spacing. of the exterior loop, although a loop must be suitably represented

Negative and positive components indicate stable and unstable
conditions, respectively, while the neutral stability point is
identified by a zero value. (Joint flow is given in m %sec and
plate position in m. )

before the instability can be observed. In the next section, a two-
dimensional fluid-structure interaction analysis model for flow
within the joint is presented. This model, which was developed
from first principles, is seen to predict the same flow instability
that was observed experimentally when the joint model is coupled

. . I with the loop representation described above.
the above expression for total flow into the loop equilibrium equa-

tion results in the following loop equilibrium equation.
4 SBDM Model

. A . .

Qjoint+0.194 10 x= 9 = [ AP pumd Qioop) = APjoint( Qjoint) As mentioned above, if the system losses are greater than the
pL destabilizing forces, then the system will remain stable. Excessive
~ AP0 Quoop)] @) numerical damping, which contributes to the system damping, can

artificially suppress an otherwise unstable response. In any case,

where AP,,,(Qy,,) denotesAP,,, as a function ofQ,,,. The numerical damping will shift the onset conditions of an oscillatory
plate equation of motiofEg. (1)) and the loop equilibrium equa- instability to require higher than observed flow rates. This is why
tion (Eg. (7)) comprise the governing equations for the coupleghe successful prediction of the instability point of a self-excited
plate/loop system. vibration has been so elusive. The hallmark of the SBDM is elimi-

The stability of the nonlinear system given by EGB—(7) for  nation of numerical damping due to the coupling model itself.
a particular joint leakage flow and plate position can be detepther sources of numerical damping are well known and these
mined by fixing the pressure drops at that joint leakage flow ar@urces are important in determining details of the steady flow
plate position and then computing the eigenvalues of the resultipgor to initiation of instability, but are less important in determin-
linear differential system. This procedure can be carried out usifigy the onset of instability due to fluid-structure interaction. This
a symbolic manipulation package such as Mathemgfitarigure  application is an acid test for any fluid-structure interaction analy-
4 is a plot of the structural eigenvalue’s real component assg capability.
function of flow rate and upper gap spacing. Negative and positiveThe first step in replacing the hydraulic representation of loop
components indicate stable and unstable conditions, respectivéityw (Eq. (2)) with an SBDM representation is to generate a suf-
while the neutral stability point is identified by a zero value. ficiently accurate fluid-only solution to serve as the starting point

For the test conditions of 0.316 I/s€& gpm and an upper gap for the coupled solution. The channel model used for the calcula-
spacing of 0.232 mmd,=9.15 mils) (see Fig. 3 the real part of tion is shown in Fig. 5 where the plate is positioned so that the
the structural eigenvalue is equal to 0.047 which indicates vefiyper gap spacing,=0.232 mm ¢,=9.15 mils) (see Fig. 3 is
slow growth at the stability point, as expected. The true worth @bnsistent with a channel flow rate of 0.316 l/s8cgpm. The
this symbolic approach is the ability to isolate the instabilityluid mesh consisted of the union of quadrilaterals with 10 cells
mechanism by explicitly evaluating changes in system stabilibtross the channel and 1076 cells along the length. Although the
when system parameters are changed. mesh details cannot be discerned in Fig. 5, the joint geometry is

The most significant result obtained from the symbolic evalugiearly depicted. A closeup of the mesh at the first inlet bend
tion of the hydraulic-based stability analysis is identification ofyhere the majority of the joint pressure drop occurs is provided in
the second to last terni) /455, in the joint pressure drop-flow Fig. 6. The inlet and exit plena are not modeled because the block
relationship(Eg. (2)) to be the destabilizing fluid force. This termstructured mesh requirements of the computer program makes it
represents the frictional loss in the narrow section of the tonguepractical to transition the mesh from the plena to the channel
in-groove joint characterized by the upper gap spacipgsee and vice versa. The inlet and exit pressure losses are represented
Fig. 3). This frictional loss accounts for 45% of the joint pressuraith sufficient accuracy by hydraulic loss coefficiefgse theK ;;
drop and elimination of the corresponding term in the hydrauli@ndKss terms in Eq(2)) because these features are not the source
based stability analysis results in a stable system. The effetthe destabilizing fluid force.
would be the same if the system losgegy., structural damping, Laminar flow is represented because at 0.316 l(Segpm) the
fluid convection exceeded this destabilizing term in magnitudechannel flow is laminar everywhere other than the narrow section
Additional system damping, although it may be insufficient itselbf the tongue-in-groove joint characterized by the upper gap spac-
to preclude an oscillatory instability, will shift the point of insta-ing &, (see Fig. 3 The Reynolds number varies from 1050 at the
bility to a higher flow rate for a given gap spacing. The potentiahlet and exit regions to 6300 in the narrow section of the joint.
for an excursive instability increases under these conditions aN@-slip wall conditions are specified and pressure forced bound-
the onset of an oscillatory instability may be superseded. ary conditions are implemented to produce the 0.316 (5Sgpm
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Fig. 5 Channel model mesh. Half the mesh lines in each direc-

tion have been omitted for clarity.

flow rate. A constant time step of 1.23.0 ® sec is used to pro- .
duce a stable solution for the model shown in Fig. 5. Convectid
terms are discretized using a weighted average of 37.5% of don
cell differencing and 62.5% centered differencing, values chosé

i

'lull'l'

Oql“u'

Fig. 7 Velocity profile for the fluid-only solution

g while maintaining a manageable time step size. Finally, the
ensity and kinematic viscosity of the water were defined as
Q00 kg/n? (0.0361 Ib/if) and 0.98410 ® m%sec (0.152

to maintain as much accuracy as possible from centered differend0”? in’/sec), respectively.

I

Fig. 6 Mesh closeup of first inlet bend

Journal of Applied Mechanics

To establish a net pressure drop consistent with the discrete
flow solution, a constant channel exit pressure of 482.65(KPa
psi) was specified and the inlet pressure was adjusted by trial and
error until the desired flow rate of 0.316 I/s€6 gpm was
achieved. The fluid-only solution was simulated for a total of 0.8
sec to establish steady-state flow conditions throughout the joint.
The resulting channel pressure drop of 22.340 kB&4 ps),
combined with the 0.414 kP€.06 ps) inlet and exit channel
losses, equals a 22.754 kP&30 ps) pressure drop across the
joint at a leakage flow of 0.317 I/s€6.024 gpm. This analytical
estimate is within 5% of the 21.650 kR8&.14 ps) measured
across the test section. Velocity and pressure profiles for the fluid-
only solution are provided in Figs. 7 and 8, respectively. Note the
effectiveness of the tongue-in-groove joint geometry of Fig. 3 in
limiting leakage flow where the majority of pressure drop occurs
on the inlet side of the joint.

The next phase of the effort is incorporation of the plate model
into the SBDM fluid-structure interaction analysis to obtain a
steady-state solution. The reason for taking this intermediate step
and not directly analyzing the full system including loop condi-
tions is that the latter approach can produce an excursive instabil-
ity if the initial conditions do not represent equilibrium of the
plate position and pressure drop. The SBDM coupled simulations

JANUARY 2004, Vol. 71 / 45



Pressure (kPa) The joint pressure drop is represented above by contributions
-10 0 10 for the channel inlet and exit pressure losges., K;; and Ksg
T T terms of Eq.(2)) plus the channel pressure drop of 22.340 kPa

20 30
(3.24 ps) that was imposed in the fluid-only solution to produce a
l L leakage flow of 0.317 I/se&.024 gpn). Once the pump head was

calculated, the corresponding pump speed was determined from
Eq. (3). This pump speed was kept constant throughout the simu-
lation and the pump head varied with loop flow according to Eq.
(3). The counterbalancing plate force for the “SBDM-with-loop”
simulation had to be redefined to account for the pressure drop
across the joint in addition to the fluid force acting on the channel
that was determined in the “SBDM-without-loop” simulation. Us-

I ing the same representation for joint pressure drop described
above and the initial joint leakage flow, the counterbalancing force
was specified to neutrally balance the plate in its nominal position
at the start of the “SBDM-with-loop” simulation.

The “SBDM-with-loop” simulation was driven by a channel
inlet pressure that varied for each time step. The channel inlet
pressure is implicitly dependent on the loop flow which requires
i treatment for incorporation into an explicit CFD code. The ap-
proach taken here was to estimate the loop flow for the next time
step, then calculate the channel inlet pressure that was consistent
with the estimated loop flow. Both the loop flow and correspond-
ing inlet pressure were determined by evaluating unsteady loop
equilibrium conditions as follows:

APjpertiat A I:)Ioop+ A I:)jointf A Ppump: 0.

The first, second, and last terms of the above equilibrium equation

Fig. 8 C_enterline pressure pr_ofile for the f_Iuid-onIy solution. are appropriately represented by E¢s), (4), and (3), respec-
Pressure is plotted versus vertical length, with channel geom- tively. The joint pressure drop is a combination of channel inlet
etry overlaid for clarity. and exit pressure losses plus the pressure drop across the channel
where the latter is an implicit function of loop flow and channel
inlet pressure. The channel pressure drop was approximated by
analysis parameter@.g., laminar flow, time stapas previously calculati_ng a hydraulic Ios_s for'the (_:hannel based on the last

; SN . ' SBDM time step and applying this estimate to the new time step.
described for the fluid-only solution. With this approximation and a central difference expression for

The same plate representation used for the hydraulic-based fc')%‘p flow rate in Eq.(5), the unsteady loop equilibrium equation

Vertical length

(both with and without loop conditions mode)edsed the same

bility analysis described in Section 3 was used here. A hydrOdMécomes

namic mass of 0.4240%kg (24.1 Ib-se#in) was added to the

structural mass to account for the swept volume of wegee Eq. L2Q"1-Q"-2Q" *+Q""? p K 1
(6)) that is not represented because the inlet and outlet plena webe p A 2dt + 5 E(Qn+ )

not modeled as described above. The only additional representa-
tion required for SBDM implementation is specification of the nily 2 N 0483 10°
geometrical relationship between fluid degrees-of-freedom on the +16.12<p) ( Q ) inlet. (Q"1)2-0.195

plate and the generalized structural degree-of-freedom for the 2)\ 612 (QM)?
plate itself.
The coupled problentwithout loop conditionswas run for a -10" (rpm)?+0.139 10*(rpm)Q" " 14-0.288 10" Q" H)2.

single time step to calculate the fluid force acting on the plate ime above quadratic equation was solved to estimate the loop flow
the channel. A counterbalancing plate force was then specifiedip the next time stef)"* 1. Once the loop flow was estimated
balance the fluid forces and this process was repeated until {i@ channel inlet pressure for the next time step was calculated

plate was neut(ally balanced in its nominal position. Th.e. coupleghm the unsteady loop equilibrium equation as follows:
problem was simulated for 0.2 sec to assure the stability of the

SBDM model. With the plate and fluid forces initially in balance, Phii=0.48310°+ A Poump— AP o= APioep— APinertia

the plate did not experience an excursive instability. _whereA P, is channel inlet and exit pressure losses.
The next step in the process is to introduce the representations

for pump head-flow(Eq. (3)), loop hydraulic resistancgeq. (4)), PIE1=0.483 10°+ 0.0777rpm)2—0.139 10*(rpm)(Q"" )
and loop inertia Eq. (5)) into the SBDM coupled simulation. The hillo
first task is to determine the pump speed that corresponds to the —0.288 101(Q"* 1)~ 0.161: 102 g) Q

loop flow and pump head in accordance with B). The nominal ) : 2)\ 61,

loop flow was calculated at the beginning of the simulation prior

to any time step calculations and this flow is the same flow as the K 12 L 2Q""1-Q"-2Q" 1+ Q"2

end of the earlier SBDM simulation without the loop model for _PE(Q N 2dt

consistency. Using this value for loop flow, the pump head was

determined by evaluating the equilibrium of the loop for steady- The above scheme proves to be an effective means of incorpo-

state conditionsi.e., APj,eiz=0) as shown below. rating the loop conditions into the coupled SBDM simulation. A
_ delicate point arises in devising a suitable numerical scheme to

AP pump=APjoint APioop (8) extrapolate the channel pressure drop toritel time step. Al-

9% [ K K K ternate treatments, such as lagging the loop flow, result in excur-
AP pym=0.223 10°+ dep %Ur _55) +P _2Q2 sive instabilities. The definition of a difference expression for the
2\ &, 5%6 2 loop flow rateQ"*! that preserved enough system energy to per-
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0.0035 T T . . . the 0.284 l/sed4.5 gpn) case, the mesh refinement and all nu-
slope=0.000254 merical treatments were kept the same as the parameters used for
0.003 gy gy the ynstable 0.316 1/sg® gpm) flow case.
The results of the 0.284 I/s€4.5 gpn) simulation are shown in
0.0025 | Fig. 10 attached, as before, straight lines were least-squares fit to
£ the upper and lower peaks of response following the first vibration
£ ool cycle. Examination of these lines clearly indicates a decaying or
E stable response. Therefore, the 0.317 I/&6024 gpm flow is
& soots | shown to be the instability point consistent with the experimental
! data and the SBDM is shown to correctly predict the stability
8 S 1 point in addition to the general phenomenon of oscillatory
’ slope= 0.000191 instability.
0.0005 - 1 5 Summary
0 ) ) , , , The fluid-elastic instability of a tongue-in-groove leakage joint
1 1.2 14 16 18 2 22 was evaluated using the SBDM of fluid-structure coupling and
Time (sec) compared to experimental results. The test configuration consists
of a rectangular plate that is elastically hinged at one end with the
Fig. 9 Results of SBDM coupled simulation with loop condi- tongue-in-groove joint at the opposite end. For a speed controlled
tions modeled, Qjint =0.317 I/sec pump, the plate experiences an oscillatory response when flow is
increased.

A hydraulic-based stability analysis was executed symbolically
using Mathematica to identify the frictional loss factor in the joint
as the destabilizing force. Building on the lessons from the Math-

mit oscillatory instability is an equally difficult task. Note that theematica model, a fluid-structure interaction analysis using the

contribution of the swept volume of water to the total loop flo : - ' )
was not considered in the SBDM analyses. This contributionV\f%)BnDM coupling algorithm was conducted for the test configura

insignificant (amounting to less than 1% of the total flpwnd
successful incorporation of this term into an explicit analysis 1. A steady-state fluid-only solution was generated as a starting
without dissipating excessive energy is difficult. point for the coupled simulation.

The coupled simulation with loop conditions was started from 2. The coupled model without loop conditions was simulated
the steady-state solution for the coupled simulation without the long enough to allow the joint to achieve an equilibrated
loop modeled and run for a number of plate vibration cycles as  position.
shown in Fig. 9. The plate immediately began vibrating but the 3. The coupled simulation with loop conditions was executed
oscillations were centered around a nonzero plate position which for a number of plate vibration cycles to demonstrate the
indicated the counterbalancing plate force was slightly off. This  growing oscillatory behavior.
perturbation generated a nonsteady plate motion that was mos#. The coupled simulation with loop conditions was executed
apparent in the first cycle of response. The plate displacements for reduced flow conditions to correctly demonstrate a stable
were an order of magnitude smaller than the channel gap size response, thus indicating the higher flow as the instability
which confirmed that the small displacement assumption of the point.

SBDM formulation is appropriate for this class of problem. Also, . N
this example demonstrates that instabilities begin with small dis- 1€ SBDM of fluid-structure coupling is demonstrated to cor-
placements that grow in time. The velocity and pressure profilé‘%Ct'y predict the oscillatory instability and instability point of a

for the SBDM coupled simulation with loop conditions are esse@Ngue-in-groove leakage joint from a first principles basis. This
tially the same as the fluid-only results shown in Figs. 7 and g Success has been made possible by the energy conserving feature

The natural frequency of the SBDM simulation is equal to th@f the SBDM coupling algorithm. Even though the methodology
hydraulic-based stability analysis result which, in turn, is highef SPecifically applied to a tongue-in-groove joint, the approach is
than the measured frequent¥.23 Hz versus 2.5 Hz Since the equally suitable for evaluating the fluid-elastic stability of leakage
SBDM simulation accounts for the added mass of the water in tidNts in general.
tongue-in-groove joint and the hydraulic-based model does not, it .
is concluded that this added mass is negligible because the p?@Pe”d'X
dicted frequencies for the two approaches are virtually the sameThe small boundary displacement mod&BDM) for fluid/

The over-prediction of immersed frequency is attributed to netructure coupling is based on explicit time differencing for both
glecting the hydrodynamic mass of the water in the remainder thfe fluid and structural equations that are solved simultaneously.
the loop. Structural displacements are assumed small compared with prob-

Visual stability assessment of the results in Fig. 9 is clarified Hgm dimensions. As implemented for this paper, the structure is
least-squares fitting straight lines to the upper and lower peaksmobdeled as a single degree-of-freedom, but the formulation can be
oscillation (as shown in Fig. P respectively, after the first vibra- applied to multiple structural degrees-of-freedom as well. Cou-
tion cycle. Examination of the relative slopes of the fitted linepling between fluid and structure is accomplished by setting fluid
reveals the steady growth of an oscillatory instability. The growtkelocity at fluid-structure interfaces equal to structural velocity,
is consistent but slow which indicates that the flow of 0.317 I/seand by determining forces exerted on the structure from pressure
(5.024 gpm appears to be the stability point. and viscous forces generated within the fluid. Because displace-

To assess the stability point and demonstrate that the SBDMnients are assumed small, both fluid and structural meshes are
not inherently unstable, the previously described simulatipas stationary in time, avoiding difficulties arising from mesh motion.
fluid-only, coupled without loop conditions, and coupled withiThe authors’ experience has shown that mesh motion can intro-
loop condition$ were conducted for the last experimental datduce “numerical dissipation” that is large enough to mask the
point that was investigated prior to experiencing the instabilitynitiation of physical instabilities.

The last stable data point had a channel flow rate of 0.284 I/secSuppose that a spatial mesh and discretization method have
(4.5 gpm corresponding to an upper gap spacing 8f been chosen, and denote bythe vector of fluid velocity degrees-
=0.250 mm ©,=9.86 mils) (see Fig. 3 For the simulations of of-freedom, byP the fluid pressure degrees-of-freedom, andkby
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the structural displacement degrees-of-freedom. Suppose also thatdiscrete treatment of the convection terms and usually requires
a uniform time stepAt is chosen and denote by a superscript theome form of upwinding to maintain a reasonably sized time in-
time level. The equations of motion can be schematically reprerement. For the current case, convection terms are discretized

sented in the following way. using a weighted average of 37.5% of donor-cell differencing and
Ui 62.5% centered differencing, values chosen to balance the inaccu-

M i +GpPMtl=g, (9) racy of upwind differencing against its beneficial effect on time

At step size. System stability predictions are not sensitive to the

GTU™1=0. and (10) choice of weighting because stabilit_y depends _primarily on the
' ' rate of energy transfer across the fluid-structure interface, and not

XN+1_oxn g yn-1 on dissipation mechanisms within the fluid and structure them-

M siruct FKX=FT (11) selves.
At? The form of the discretized fluid equations is based on the

method of Hirt, Amsden, and CodR]. This finite volume method
mploys mesh elements that are quadrilateral in shape, with ve-
city approximated as a bilinear function based on corner values,
and constant pressure in each element. This element is neutrally
stable in the Bablks-Brezzi-Ladyzhenzkaya sense, and spurious
pressure modes are eliminated by specification of pressure in all
g{gments at the exit of the flow region.

where Eq.(9) is the discretized Navier-Stokes equation wah
denoting all convective, viscous, and forcing terms; where E
(10) is the equation of the continuum; and where Efjl) is
Newton’s law of motion withF denoting all external forces, in-
cluding fluid forces. HereM i andM g, ;are the fluid and struc-
tural mass matrices is the structural stiffness matrix, ai@lis a
matrix representing the discrete gradient operator. The discr
divergence operator is the transpose of the grad@ht, f
At the fluid-structure interface, the equations are coupled tRReferences
gether in the following way: [1] Blevins, R. D., 1994Flow-Induced Vibration Krieger Publishing Company,
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oty §-0f Thermally Loaded Laminated

Mem. ASME Pan9|s1
J. 8. Hansen
Professor, . . ) )
Institute for Aerospace Studies, The nonlinear response of a composite laminated panel that is suddenly exposed to a heat
University of Toronto, flux is examined using the finite element method. The panel is cantilevered onto a rigid
4925 Dufferin Street, hub, the rotation motion of which is either fully or partially restrained. The panel elastic
Toronto, ON M3H 5T6, Canada deformations are assumed large and are modeled via the vométestrain-displacement
relationship while the rigid-body angular rotation, for the case of a rotating rigid hub, is
G. R. Hepp|er assumed small. The system of nonlinear governing equations is solved by the Newton-
Professor, Raphson method in conjunction with the Newmark time integration scheme. The panel
Systems Design Enginesring, deformation is observed to be sensitive to the motion of the base.
University of Waterloo, [DOI: 10.1115/1.1631033
Waterloo, ON N2L 3G1, Canada
1 Introduction degree of the tangential edge restraints. The occurrence of snap-

The sudden application of a heat flux to a structure modeled thr;)hueg?el;turgli(r!ltr;g Is also shown to be dependent upon the degree

a beam, plate, or shell has the tendency to cause the structure 9 introduction of partial restraint on the hub rotation motion
vibrate. This phenomenon_ is called _thermal-lnduced V|brat_|0n; itig present study makes the model the preferable choice in analyz-
dependent upon the relative magnitudes of the thermal time cqAg systems such as space-based pointing systems. Further, the
stant and the fundamental natural frequency of the structuegided feature permits the use of the model in the investigation of
Taucher 1] presents an extensive review of the subject. Anothetiermal induced satellite attitude dynami¢8). Johnston and
important survey study is by Thorntd2] which concentrates on Thorton’s[8] study on the attitude dynamics of a satellite is based
the aerospace industry. The study by HeppBiis also worthy of on a linear strain-displacement relationship even though the deter-
mention; it examines the response of shells subject to thernfained elastic deformations are greater than the boom thickness by
radiation from a nuclear burst. orders of magnitude. _ o

Analysis of the response of both curved and flat panels thatThe nonlinearity in the present study is geometric. It is modeled

arises from exposure to a sudden heat flux finds application ‘ﬂ?‘lthle vondK%'nman §train-displa.ce”ment.frelatit())nship f%r modder-
industries such as aerospace, nuclear and manufacturing. The?iglY large deformations. A spatially uniform but time-dependent
mperature distribution is assumed. The results obtained from the

fluence of thermomechanical loads on laminated plates is exay.

. S inearized governing equations are also presented, and a paramet-
ined by Chapdrashekhara and Teniid}i A _sw_mlar problem, but ric study of the effects oft1) geometric nonlinearity;2) the mag-
for the case involving only thermal loads, is investigated for lam

o 1 hitude of the inertia of the hub relative to that of the panel, @d
nated cylindrical panels by Chang and Shydag. The study he panel shallowness, is implemented.

examines the issue of thermomechanical coupling and concludes

that the degree of its relevance decreases with increasing panel

radius of curvature. Feldman and Gi[&] investigate the dynamic 2 Mathematical Formulation
response of antisymmetric laminated plates and cylindrical panels].he system of interest is depicted in Fig. 1. It comprises a

for both temperature-dependent and independent material ProRgfinated cylindrical paneABCDthat is cantilevered onto a rigid
ties. The aforementioned studies consider fully restrained hiRcyiar cylindrical hub which can rotate about its geometric axis.
rotation. The panel is assumed to be in a stress-free initial state when it is
The current study examines the nonlinear response of compegposed to a sudden heat flux that results in a uniform temperature
ite laminated panels that are suddenly exposed to heat flux.cAange over the surface of the panel. The temperature chapge
typical panel is cantilevered onto a rigid hub, the rotation motiois constant through the thickness and is spatially uniform. It is
of which is fully or partially restrained. The responses of curvethken after Johnson and Thornt8] and is of the form
and flat panels with fully or partially tangential edge constraints
under thermomechanical loads is the subject of the paper by Li-
brescu and Wir[7]. They include geometric imperfections and
conclude that the panel response can be enhanced by varying the
where A4 is the steady-state temperature differerices time,
Part of this work was presented at the 5th International Conference on Dynamigad T, is the thermal time constant.

and Control of Systems and Structures in Space, July 14-18, 2002, Cambridge. : : &
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Itis also assumed that changes to the panel material properties

MECHANICAL ENGINEERSfor publication in the ASME OURNAL oF AppLiEDME-  @r€ negligible within the operational temperature range. With ref-
CHANICS. Manuscript received by the Applied Mechanics Division, September 1&rence to Fig. 1 the dynamics of the system are described with the
2002; final revision, May 1, 2003. Associate Editor: M.-J. Pindera. Discussion on tegd of: an inertial frame located & with the dexteral orthogonal

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depgtts . A s A, £ : ;
ment of Mechanics and Environmental Engineering, University of California—SaniyaSIS vectors{nl,nz ’n3]’ a hub bOdy fixed rotating frame with

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a%Xteral baSi$ vectoifsa; ,é? 1a3] also |Ocat.ed ao; iinq a 9urVi'
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  linear panel-fixed frame with dexteral basis vectds,e;,&,].
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Fig. 1 Cantilevered cylindrical panel

The &, basis vector is orientated such that it always passes_ ; A _ A _ P
through the point of attachmer of the panel to the hub. It is *R=(Ry+R.sinp)a,+ Re(1-cosp)as (x+U)ex+veﬁ+w¢(aé)
rotated from the inertial basis vectdr, by angle 6. It is also - R
assumed that the radial line from the center of curvature of a}ﬁ@erERc andR,, are the radii of the cylindrical panel and of the
AB, or midsurface, to the point of attachment, i&Q., is always ub, respectively, anﬁ_", v andw_a}re the ela}stlg dgformatlons of
perpendicular td,. The basis vectora; andf, are coincident the panel e.xpress.ed n the gurV|I|pear frapeg, &, ',ef]'
and are always parallel to the geometric axis of the rigid hub, _ BY denoting a first derivative with respect to time by) and

If the position vector fronD to a differential mass element of the panel volume mass density py the kinetic energy of the
the panel is denoted bi. This vector may be expressed by asSyStemZ is given as
suming that the arc length distance measured fromlong the 1 ., 1 Lo
curved edgeAB (or midsurfacgis sayy=R.3. A local curvilin- T=51h0°+5p | R-RdV,. 3)
ear panel-fixed frame is then attached at the point suchéthét _ ) ce o
a tangential basis vector whiég is an inward radial basis vector. The first term is due to the rotational inertigof the rigid hub and
The position of the differential mass element from this frame isthe second term is the contribution of the panel. The veldRity
units along theg, basis vector. HencR may be written as expanded in the hub body-fixed rotating frame as

a; "’ a
R= a, # cosB—Vi sin B— 6(R.(1—cosB)+ (v sinB+wcosg)) } . (4)
as ¥ sinB+w cosB— O(R,+ R, sin B+ (v cosB—wsinB))

The system potential energyis due solely to the strain energywherex andy are as defined earlier, armis the position of the
of the panel. This is written as differential element along the normal to the midsurface. The von
Karman strain-displacement relations become

1
U= EJ (le"=etlo+y DV, (5)
Vp B

wheree and e7 are vectors of the total in-plane and the thermal
strains, respectivelyy is the vector of the in-plane stresses, and
the transverse shear strains and stresses are, respectively, denoted

Table 1 Material properties of graphite /epoxy

by y andz. The Reissner-Mindlin plate theory displacement field___" 2o mee” Parameter Values
is e E 181.0 GPa
is expressed as Eié 181.0 GPa
_ Gy, 7.7 GPa
U(X,y,Z,t)=u(x,y,t)—z://x(x,y,t), (6) Gls 7.7 GPa
Gz 2.87 GPa
_ P 1.56x 10° Kgm™2
v(X,Y,Z2,1) =v(X,y,t) =z (XY 1), 7 Vi 0.28
@11 2.08x10°8 K™t
%22 225¢10°°K!

and w(x,y,z,t)=w(x,y,t)
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With the direct correspondence to Ef), the total in-plane strain

vector € is rewritten as

€=€ tZk+ KN

where the first term is the linear strain component, the seco 630" "e0 90 130 150 180 210 240 270 300
term denotes curvatures and the third term represents the non Time (secs)
ear strains. The constitutive law relating the stresses and strains
[9]7 Inertia ratio I, = 1.5
1.4
g=Q(e—er) and 7=Qgy, (10)

where all the components are referenced to the geometric or str o8
tural axes. EquatiofiL0) is substituted into Eq5) and the expres- 8

. . f 0.6
sion resulting, after some algebra, can be written as ;

e)TITA B 0 € 0.2
1 £L SL
U= Ef K B D O K de 0.0
Sly) lo o adly 52
T N o 3‘O 6lO 9|0 150 150 léO 2{0 2"0 250 300
_ L) STly0 Time (secs)
O K MT p
. Fig. 4 Effect of hub inertia on elastic displacements
e1T[0 0 Al(, (0/90/0/90/0) 4
1 SL SL
+3 f K 0 0 By xdQ, (11)
Q _ _
€N A B AJlE&N 0 1 0 0O O O O 0
u® O NN 0 0 0 Off pe
where the thermal resultant forces and moments are denoted by © T ©
Nt and M+, respectively(Consult the Appendix for any matrix v |00 N O 0 O]fu 12)
that is undefined in the textThe component of the potential w®( “lg o o N o of]w®
energy expression that is quadratic in the thermal strains is ig- ¢§(e) T &e)
nored since it does not contribute to the final variational form. The e c o 0 0N 0 l_p(e)
vector product of the nonlinear components of the total in-plane y 0 0 0 0 0 NT Iy

strains and the thermal strains is also ignored. © o
In anticipation of a finite element based formulation, the fiel/hereu™ is a column vector of an element nodal axial d_|splalce-

variables of the system are identified as the rigid-body rotagion Ments and the other entries are identified accordindy:;

and the displacements due to the panel flexibility, w, ¢, ,. 'S @ column vector of shape interpolation functions. In the sequel,

A 16-node isoparametric Lagrange bicubic element is impl&?e . row vTectorT OfT element nodTaI displacements
mented[10,11]. The variables are interpolated as Lu® @ W@y gl | is denoted byg® .
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The kinetic energy of a finite elemefit® is obtained by sub- Me meT - 0 o 0
stituting the field variables approximations EG?2) into Eq. (4), 0 =t [ 0 ]+ = | '(99)] _[ (e)] (15)
and using the resulting expression in &), where the rotatory M me (g9 o KE]ld Er
inertia contribution of the hub is ignored for now, to obtain q ad
1 where
TE="g@'MEGE+4® Mg (13) 1 1
= aq 2 =0, (e) = ) ke Z k(e
2 a qu—K<9+2Kf+3K;.
with . . .
The above elemental governing equations are assembled in the
0 usual finite element method manr(eee Bath¢10]) to obtain the
N(Rp, sin8+R,(1—cosB)) global system of governing equations which can be written as
M((;?=PJ'V(E) N(Rp COS,30+ R.sing) dV(pe). MgPe+KapPs=F (16)
’ 6 whereM s and K are the global inertia and stiffness matrices,

respectivelyF¢ is the global force vector, ang; is the vector of
Note that only terms that are quadratic in the field variables arRgbpal nodal field variables. The expanded form of the global
their derivatives are retained in the kinetic energy expressiofquation Eq.(16) is identical to the governing equations for a
Hence terms involving#®v, 6°w, 6°v®, 6°w” are ignored. This finite element, Eq(15). The difference is that th® ,, term of the

ensures a time-independent inertia matrix. global inertia matrix includes the hub inertia. Hence
The potential energy of an elemdd® is derived by substitut-

ing Eq. (12) into Eq. (5). The nonlinear contributions are then Myp=Ilnt >, M)

expanded using the technique of Rajeskaran and M{ilrdly The o (® o

method provides consistent matrices and is more general than
suggested by Mallet and Marcgl3,14. The resulting potential
energy of an element may be written as

HRE scenario in which the rotational motion of the hub is fully
restrained is governed by an identical system of equations with the
exclusion of rotation ¢, 6) contributions.

1 1 1
u(e>:§9<e>T K(©® 4 §K<le)+ gK<2e> 9<e>T_g<e>TE<Te> (14)

. ) ) . 3 Numerical Simulation and Discussion
whereK (® is the usual displacement independent stiffness matrix

obtained in a linear analysi& is a component of the overall ,,ceq of graphite/epoxy laminae. The thickness of each lamina is
stiffness matrix that is linearly dependent upon displacementsq 5 mm. The mechanical and thermal properties are given in
K{ is the component that is quadratic in the displacements, amgle 1. A typical system comprises a cylindrical panel of radius
F{® is the vector of consistent thermal loads. R.=10m and height.=10 m, a hub radiu®,=1 m, with an

The governing equations for a typical element are obtained \exponential time varying temperature profile with thermal time
Hamilton’s principle by using the kinetic and potential energiegonstantT,=20 secs and steady-state temperatiie, =20 K.
Egs.(13) and (14). These are expressed in matrix notational forfhe hub inertia is related to the inertia of the panel about the
mat as rotating axis of the hulfi.e., hub centerby a constant of propor-

The numerical simulations are based on 10-ply laminates com-
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Subtended angle 2a = 30°

motion and the panel deformation. An FFT analysis of the fixed

e hub data reveals a dominant frequency of 1270 2 Hz, which
12F is equivalent to the first mode of the panel. A similar analysis of
E the rotating hub data indicates a dominant rigid-body motion that
1o is followed by a frequency of 7.72410 2 Hz. This frequency is
08 the same as that of the second most dominant mode in the fixed
Eg hub scenario. The steady-state quasi-static deformation is 86.3
0.6 um.
= o4 The inclusion of the geometric nonlinearity yields reduced de-
formation and increased frequency—0.951 Hz for the fixed hub
0.2 scenario and 0.823 Hz for the rotating hub case—the higher fre-
0.0 quencies are indicative of stiffening. The frequencies are provided
to facilitate a more quantitative analysis even though an FFT is
02F . . ) ) . ) . not advisable for nonlinear processes. The steady-state quasi-static
0 30 6 9 120 150 180 210 240 270 300  deformation is 14.5um. Unlike the linear scenario, a higher peak-
Time (secs) to-peak steady-state deformation is observed with the rotating
hub. This is in accord with the FFT analysis results which show a
Subtended angle 2a. = 45° lower frequency for the nonlinear rotating case; hence the fixed
14 hub case is a stiffer scenario.
12k By defining dynamic amplification as the ratio of the maximum
steady-state transient deformation to the steady-state quasistatic
Lop deformation, the linear fixed hub case is observed to yield the
osk most amplification while the nonlinear fixed hub provides the
8 least amplification. The amplification with the nonlinear rotating
Eo osF hub case is comparable to that of linear rotating hub. This implies
B oafb that, for the present configuration, inertia effect is more pro-
nounced in the fixed hub case.
0.2 The profile of the hub angle of rotation is depicted in Fig. 3.
6. The hub rotation decreases while its frequency increases in the
presence of the nonlinear formulation.
s T ) ) ) ) ) ) ) ) In summary, the inclusion of the geometric nonlinearity has a
o 30 60 90 120 150 180 210 240 270 300

Time (secs)

Subtended angle 2a = 60°

60

L n L L ) 1 L
90 120 150 180 210 240 270 300

Time (secs)

Fig. 6 Effect of panel shallowness on elastic displacements

(0/90/0/90/0),,

noticeable effect on the system vibration irrespective of whether
the rotation motion of the hub is fully or partially restrained.
Given that the hub may never really be fixed in the literal sense, it
is advisable to use the rotating hub model. Based on these obser-
vations, the subsequent simulations are for a nonlinear analysis.

Effect of Hub Inertia. The influence of the magnitude of the
hub inertia relative to the inertia of the panel about the hub axis is
examined by varyind; over 0.5, 1.0, and 1.5, respectively. The
nondimensional midspan deformation and the hub rotation angle
are depicted in Figs. 4 and 5, respectively. These results are in
excellent agreement with intuition and it is imperative that they
are reflected by the analysis.

In particular, the higher the inertia factor, the better the chances
that the hub motion can indeed be adequately modeled as fixed.
This is because the rotation of the hub tends to zero. It is therefore
expected that the effect on the elastic deformation is such that the
elastic response approaches that of the fixed hub, as can be in-
ferred from from the results with;=1.0 and 1.5(see Fig. 4.
These observations on the role of the relative magnitude of the
inertia of the hub on the overall system response are also con-
firmed by Johnston and Thornt¢8].

Effect of Panel Shallowness. In order to examine the effect
of the panel shallowness, the subtended angle of the cylindrical

tionality | ; . The midspan lineanonlineay deformations are nor-
malized with respect to the steady-state linganlineaj quasi-
static deformation.

panel is varied as @= 30 deg, 45 deg, and 60 deg, respectively,
while the hub inertia factot;=1.0. The respective steady-state
quasi-static displacements are 11@push, 54.3um, and 14.5um.

The elastic response is depicted in Fig. 6 and the rigid-body an-

ﬁEﬁtECt forf] Cti)eortn?trlc N(énllnearltty.and 'I!Ub R_totatlon. Tr;.e t lar rotation is depicted in Fig. 7. The shallowest panel exhibits
eliects ot hub rotation and geometric noniinéarity are Inves |gag th the least dynamic amplification and the least angular rotation.
for a system with a cylindrical panel that has a subtended angle

2a=60° and a hub inertia constant of proportionality=1.0. 4 Conclusion
The ply stacking sequence is (0/90/0/9Q/OFigure 2 depicts the

normalized midsparithis location is identified on Fig.)ldefor- The response of laminated symmetric cross-ply cylindrical pan-
mation of the cylindrical panel for the fixed and rotating hub caseds that are suddenly exposed to heat flux is examined. Structural
for both linear and nonlinear formulations. The linear plots showonlinearity in the form of geometric nonlinearity is considered
that the peak-to-peak steady-state deformation in the fixed habd is modeled via the von Ikan strain-displacement formula.
case is higher than that of the rotating hub scenario. This obs&he nonlinear governing equations are solved via the use of New-
vation is explained by the transfer of energy between the huhark time-integration scheme and the Newton-Raphson method.
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Fig. 7 Effect of panel shallowness on hub angular rotation

It is observed that even though the angles rotated by the hub are
small, the allowance for hub rotation significantly affects the re-
sponse of the panel. The importance of this extra degree-of-
freedom decreases, as expected, with increasing ratio of hub iner-
tia to panel inertia. The shallowest panel investigated yields both
the least dynamic amplification and the least hub rotation. It is
instructive to implement nonlinear analysis in light of the enor-
mous differences in response compared to the corresponding re-
sponse from a linear analysis.

Finally, it is acknowledged that the results presented in this
study are dependent upon laminate sequence. However, the inves-
tigation of this dependency is beyond the scope of this paper. This
is primarily due to the numerous combinations of laminate se-
guence. The problem is perhaps best addressed in the context of
optimization. To this end, an optimal laminate sequence is sought
for appropriately defined objective function and constraints. While
the (0/90/0/90/0) laminate sequence is selected in this study in
order to explore the simplifications associated with a symmetric,
cross-ply laminate, it is easily manufactured with fabric.
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Thermoelastic Instability of
Two-Conductor Friction System
s.v.uang I Including Surface Roughness

M. M. Khonsari’

Fellow ASME A model is developed to investigate the mechanism of thermoelastic instability (TEI) in

Dow Chemical Endowed Chair in Rotating tribological components. The model consists of two thermally conducting bodies of finite

Machinery, thickness undergoing sliding contact. Appropriate governing equations are derived to

e-mail: khonsari@me.lsu.edu predict the critical speed beyond which the TEI is likely to occur. This model takes into
account the surface roughness characteristics of the contacting bodies as well as the

Department of Mechanical Engineering, thern_]al contact conduptance at _the in_terface. Analytical expressions are provided for the
Louisiana State University, special cases neglecting the disk thickness and the thermal contact conductance. An

Baton Rouge, LA 70803 extensive series of parametric simulations and discussion of the implication of the results

are also presented. The simulations show that the difference in material properties and
geometry of the two conducting bodies has a pronounced influence on the critical speed.
A special case of the model shows that the threshold of TEI critical speed is pushed to a
much higher level when the conducting bodies have identical material properties and are
geometrically symmetric. It is also shown that the perturbed wave generally tends to move
with the body with higher thermal conductivifyDOl: 10.1115/1.1629756

1 Introduction observed experimentally in automotive disk brake systems. They

High-speed sliding contact between nominally flat surfaces attributed this phenomenon, in part, to neglecting the finite thick-

- - S : figss of the conducting body.
associated with thermoelastic instabil{fiyEl) where pressure per- Another important fgctor |¥s surface roughness. Jang and Khon-
turbation appears in the contact area. Such instability may lead

i[11] showed that the critical disd dent the load
the formation of hot spots which are thought to beaconsequeS '[11] showed that the critical speed s dependent upon the loa

f local th lasti ) high lied on the system by considering the surface roughness. Con-
of local thermoelastic expansion and high contact pressures. I&deration of surface roughness with proper thermal analysis en-

is commonly observed in mechanical seals, brakes, and clutchggies one to account for the real area of contact between two
There is a rich volume of archival research publications dealingrfaces. Therefore, to predict the realistic critical speed, a two-
with TEI. Barbgr[l,Z] first explained the thermoelastic instability conguctor system of finite thickness considering the surface
and the formation of hot spots in railway brakes. Dow and Burtogyghness and the thermal contact resistance should be taken into
[3] used the perturbation method to determine the critical speggcount.
for TEI. Their work was extended by Burton et gd], Kilaparti In this paper, we develop a TEI model for a friction pair con-
and Burtor[5], Banerjee and Burtof6], Lebeck[7], Barber et al. sjsting of two conducting bodies with rough surfaces. Each body
(8], Lee and Barbef9], Du et al.[10], Jang and Khonsafill- has a finite thickness. The model is a two-dimensional problem
13], and Yi et al.[14] in applications involving mechanical seals,where the lateral dimension is neglected. This paper concentrates
braking systems, and wet clutch assemblies. In all of these applh the theoretical development of a generalized TEI formulation
cations, TEI manifests itself in the form of macroscopic hot spotsf the problem. The appropriate governing equations are derived
Many applications are classified as the so-called conductaind solved for the critical speed and the wave speed. This paper
insulator system where the stationary comporierake pad, mat- also presents an extensive series of parametric simulations to-
ing ring in seals, and friction disk in clutchelas a low enough gether with the implications of the results.
thermal conductivity to be classified as an insulator. In contrast,
the rotating componentseparator in wet clutches and primary2 Theory

ring in seal possesses a much greater thermal conductivity. The o schematic of the model is shown in Fig. 1. The model con-

conductor-insulator model simplifies the analysis because all gfts of two finite conducting bodies with rough surfaces. Both
the heat generated goes directly into the conductor and nothi\gjies are of finite thickness with isotropic surface roughness be-
into the insulator. ) . cause most engineering surfaces are isotropic. The nominal sur-
Burtqn et al.[4] showed that the pred!ctgd critical speed base[‘éce separation between two bodieshis. The lower surface is
on the insulator-conductor assumption is in good agreement nghtionary and the upper surface undergoes a sliding motion at a
that of the two-conductor system only for the case that one of tegnstant speed). It is assumed that the system is operating under
friction pair is made of glass. According to Lee and Barfi#dithe  ne steady state condition. We seek to determine the critical speed,
critical speed based on Burton’s semi-infinite analysis with plangrcr, beyond which TEI occurs. For this purpose, a small surface
strain hypothesis yields a critical speed that is beyond what.jfave representing a disturbance is imposed to the system. If the
- resultant surface deformation is smaller than the imposed surface
*To whom correspondence should be addressed. disturbance, the system will be thermoelastically stable. Assuming

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; ; ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- that the disturbance wave has an absolute spaadhe moving

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februar)direCtionx T—he relative wave Speed$ with (espect to the Upper. and
19, 2003; final revision, February 26, 2003. Associate Editor: J. R. Barber. Discdewer bodies arey andc, , respectively. Since the lower body is
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekigationary, its relative wave speed is equal to the absolute wave
Department of Mechanical and Environmental Engineering University ;)é eed, i.e.cL=c. It follows thatcH=ch u.

California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce ;
until four months after final publication of the paper itself in the ASMEJBNAL OF hen two rough surfaces are brought into contact, they touch

APPLIED MECHANICS. only a small fraction of the nominal area. The remaining gap is
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& (4)
B e e R PR
h="h + h;,- H, Bed Tk W U 2.2 Heat Generation at the Interface. The frictional heat
s - 3 —=  flux g/ at the interface entering either the upper or the lower body
2. H j 9x is given by
g - aT{
? g; =Im IKE :Qkiﬂi[ma COSQ(Xi_Cit“FAi)
Hz==I
Z; \ { q’ l[_ R inQ — A Bt 5
is E kK. v, + Ry sinQ(x—cit+Aj)]e (5)
R R SR v e ik 1t s s g R wherek; represents the thermal conductivity dndepresents the

half thickness of the body. In Eg5), the negative sign is for the
upper body and the positive sign is for the lower body. The sub-
script 1i represents the amplitude of sine component, and the
subscript 2 represents the amplitude of cosine component of
bodyi, respectively. Dimensionless paramet®rs andR,; in Eq.

Fig. 1 Schematic of the model

filled with an interstitial fluid such as air with relatively low ther-(s) are
mal conductivity, which tends to reduce the rate of heat conduc- & sinh 2,1, —a; sin 2al;
tion between the bodies. Because of this thermal resistance, the 1=

. ; N Q(cosh Z;l;+cos 2l;
magnitude of the perturbed wave is changed and the wave is de- ( il i)
layed at the interface. To characterize the behavior of the inter- a; sinh 2&1;+ &; sin 2al

face, a constant resistance is used. 2= () (cosh Z|, +cos l,) (6)
[ (|

2.1 Temperature Distributions. Let T’ denote the tem- Nqte that as discussed before the phase shift for the stationary
perature perturbation brought about as a result of the impo A_=0. The total perturbed frictional heat generated due to
surface disturbance. To assess the effect of temperature disfyg asperity contact pressure is

bance on the thermoelastic behavior of the system, one must con-
sider the transient heat conduction equation for each conducting q'=q,+q =fP,U=fP/U @

body given below. ) o . , ,
wheref is a friction coefficient, andP;, andP| are the perturbed

2T 92T 1 JT! contact pressure acting on the upper and lower surfaces, respec-
| I I .
2 + T2 ke i=H,L (1) tively. Equation(7) represents/,=P| to satisfy equilibrium. In-

i i serting Eq.(5) into (7), and solving for the sine and cosine am-
wherex; is the thermal diffusivity. The prime represents the pelitudes of the contact pressure acting on the lower surfage,
turbation. The subscrifit=H represents the upper body and thénd Pz, yields
subscripti=L represents lower body, respectively. Coordinat _ _ ; n Bt
system §; ,z) is affixed in the midsection of body The proper FUP1L=[ 0k f( Ry COSAA — Ry SINQA) + 0k 6, Ry e
boundary conditions for the temperature in each body [&fe, fUP, =[QKy 0n (R SINQA + Ry, cOSQA) + Ok, 6, R, [

(8)
aT!
&—;:O atz=0 For the special case that the thermal contact conductance is not
! (2) considered, the phase shift becomes(A#=0).
T/ =Im[6;ef'el i~ *4)]  at the interface. 2.3 Thermoelastic Deformations. The particular solution

The theory is based on the assumption of the symmetric mo&é,the thermoelastic problem for the plane strain can be obtained
and this is particularly appropriate for a pair of disks in the mul/SIng the strain potential; . To obtain a general solution that
tidisk clutch pack. Therefore, all properties are symmetric at ttf&tisfies the boundary conditions, the isothermal solution should
midplane of the disk thickness. Hence, adiabatic boundary confi Superimposed on the particular solutiptb]. The isothermal
tion at the midplangat z,=0) is used in this analysis. In the solution can be obtained from the isothermal potentialsand
circumferential direction, the periodic boundary condition is used; . The boundary conditions for the elastic problem are
Parametep; denotes the amplitude of the temperature disturbance

at the surface of body Parametef) represents the wave number “zi|zi=0:0
in the x direction. Parameted; is the wave phase shift of tem- ,
perature between surfaces due to the thermal contact conductance “zi|zi:1|i= h;
J.. The moving body has a phase shiftofj=A and that of the ,
stationary body is\| =0. Parametep represents the time expo- Uzi\zi=:|i= —P;

nent of growth of the temperature wave and is essentially the
defining eigenvalue of the problem. <0, the disturbance de-
cays to zero and the system is stable, whilegor0, the instabil- whereh! = hy; sinQ(q—Gt+A) +hy cOsQ(—Gt+A,) is the sur-

ity grows with time. The threshold of instability is defined by, . ; .
B=0. The first adiabatic boundary condition (@) takes advan- face displacement perturbation of the each body. The functional

tage of the symmetry at=0. Therefore, inserting Eq2) into form of h{ is assumed to have the amplitude of sine component,

Eq. (1), the perturbed temperature distribution in each body is Nii» and the amplitude of cosine componeh; . Using the
boundary conditiong9) together with the functional form of the

surface displacements, the displacements of the upper and lower
surfaces are obtained. Combining all the equations above, the re-
sults of the displacement amplitudes of the upper and lower sur-

where faces are

7'><zi|zi:IIi:fPi’ )

coshb;z;
1<l eﬁte

Ti=Im 6 coshbyl;

J QX —cit+4) (3)
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2GQh1 =Ny (1 =30 ) Top 0n€” + NS 11l ap 0P + 3 14 P 1 (H H,\1° H H,\?
H 1H H( 2H) 2HYH H<1H' 4HYH 1IH" 1H ( o) 17(_0) 31&42,{J)+22,{J)

Pc=75a| o
+ 3,0 Por ¢ 128\ 3 3 3 3
H 3
2GQhoy=—Ny(1—2o0)T 14 0€” + N2 1T 3 O™ +45( ?0) . (15)

+211Pon— 24Py . . .
The perturbed asperity contact pressure is obtained front12y.
2G Qhy =N (1-35 )T 68" =\ 3 Ty 66”3, Py Theresultis

+13, Py , hi—h{
Pe=x¢c—— (16)
2G Qhy =N ((1-3, )Ty 6, €'~ N 31 Ty 6,eF—3 Py ©
where the surface characteristic parameter is defined as
— 3Py (10) P
where x=(mnyo)?E 17
. o _ where 7 is the asperity densityy is the asperity tip radius, and
= B | S.= 2(1 _ v)sint? Q1 . is the surface roughnessnis). Equilibrium requires thatP/
T1—y;" “U7 QI +sinhQl; coshQl;’ :
Vi i i i =P| =P}, . The relationships between the amplitudes of pressures
s _Qlif(leVi)sinhQIi coshQl; and surface deformations are obtained.
27Ol +sinhQl; coshQl; ’ X@c ,
PlH: - h_[thf h1|_ COSQA* h2|_ S|nQA]
=k (Ba;+ &Qcy)sinh 261 — (a; Q¢ — B&)sin 2ail; °
1i = 22K > 2.2 ;
(B*+Q2c?)(cosh 21+ cos 2], 1) P2H=—Xh—qzc[h2H+h1|_ SINOA—hy cosQA]  (18)
=0k (2iQ2¢i — B&sinh 25ili +(Bai + €2¢i)sin 2ail; : In the coordinate systenmx(z) moving with the perturbed field,
(B?+Q2%c?)(cosh %1+ cos ;) P/, andP| obey the following relationship:
. Q3kc; . 02k, Py SINQ(X+A)+ Py cosQ(x+A)=Py sinQx+ Py cosQl)é.
¥Uprr022 Y g2+ (19)

After separating the sine and cosine components in(Eg), we

The paramete(; represents the rigidity of the disks, and it isphtain the following expressions for the amplitudesRjf and
defined asG;=E;/2(1+ ;). «; is the coefficient of thermal ex- p:

pansion,E; is the elastic modulus, ang is the Poisson’s ratio, -
respectively. Piy=P1 cosQA+ P, sinQA

2.4 Asperity Contact Pressure. The total surface separa- Poy=— Py SinQA+ P, cosQA (20)
tion therefore satisfies the following condition:
Note that if the two bodies were in perfect contact, then the ther-
h=h,+h{;—h{ (12)  mal contact conductance would be nil and the corresponding tem-

. . erature lag would vanish, i.e\=0. Equationg20) would reduce
where h{; and h{ are the imposed surface disturbances on thg simply Pglele andP,, =Py a(i expeé{ted).

upper and lower bodies, respectively. According to Natsumeda
and Miyoshi[16], the mean pressure associated with an asperity2.5 Thermal Contact Conductance. It is assumed that all
contactP,, is proportional to the ratio of the real area of contact tthe heat generated is conducted into both surfaces by the thermal
the nominal area, namelp.= £.A. where&, is a proportionality contact conductancé, . This parameter is simply the inverse of
constant, which we shall refer to as the “elastic modulus for cotthe thermal contact resistance. The relationship between the fric-
tact.” The real area of contact for two rough surfaces can B@nal heat and the temperature is

determined using the Greenwood-Tripp’s theof¥7]. In this J .,

analysis, it is assumed that the model remains valid during sliding I(Ty=TO) =09~ qy- (21)

with presence of heat generatlon, and thg asperities are d'St”bUﬁ%jerting Egs(3) and (5) into Eq. (21) and separating sine and
gvenly Ieadlng_to a pnlform heat generation ar]d surface deforn&l)-sine terms, the following expressions are obtained:

tion. Many engineering surfaces have a Gaussian or near-Gaussian

height distribution. Using the polynomial density function, the 0. J.cosQA+QKy (MR COSQA — R,y SINQA)

real area of contact fad=<3 can be evaluated from 9_H: J.+Qk Ry

o[ oo 55055

3
3 5) } tanQA=
(13)
whereH is the dimensionless surface separatldrs; h/o. For the ) ) )
case ofH>3 the real area of contact becomes nil. The perturbdefluations(22) represent the ratio of surface temperature ampli-
real area of contach,, is determined by inserting EL2) into {udes and the phase shift of the wave at the interfacg, -,

: . ; then the two bodies are in “perfect” contact, and there is no
Eqg. (13) and neglecting higher order terms. The result, usihy - o
:qh (/ 0) is g g g ' 9 thermal contact resistance. Therefore, the ratio of temperature am-
0 )

plitudesd, /6,,=1 and the phase shit=0 leading toT;,=T| .
) hi—h/ Contact resistance is indeed a difficult parameter to measure. In
Ac=(mnyo) e (14)  this paper, we present simulations over a wide range of contact
© resistance values in an attempt to cover different applications that
where one may be interested in. The results presented are also useful in

2

64+ 69 +5

Qk Ry (To+ QkpyRyy) — QkyRon (T +Qk Ry )
(%+QM%nX%+QMmmﬂ4ﬂhanmﬂ.
22

A :i(ﬂmfff)z
°128
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analyzing the limiting case, for example whar-0 and & —1. Mathematically, the stability paramet@r>0 means that insta-
Typically, for the seal the contact resistance is estimated hbsity will grow unbounded with time and TEI is imminent. There-
10 WIm? K, [7]. fore, the threshold of instabilitgi.e., the critical speeds obtained
) . . by setting =0 in the governing equations. This leads Ifg;
2.6 Thermoelastic Ins_tablllty. _Comblnlng _Eqs.(8), (10, =M, /C;, [y =M, /C;, [5=1Ic, andT 4, =0. Therefore, the fol-
(20),_and(18) and_ separating the sine and cosine terms, we Wllj.)wing two dimensionless equations emerge fréa):
obtain two equations to be solved for the critical speed and the

wave speed. Before processing, we begin by defining the follow- . . 5
ing set of dimensionless parameters: At{ [(Ryy SINQA+ R, cosQA)cothQl,— stA]E —
HaH
_ U o C; — — n _a
U= Gy et gl ged L=
Qxy Qxk; 0%k Q Q + 6% a* M, cothQl =—{ U,
(23) gLaL

Using these dimensionless parameters, the following coupled =[(COoSQA+AgSiNQA)]Ry

equations are obtained: [(SIQA = A, COSQA) [P+ 0% K* (g, + A Foy)

(26)
A [(T1y SINQA+T 5, cosQA)(1—354) — (T34 SINQA 5
T [(F1y 2H 2H 3H A+ [(Ryy cOSQA — Ry sinQA)cothQIH—COSQA]—i
1 " &nay
—F4HcosQA)ElH]l_—+—[FzL(l—EzL) F)
Py 0H L
+0*a*(mlLCOthQ|L_l)—__’Ucr
1+v o 1 |— fLaL
2] 1o an 1o .
+vy ay v =—[(sinQA— A cosQA)]Ry
=—[(cosQA+AgsinQA) Ry —[(cosQA+ A SINQA) R+ 0 K* (AR, —Rop)

where we have used the relationshigs- —2a ¢ and 1- 3,

. 0L I(L
+[(SiNQA—-AgcosQA) R, — Q—HE(%1L+AS%2L) =3, cothQl, and

(24)
*_1+V|_ oL *_HL. *_kL.
A1{ [(T 144 COSQA —T 5 SINQA) (1 -3 ) — ('3 COSQA =i ar U ey KTy
. 1 o, . KL . sink? Ql,
L SINQM)E 3] =+ 5= Ma(1-Ta0) =y A A =g ennan cosnar, . @7

_ There are three unknowns {@6): the critical speedjCr and the
wave speedgy andc_. Note that the third equation to solve
unknowns isc, = k*c, — U, . Equations(26) are derived based

=[(sinQA— A cosQA)]R on the assumption that the problem is posed as a plane strain.

Plane stress solutions can be obtained using the following conver-

1+ o 1

_F3L21L] 1+VH a_H l_VL

+[(COSQA + A SINQA) Ry — Z—: E—:(AsmlL—mZL) sions:
v 1+v v
where v— 1+V; a= o, and E—>(1+V)2E. (28)
As=fD*= f Eﬂ, h} . Examinaf[ipn of the gqverning equation§ revgals that the dimen-
Gy G sionless critical speed is governed by eight independent dimen-

3 20h
S Su }
G GL X®c
f

3 p 2Qh
H 21 o}

sionless parameters. They are;, Ag, o*, k*, «*, Qly, QI ,

andJ% . The parameted; is the dimensionless thermal contact
. (25) conductance defined & =7J./Qky, . If both conducting bodies

qualify as(a semi-infinitg¢ half-space, the parametefsl,; and
G QI disappear in the governing equations. In the following sec-

Gy GL X®Pc . . - .
) tions, a series of special cases will be treated.
The parameten g represents the coupling between the tangential

and normal loading and we will refer to it as thleear parameter
ParameterD* is a modified Dundurs’ constant. At a high shear 2.7 Special Cases

arameter, the effect of shear stress at the interface plays an im-
gortant role and can not be neglected. When the spurf):/':lces aré- -1 System Without Thermal Contact Conductandée
smooth and the bodies are treated as semi-infinite solids, the sHEgIPerature ratic’* and phase shifi\ at the interface depend
parameter reduces to the Dundurs’ constantmultiplied by the UPon the thermal conductangg . Under an “ideal contact” con-
friction coefficient, i.e.,A;=fD. The material parametek; is dition the thermal conductance goes to infiniaero resistange
related to the thermal deformation due to the frictional heat a@d at the interface the temperature of both bodies match, i.e.,
we refer to it as thenaterial parameterConsider the special case? =1 andA=0. Therefore, the governing equations for the sys-
where the upper body is semi-infinite, the lower bodly is rigid, an@m neglecting the thermal contact conductance become
surfaces are both smooth, the material parameter reduces to the * *
thermomechanical material parametit, multiplied by the fric- Ar EH%szOthmH ot EL%Z_‘-COIhQIL 0
tion coefficient, i.e. Ay="17, [18]. Note that the thickness effect Enay £aL
and the roughness effect are included in both the shear parameter
As and the material parametdr; . =(RontK* Ry ) + A(Roy +K* Ry )

2aHKH(1+ VH)

= *:
Ar=FH K

cr
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S ¥ (R cothQly—1) S ¥ (R cothQl —1)) — 2 aprn(1+ )
. _

!

At — +a p— Uer T_W
fu b o o )
H X®Pc
=Ag(Ryy+K* Ry) — (Ron+ K Ry ). (29) (s
2.7.2 System With Semi-Infinite Bodie€onsider a system Aé=ﬁ. (34)
whose conducting members are thick enough so that the perturbed Sout Z27 oFH
temperature penetrates a finite depth into body. For such a system X®Pc
it is reasonable to assume that the thickness of the conductifghe conductor is semi-infinite Eq€33) become
disks is semi-infinite. This would best describe a thick rotor. '
Letting the half thickness— <, the dimensionless parameters Ar—  — —
are modified as follows: =U,=¢&4tAlay
H
lj—o0 lj—ce lj—oe , (§H71)— s =
(30) AT — Ucr:Ang_aH . (35)
Enay

lim cothQl,=1; lm %,;=& and lim%,=a.
o lj—o lj—oe If the shear stress at the interface is neglected, then the shear
. . . . ) . parameter\ ¢ disappears in the governing equations and the wave
Equations(26) in conjunction with the modified paramet&i30) speed beCOSmeS zero, =0. Therefore, the governing Eq€35)
give the critical speed for the system with semi-infinite disk$eqyce to the simple solution as follows:
Moreover, if the thermal contact conductance is not considereg, '

the governing equations reduce to — 1 Ky Siu 20h,
Uy=—=o— |21, . (36)
1 1\ — _ . o Ay 2fapkp(I+vy) [ Gy xee
— ta*—|Ug =&tk é)+ +k*
A L L) Uer=(entk )+ As(antk™ay) For the plane stress with semi-infinite conductor, B3f) be-
_ _ comes,[11]:
-1 1) — - -
AT(SH_ +a*——§L_ )Ucr:As(EH“‘k*fL)—(aH'*‘k*aL)- U.— 2Ky 1+ 20Eh, 37)
Enan &Lay " fapxyEy xec |

(31)

) Neglecting the surface roughness, the most conservative critical

If surface roughness is neglected, E(@l) reduce to the govern- speed for the insulator-conductor system is derived as follows,
ing equations derived by Lee and Barb&8] for two semi-infinite  [4]:

bodies in contact, in the absence of a contact conductance. Fur-

thermore, neglecting the shear stress effdct=0), and convert- U. = 2k

ing equations for plane stress, the governing Eg$) are identi- " faykyEy’
cal to those derived by Burton et @#t]. ReplacingL andH by 1
and 2 in(31), the dimensional governing equations are

(38)

Comparison between the results of the prediction of the critical
speed for the smooth surface model is much lower than that of the
present theory, which includes provision for surface roughness.

fE.E
- This is akin to the effect of a compliant layer. In the smooth

arkilag|  azkod,
kiéi+koéo=(cy+]cy) E,1E,

€1 c2] surface model, the applied load does not appear as a direct param-
fE.E eter of the model and the model tacitly assumes that bodies are in
—ky|ay| +koa,=(cq+]cy)) 1-2 perfect contact. In this paper, the critical speed is determined by
1141 292 1 2 E.+E . . . . .
1T E2 the surface separation, which is a function of the applied load and

«| - a;k(Q—¢§;) n k() —§5)

el ing surface separation due to a heavy load or a larg&ccord-
C1 C2

ingly, in this theory, it is assumed that there always exists surface
(32) separation and two surfaces are not under perfect contact.

} the surface roughness. The critical speed increases with decreas-

Note that/c,| is used since the moving directionof in Burton’s 3 Results and Discussion
equations is opposite to that defined in this analysis. We shall first focus our attention to a combination of different

2.7.3 Insulator-Conductor SystemThe so-called insulator- Materials as shown in Table [4]. Aluminum is a good conduct-
conductor system is an idealized model for treating TEI probleni?d material and glass is an example of the insulator. A friction
in a variety of engineering applications where all the heat gendiair of graphite and cast iron is commonly used in seals as well as
ated at the interface is transferred to one of the bodies only. THY bearln_gs. o .
stationary body is an insulator. For example, the friction pad in an Shown in Table 2 are the predictions of the critical speeds and
automotive brake system may be represented as an insulatof{@ Wave speeds corresponding to Table 1 based on the assump-
contact with a conducting body, i.e., the rotor. Note that the thelion of the plane stress. Roughness effect is not considered here,
mal contact conductance is not needed. Taking the insulator pdait Will be covered in the next section. Case | is simulated based

tioned as the lower body, the governing E(6) reduce to on the assumption that the effect of shear stress at the interface is
nil. Therefore, Case | is governed by E¢32) which are identical
3 E9Ron cothQly — to those derived by Burton et 44]. The results in Table 2 match
——=——"U =Ry + ARy with Burton’s critical speeds. It is shown that in Case | the wave
Enay speedscy are very small and negative with comparison to the
N critical speed, which means that the perturbed wave is moving
f(Rn cothQly—1) U.=A'R % 33 with the body with a high thermal conductivity, but at a slightly
Enan cr fts¥MHT H2H (33) lower speed. An interesting material is the graphite for which the
predictions of the critical speeds are very high. The reason is that
where the elastic modulus for graphite is much smaller than that of the
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Table 1 Material properties, [4]

Materials 1 2 3 4 5
Properties Aluminum Cast Iron Silicon Carbide Graphite Glass
Elastic modulusg [ GPd 68.9 124.1 89.6 6.9 89.6
Poisson’s ratioy 0.33 0.3 0.15 0.3 0.16
Coefficient of expansiong [10°K™1] 1.69 1.08 0.47 0.47 0.54
Thermal diffusivity, x [ 10> m?/s] 8.58 1.16 0.61 0.81 0.03
Thermal conductivityk [ W/mK] 202 45 16 12 0.8

mating body. The low elastic modulus greatly reduces the pressegeses, the critical speed for Case V is similar to that for Case III.

for a given amount of heat transferred into the body, thereby iriiowever, the critical speed for the pair of silicon carbide and

proving the thermoelastic behavior of the system. In fact, the crigraphite drops significantly due to the effect of the thermal contact

cal speed for the pair of silicon carbide and graphite is far beyor@nductance.

the practical operating conditions and the system is thermoelastiResults show that near the asymptote, the critical speed varies

cally stable. . _significantly even by a small change of the material properties and
Case |l takes the effect of the shear stress at the interface }'-?f disk thickness. For example, since the critical speed for the

tcr?en?rlic(‘:fir(.)ar:log.irl—T%grgllcoe\lllvStﬁ(eerega(ljl(i:eosngﬁtct\i/\?i;y rggfggrfngnte ir of silicon carbide and graphite changes significantly depend-
; pa Y. PIe, ﬁg on the conditions, it is expected that the critical speed is lo-
pair of aluminum and glass can be treated as an insulatQr:

conductor system. For this friction pair, Table 2 shows the critic&f"tEd near th_e asyr_n_ptote. . . , -
speed does not vary whethérs=0 or not. Therefore, in an Secondly, in addlpon to comparing with Bl_thons predictions,
insulator-conductor system, the effect of the shear parameter{§ cOmpare theoretical results with the experimental data by Dow
very small and can be neglected. However, the critical speeds vaRd Stockwell[19]. Their experimental instrument consists of a
significantly when the friction pair includes the graphite with otating drum in contact with a stationary blade. The drum mate-
very low elastic modulus. Therefore, the elastic modulus plays &@! is made of A}O;-Ti and the blade materials are aluminum,
important role whem g# 0. In addition to the significant changebrass and steel. The applied load is 44.5 N. The corresponding
in the critical speed, the elastic modulus influences the wafriction coefficient aref=0.38, 0.16 and 0.26, respectively. The
speedcy . As mentioned above, the wave is likely to move withexperimentally observed critical speeds are 7.11 m/s, 8.13 m/s and
the conducting body. Moreover, the wave tends to move with tf08 m/s for each friction pair, respectively. Their theoretical criti-
body with a lower elastic modulus. This effect is turned on whegal speeds are 0.66 m/s, 1.07 m/s and 0.4 m/s. Note that their
As#0. For graphite this effect of elastic modulus is more domiheory is based on the simplified TEI model for the smooth sur-
nant than the effect of the thermal conductivity, and the waugce, and their predicted critical speeds are roughly ten times
speed is moving with the body made of graphite. lower than the observed critical speeds. Figure 2 shows the theo-
Case Ill shows the effect of the disk thickness. Compared to;&ica| predictions of the critical speed as a function of the surface

semi-infinite body, a finite disk thickness tends to reduce the eff&g),,gnness for each friction pair. The observed critical speeds are
of the elastic modulus, thereby causing a significant change in i@ ;" 2 red in the figure. Since all the input data is not given
critical speed as well as the wave speed. In this case, the wav d !

. ; . . W& dtne parameters are assumed in the simulations. The assumed
moving with the conducting body even though the friction pair iS B N o 2
made of graphite. Case IV shows the effect of the thermal cont&drameters arg=3 MPa andj,=5x10"W/m” K. .
conductance. It is shown that the thermal contact conductancd 9ure 2 shows that TEI model for the rough surface predicts a
does not significantly influence the critical speed for a friction paftgher critical speed than that for the smooth surface model. The
when one member is made of glass. It should be mentioned ti&fface roughness plays an important role, and for the range of
further investigation of thermal contact conductance shows thaskface roughness of 2—6m the results are close to experiments.
also reduces the effect of the elastic modulus on the wave speggecially, the critical speeds at=5.39 um for the aluminum
At a small enough thermal contact conductance, the wave is mdyade,o=2.79 um for the brass blade, ang=2.14 um for the
ing with the conducting body. Case V shows the combined effesteel blade mach the observed critical speeds. The expected sur-
of the disk thickness and the thermal contact conductance. In méste roughness is in the reasonable range in practice. However,

Table 2 Critical speed for plane stress  (f=0.5 and ©2=39.37/m)

Condition CASE | CASE I CASE Il CASE IV CASE V
Semi-Infinite Semi-Infinite Qly=01,=1 Semi-Infinite Qly=0l =1

Friction Ag=0 Ag#0 Ag#0 As#0 As#0

Pair J= Jo= Je= Je=10° Wim? K Je=10° Wim? K

Upper Lower
Body Body U, [M/s] cy[mis]  Ug, [mls] Cy [M/g] U [mls]  cy[m/is]  Ug[m/s]  cy[m/s] U [m/s] ¢y [mlg]

1 2 0.659  —0.025 0.550 —0.019 0.134 —0.009 0.457 —0.015 0.104 —0.005
3 0.143 —0.005 0.143 —0.005 0.055 —0.004 0.143 —0.005 0.057 —0.003
4 2.524 —0.013 4.245 —0.028 0.676 —0.006 3.521 —0.022 0.606 —0.004
5 0.058 —0.001 0.058 —0.001 0.028 —0.001 0.058 —0.001 0.028 —0.001
2 3 0.421  —0.006 0.625 —0.010 0.079 —0.002 0.490 —0.007 0.059 —0.001
4 62.113 —0.043 910.819 —910.812 10.929 -0.012 68.643  —68.643 1.142 —0.001
5 0.020 —0.001 0.021 —0.001 0.009 —0.000 0.021 —0.000 0.009 —0.000
3 4 139080 -10 235.823 —235.815 2520.861 —0.329 47.508  —47.506 4.169 —0.001
5 0.072 —0.001 0.072 —0.001 0.021 —0.000 0.072 —0.001 0.021 —0.000
4 5 41.402  —-0.031 6.590 —0.004 9.568 —0.012 5.679 —0.003 1.492 —0.002
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Fig. 2 Comparison with experimental data

the critical speed is very sensitive to some properties and geowith increasing surface separation, and tends to infinity when the
etry of the system and, therefore, the accurate input data is g&p approaches three standard deviations of the combined surface
quired. roughness.

3.1 Effect of Surface Characteristic Parametery. The 32 Effect of Material Parameter A;. Figure 4 shows the
critical speed as a function of the film gap for a series of surfaggfect of material parametek; on the critical speed for-0.5
charac_teri_s_tics parametgri; plotted in Fig. 3_. Th_is parameter can— A¢<0.5. This figure pertains to “perfect contact’ between two
vary significantly depending on the application. For examplgggies. |t is also assumed that both bodies have identical dimen-
x=0.5 MPa for a mechanical face seal where the surfaces g, and material properties, except their elastic modulus is dif-
polished within two helium light band. For a friction material in Borent ie. o —xk* =k =1 Olu=0l =1 andJ.— N

. . . : . , e, K , Qly L and J.=o. Physi
clutch disk,y is typically 9 MPa,[16]. The simulations presented v, A~ is directl tional to the fricti ffici d
are for a wide rangg of values to cover these applications. Thi ally, Ay 1S directly proportional to the iriction coe _|C|erlt, an
parameter is directly proportional to the asperity radiugensity ermal expansion coefficiend, . Therefore, as\y is reduced,
7 and the surface roughness the system’s critical speed is pushed to a higher value. As men-

The critical speed decreases with increasing surface charactigted above, the shear parametey represents the effect of the
istic parameter since more frictional heat is generated at the int8Rear stresses at the interface. Figure 4 shows that neglecting the
face for a relatively largey. Based on Greenwood and Tripp'sshear stress at the interfage., A s=0) results in a large error in
theory, the surface separation increases as the applied load piediction of the critical speed. Therefore when dealing with two
creases. The surfaces are completely separated njzeBo, im-  conducting bodies in contact, the shear stress at the interface must
plying that the load on the system is removed and the system ismat be neglected.
longer susceptible to TEI. Therefore, the critical speed increasesThe shear parameteXg is nil when both conducting bodies

N

—
[

Dimensionless critical speed, U=U/Qxy
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)

1 L L L
1.0 1.5 2.0 2.5 3.0
Dimensionless surface separation, Hy=ho/ o

S
4
o
o
h

Fig. 3 Effect of surface characteristic parameter on the critical speeds
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Fig. 4 Critical speeds as a function of Ag(a*=k*=k*=1; Ql;=Ql,=1; J,=»)

have the same elastic modulus and Poisson’s ratio. Thereforepositive, the absolute wave speed is very small. In other words,
this simulationA s=0 represents that the material properties anithe wave is likely to move together with the disk having a smaller
geometry of the upper disk are identical to those of the lower disélastic modulus when Poisson’s ratios are the same and the rough-
The maximum critical speed occurs/ag=0 due to the symmetry ness effect is neglected.
of the problem. Note that effect of the surface roughness appears ) ) )
in the definition of parametera; and As. When A7 is small 3.3 Effect of Disk Thickness. Figure 5 shows the effect of
enough (\r<0.4), the critical speed approaches infinity &g disk thickness whem* = x* =k* =1, At=0.2 andJ.=x=. The
—0. In other words, a system consisted of two identical condud@imulations show that when both of the disks are of identical
ing bodies(same material properties and dimensjonsuld be thickness the critical speed tends to infinitye¢= 0, indicating
immune from TEI provided thad; is less than a certain value.that TEI does not occur. The asymptoteAaj=0 occurs because
This finding is in agreement with the results of Burton etfd].  both disks have the same material properties and geometry. How-
It is also worthwhile to note that the sign of shear paraméater ever, if the thickness of the disks are different, the asymptote is
does not affect on the critical speed and, therefore, the criticgifted. When the upper disk is thicker than the lower disk, the
speed is symmetric abouts=0. However, the wave speed isasymptote is shifted toward positives where the elastic modulus
influenced by the sign ol 5. WhenAg is negative, the wave is of the lower disk is relatively small. When the lower disk is
moving at nearly the same speed of the moving disk. Whegis  thicker than the upper disk, the asymptote is shifted to the nega-

IOA A [A}
H \
." , \ Upper disk
Lower disk ' : Five folq thicker than
Five fold thicker than  / ) \ Lower disk
Upper disk ‘.‘ ' Oy =5
| [}

—
(==
(%

'
‘j \ / Qlr =1
"

L Y

.

Qg =1
. Q=1
V‘ \ Same disk thickness

Dimensionless critical speed, U=U/Qxy

Semi-infinite disks

1lllllllllllllllllllllllIIIlIlIllIIlIIIIIIIIlIII
995 04 -03 02 -01 00 o0l 02 03 04 05

As

Fig. 5 Effect of disk thickness on the critical speeds (a*=rk*=k*=1; A;=0.2;
Je=)
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Fig. 6 Effect of thermal conductivity ratio on the critical speeds (a*=k*=1; Ar
=0.2; Q/,;=Q/,=7,=x)

tive A where the elastic modulus of the upper disk is relativelgardless of*, in the range of\ s>0.3, the dimensionless critical
small. According to Fig. 4, if the elastic moduli of both bodies argpeed forQl,,=Ql, =« is predicted to be about 40. Note that
identical, then the critical speed goes to the infinity. Figure parameterx* appears in the relationship between the critical
shows that to improve thermoelastic performance, it is advanigseed and the wave speed=x*c,_—U. At a positiveAs, the
geous to have a thicker disk with a higher elastic modulus. |, -\« speed, tends to move with the lower body. A& in-

Figure 5 shows that the dimensionless critical speed(¥t creasesg, decreases. Therefore, at a larges, the effect ofx*
;géhlgé A'S g'ng dhir thNagt;hfhgtm';?;;%ig&f%g&\ﬂI;r_eoiufr?é_ becomes very small. This effect is more significant for the system
P TS, p T S of Qly=Ql =1 and, therefore, the variation of the critical speed
tions of the disks’ thickness parametéis, and(}l, and, there- with the diffusivity ratio is small forA ¢>0
fore, in order to fix parameterSt and As other material proper- " & #1, the critical speed is not s?ymmetric abdu=0. The
ties STOL"d zefChanef(.j'.” a|!1|_ rlr(1ater|a_l plropertlehs arehflxec_i,_t fimulations show that for all thermal diffusivity ratios of
critical speed for the finite thickness is lower than the critical, o g

Py : k*<1.57, the critical speed fd2l ;= QI = goes to infinity at

speed for the semi-infinite thickness). As=0, implying that TEI does not occur whehg=0. Sincecy

3.4 Effect of Thermal Conductivity Ratio. Figure 6 shows = x*¢, —U, the asymptote remains Ats=0. However, under the
the effect of thermal conductivity ratik* wheno*=x*=1, At conditions simulated fok*=1.57, the critical speed has a finite
=0.2 andJ.=<. The thick lines represent the critical speed fovalue at anyAs. When At decreases, this limiting value af*
Qly=0l. =1 and the thin lines represent the critical speed fdfecomes larger thar* =1.57. Below the limiting value of*,
Qly=Ql =%. The critical speed fok* =1 goes to the infinity at there exists a condition that makes the system immune from TEI
As=0 since the material properties and the geometry of two bodepending upon the ratio of the elastic modulus.«Asincreases,
ies are identical. The simulations show that the asymptot&sat the thermal expansion increases, and after the limiting valué of
=0 is shifted to negativ. s whenk* >1, and to positiveAs for the thermal expansion is dominant over the role of the contact
k* <1 since relatively large amount of frictional heat is transpressure to reduce TEI. As a result, the critical speed always has a
ferred into the disk with higher thermal conductivity. finite value. However, simulation shows that the critical speed for

The simulations also show that at a giv&n the critical speed Qly=Ql =1 goes to infinity at«* =2. It implies that the limit-
has two different asymptotes fé* #1 due to the lack of sym- ing value of«x* is much higher for the finite disk thickness.

metry in the thermal conductivity. Note that two asymptotes re- . - . .
duce to one as the material parameter becomes large[,18]. 3.6 Effect of Thermal Expansion Co.effluent.R.atlo. F.'g'
N o o ure 8 shows the effect of thermal expansion coefficient r@tion
Whenk* # 1, the system always has a finite value of critical speeg% " :
and, therefore, an unconditionally stable condition does not exi _e*crmcal speed. Tllese results were obtained by sem‘h_g_
At a large positiveAs, the effect ofk* on the critical speed is _ K+ Ar=0.2 andjc=c°. The thick lines represent the criti-
reduced. cal speed folll,=Ql =1 and the thin Il'nes represent the criti-
cal speed fofll,=Ql =0o0. Consistent with previous results, the
3.5 Effect of Thermal Diffusivity Ratio. Figure 7 shows simulations show that the critical speed f6f=1 goes to infinity
the effect of thermal diffusivity ratioc* when a* =k*=1, A; atAgs=0 due to the symmetry of the material properties and ge-
=0.2 andJ,=. The thick lines represent the critical speed fopmetry. The asymptote is shifted to the negativgfor o* =1.5,
Qly=0Ql =1 and the thin lines represent the critical speed faand at the positive\ s for «* =0.5. The simulations show that for
Qly=0l_ =. This plot is useful for determining the critical «* =1.56 the critical speed fdi| ;= QI = has a finite value at
speed for a range of ¢ values. Note that in general the thresholéiny A 5 and, therefore, can not be unconditionally stable. Similar
of critical speed increases with decreasing thermal diffusivity ratto the thermal diffusivity case, ag* increases, the thermal ex-
«*. Furthermore, the critical speed is sensitive to a rangd §f pansion increases and overwhelms the role of the contact pressure
from 0 to 0.3 after which it does not change appreciably. Reo reduce TEI. Whenw* exceeds the limiting value, the critical
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Fig. 7 Effect of thermal diffusivity ratio on the critical speeds (a*=k*=1; A;
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speed always has a finite value. However, for the cas@lgf the thermal contact conductance decreases, the temperature wave
=0l =1, the critical speed has an asymptotevat=2. becomes more asymmetric, resulting in lowering the threshold of
the critical speed.

3.7 Effect of Thermal Contact Conductance. Figure 9 . L .
9 Figure 10 shows the variation of surface temperature ré@tio

shows the effect of thermal contact conductad¢e when a* . X
—k*=k*=1, Ql,,=0l, =%, A;=0.2. The simulations show and the temperature phase sH¥f\ corresponding to Figure 9.

o _ ko o
that the critical speed is maximum At=0 for anyJ} due to the Note that the temperature rai =1 and0A=0 for J; == since

symmetry of material properties and geometry. The sign of tigere is no thermal resistance. The simulations show thalifor
shear parametek s does not affect the critical speed. The critica” * the temperature ratig* <1 at the negativé\ s, and¢*>1 for

speed increases with increasing thermal contact conductari®€ positiveAs. In other words, the surface temperature of the
When the thermal contact conductance has a finite value, the glisk with a small elastic modulus is higher than that of the surface
face temperature of the upper disk is different from that of theith a large elastic modulus. The temperature difference between
lower disk and the temperature wave is shifted at the interface. Ago disks increases as the thermal contact conductance decreases
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and the shear parametérs goes to zero. Fofi} #« the phase TEl is likely to occur. This model takes into account the surface
shift has a negative value at aly, which implies that the wave roughness characteristics of the contacting bodies, the influence of
of the moving body is delayed compared to the stationary bodie disk thickness on the critical speed, and the effect of thermal
The phase shift is symmetric abolt= 0. The minimum value of contact conductance at the interface. Simple analytical expres-
the phase shift occurs ats=0. In other words, when the elastiCsjons are provided for the special cases neglecting the disk thick-
moduli of two bodies are identical, the phase shift becomes aqq and the thermal contact conductance. The derived equations
maximum at a glverﬁ;‘ - The absolute value of the phase shifthqy that TEI is governed by eight dimensionless independent
decreasgs with anreasmg thermal cqntact conductance, and fi’&r’ameters. Three parameters are the ratios of thermal properties,
comes nil wherlig — (no thermal resistangeas expected. one parameter is the thermal contact conductance, and two param-
4 Concluding Remarks eters are related to the thickness. The other two parameters are the
) ) ) _shear parametek 5 and the material parametér;. Roughness

An idealized model is developed to understand the mechanigifiec is included in the shear parameter and the material param-

of thermoelastic instability in a system consisting of two bodies %fter. The shear parameter reduces to the Dundurs’ constant multi-

finite thickness and thermal conductivity. Appropriate governing,. L - . .
equations are derived to solve the critical speed beyond which ﬁléed by the friction coefficient for the simple case of the semi-
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Fig. 10 Effect of thermal contact conductance on the phase shift and the temperature ratio
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Direct Computational Simulations
for Internal Condensing Flows and
... | Results on Attainability/Stability
ese | 0f Steady Solutions, Their
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o.iang J INtrinsic Waviness, and Their
6.y I Noise Sensitivity

X. Wang

The paper presents a new two-dimensional computational approach and results for
Department of Mechanical laminar/laminar internal condensing flows. Accurate numerical solutions of the full gov-
Engineering—Engineering Mechanics, erning equations are presented for steady and unsteady film condensation flows on a
Michigan Technological University, sidewall inside a vertical channel. It is found that exit conditions and noise sensitivity are
1400 Townsend Drive, important. Even for stable steady solutions obtained for nearly incompressible vapor
Houghton, MI 49931 phase flows associated with unconstrained exit conditions, the noise sensitivity to the
condensing surface’s minuscule transverse vibrations is high. The structure of waves, the
underlying characteristics, and the “growth/damping rates” for the disturbances are dis-
cussed. A resonance condition for high “growth rates” is proposed and its efficacy in
significantly enhancing wave motion and heat transfer rates is computationally demon-
strated. For the unconstrained exit cases, the results make possible a separately reported
study of the effects of shear, gravity, and surface tension on noise sensitive stable
solutions.[DOI: 10.1115/1.1641063

1 Introduction et al.[8], Dhir and Lienhard9], Rose[10], Tanasawa11], Cess
12], Koh [13], etc). Heat transfer correlations for laminar and
Juavy condensate situations for the vertical/inclined plate geom-
densation flows on a sidewall inside a vertical channel. This E,er are given by Kutateladzd 4] and correlations for turbulent
| d try f dd - Li ¢ all1 : d !:%ndensate, as proposed by Labun{gd, are given in Incropera
aiso a good geometry for a ress'@e. lang € all1] an ._and DeWitt[16]. For smooth-interface laminar/laminar condens-
Liang[2]) thg '”f!“er.‘ce of shear over grawty—elther by changlng.'g flows over a flat plate in vertical, horizontal, and tilted con-
Lhe chgnr\el |rr1]cllr;|at|or1 frohm v%rtlcal to k}orlzor)(zslee Fig. llpr figurations; the computational approach developed in this paper
oy studying the flow in the absence of gravitypace applica- yio|qs results(see Yu[17]) in agreement with the relevant solu-
tions). Such results are important in understanding qualitati ns of Nussel{5] and Koh[14].
phe_nomena and (_Jbtalnlng quantitative res(dtiter SUItable_ €X- With regard tointernal condensing flows, some qualitative un-
perimental validations of the computational tool for quas"Stea%rstanding exists in papers by Chow and Pafi8], Narain
annular/stratified internal condensing flowthat are relevant to g 5] [19], etc. These analyses/predictions rely on integral control
good design and performance of condensers in applicat&®® \o|yme formulations that employnodelsfor interfacial shear
Krotiuk [3] and Faghri4]) such as looped heat pipes, capillarye g., Henstock and Hanraftg0]) and are typically available only
pumped loops, thermal management systems, and electronig- fast vapor motions requiring no exit condition specification
cooling devices. These applications often involve pure vapofse,, the vapor flow in Fig. 1 is “parabolid” To address laminar/
with none to negligible presence of noncondensable gases. Figiinar flow issues that cannot be addressed by the above ap-
damental results reported in this paper address issues of annulgdach, direct numerical simulations are undertaken here to better
stratified condensing flows’ heat transfer rates, flow realizabilitynderstand the wave phenomena and associated effects. Strictly
stability, resonant and nonresonant noise sensitivity, and exit c@peaking the results presented here are valid only for laminar va-
dition sensitivity. . ‘ o por flows (i.e., inlet vapor Reynolds number based on channel
This channel flow geometry is also a simple modification of theeight as characteristic length should be approximately less than
classical flat plate geometry associated with clasgig@rnalfim  1400-2000 and laminar condensate flowse., film Reynolds
condensation flow studies over vertical, horizontal, and tiltedumber as defined in Incropera and DeWits] should be ap-
wallls (Nusselt[5], Rohsenow[6], Sparrow and Greg§7], Koh proximately less than 1400—1800n practice, inlet vapor Rey-
nolds number up to 7000 is allowed because of sufficiently thick
*To whom correspondence should be addressed. laminar sub-layer in the vicinity of the interface. This is because
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF vapor streamlines, as they approach the interface, are almost per-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . ! . .
CHANICS. Manuscript received by the Applied Mechanics Division, December 1z¥?end'Cl%|ar to |t(see Liang et al.[l]) and the Ve|OCIty along .the
2002; final revision, June 9, 2003. Associate Editor: T. E. Tezduyar. Discussion 8tfeamlines are very small. This allows the vapor streamlines to
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalgierce the interface and drift downstream as liquid streamlines in
Applied Mechanics, Department of Mechanical and Environmental Engineerin ; ; [
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will gep even slower mOtI.On of tHanjln.ar Condensatg' As aresult, itis
accepted until four months after final publication of this paper in the ASKIERI ound that computatlona_l predlct!ons of film thkneSSv heat trans-
NAL OF APPLIED MECHANICS. fer rates, etc. under laminar/laminar assumptigtheugh perhaps

Accurate numerical solutions of the full governing equation
are presented for steady and unsteady laminar/laminar film ¢
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other methodgTezduyar[25], etc). The numerical scheme used
in this paper for thenterface tracking equatioexploits existing
mathematical knowledge and experience for this equatsae

U \ Abbott and Basc$26)) to sidetrack the inaccuracy problems as-
< sociated with reconstructing interface location within and around
\ theinterface cellgredicted by VOF or related interfacapturing

techniques(see Tezduyaf25], Li and Renardy{27], etc). The
scheme used here ensures convergence and accuracy of both the
amplitude and the phase of the interfacial waves. At each time
step, the scheme locates the interface, solves the Navier-Stokes
equation in each phase, satisfies the full nonlinear conditions at
the phase-change interface, and satisfies the relevant inlet, outlet,
% and wall conditions. Since vapor in internal condensing flows
slow down by the exit, the steady vapor flow equations are “el-
liptic” in the exit region (i.e., downstream points affect a flow
variable’s value at a representative point P in Fig.ahd exit

COOLANT g
IF o«

sswussE UNSTEADY condition needs to be specified for a solution. Note that any con-
STEADY denser section of the type shown in Fig. 1 is, typically, jupbst
) ) . of a flow loop. A flow loop which maintains a constant pressure
Fig. 1 Flow geometry for simulations P, and constant flow rate of saturated vapor at the inlet may also

be designedsee, e.g., Fig.)2o provide:(a) an unconstrained exit

condition (which is very often the case when exit pressure, or
not the predictions of vapor velocity profile outside the lamina@quivalently, exit vapor flow rate is free to adjust to any value it
sublayer of the vapor surrounding the interfacate in good seeks that allows the vapor to flow at nearly constant dengity
agreementsee Liang et al[1]) up to inlet Reynolds number asdensity at the inlgt or (b) a constrained exit conditiofthis situ-
high as 8000, with relevant experimental results of{ R]. ation arises, when further downstream of the exit, there are natural

This paper proposes a novel and direct computational technige@straints in the flow loop or, as in Fig. 2, there are active flow

for steady and unsteady internal condensing flows in the annuleehtrol devicey that forces non-negligible vapor density varia-
stratified regime. The unsteady laminar/laminar simulations ertiens between the inlet and the outlet of the condenser section. For
ploy a suitable adaptive grid and numerical solution of the apprtiie constrained exit case not considered in this paper, the “un-
priate hyperbolidanterface tracking equatiowhich is the same as steady” equations are also spatially “elliptic” near the exit and an
the one used in level-set meth@ebe Sussman et §22] and Son exit condition can be prescribed if a nonconstant vapor density
and Dhir [23]), VOF method(see Hirt and Nichol§24]), and and an equation of state—of the typge=p,(p,,75)— is incor-

i, V1, V2: Solenoid Valve
I.I.—.- = =========l’l Py \é23: glneumaticValve
F1, F2: Flow Meter

" Cold water I = S1, S2: Switch
" P: Variable Head Pump

Test T: Sub cooled Tank
Il Section C: Auxiliary Condenser
" APT: Absolute Pressure Transducer

" Cold water

Unconstrained Exit:
L With fixed pressure and flow rate at the inlet of

" M,_ :__M“_.k_ the test-section, valve V2 and pressure in T are
=7 not actively controlled (S1 and S2 open) and
P APT 3 steady state is naturally achieved with tank T
V2 completely filled with liquid. The system finds

S1 natural values of exit vapor quality Z, = Zn,

: Z | @ 1) and pressure at APT.

; : T
ZQin =M, s, (PB) ++ S2 With fixed pressure and flow rate at the inlet of
1 | __ - the test-section, valve V2 is controlled to a set
V3 fo point value in F2 while the pressure at APT in a

Boiler partially filled T is held fixed at a value lower
than its natural value for the unconstrained case.
The flow can now be steady/quasi-steady at
different exit vapor qualities (including Z, #
ZelNa)'

Fig. 2 The solenoid valve V1 (actively controlled by flow meter ~ F1) and constant heat input Q,nzl\'/l,»n~h,g(p5) to the
boiler fixes inlet pressure  p, and inlet flow rate to the test section. The mass flow rate through pump P is adjusted to
a value that matches the corresponding value at F1. A high flow rate of the coolant  (water) flow around the test section
fixes condensing surface temperature at a nearly uniform value of T,, while it still allows for different heat removed
rates for different exit qualities  Z,.
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porated in the governing equations for the vapor phase. The ygee Lighthill[33]), the reported waves, in their linearized limits,
constrained exit case, for which vapor compressibility is unimpoare nondispersivéi.e., phase speeds do not depend on the fre-
tant, is the focus of steady and unsteady simulations in this papguency or wavelengths of the disturbandeor the above reasons,
For these simulations the “unsteady” equations for the uncomeither a survey of results nor comparisons with results from the
strained exit case areot spatially “elliptic” and an exit condition vast literature on noncondensing air/water type film flakek-
cannot be prescribed if a constant inlet vapor dengjty p,o is  seenko et al[31]) is considered to be within the scope of this
assumed in the governing equations. Constant vapor density paper.

sumption is valid for conditions involving\p,/p,q<1 or, say, The results presented here underscore the importance of includ-
Ap,lpsyg is less than 5% —this being the typical criteria for asing the role of exit conditions and noise sensitivity in categorizing
suming incompressibility for gases that flow inside a duct arfateat transfer correlations and flow regime maps. Therefore cur-
have Mach number values less than 0.3. For the unconstrairiedtly available heat transfer correlatiaifsaviss et al[34]; Shah

exit cases involving an assumed constant density for the vap8bl; etc) and flow regime mapssee Hewitt et al[36], Carey
phase, it is shown in this paper that, iftat0, one starts aany [37], etc) can be improved to address their reported deficiencies
steady solution of the steady “elliptic” problem in Fig. (inder (See Palen et al38]). Therefore the reported results on exit con-
any reasonable and well-defined exit conditiothen, over time ditions, noise sensitivity, and flow regime boundaries—in con-
(utilizing unconstrained unsteady simulation fe¢0), a natural junction with proper experiments and use of computational tool

steady solution and an associated natural exit condition is uch as the one proposed here—will eventually be of value in

) . ) . )etter categorization and development of relevant heat-transfer
tained at large times. This naturally determined value of the e re|ations and flow regime maps.

condition for prescribed inlet condition is very similar to the well-
known behavior of other incompressible duct flog@gsgle phase
or air/water flow$ which also exhibit well-defined pressure dif- . .
ference for given inlet pressure and flow rate. In fact, in Liana Governing Equations
et al.[1], it is shown that the naturally selected quasi-steady com- The liquid and vapor phases in the flde.g., see Fig. Jlare
putational solutions that are obtained for flow cases considereddgnoted by a subscript | =1 for liquid andl =2 for vapor. The
the experimental runs of L[21] and Lu and Suryanarayafiag] fluid propertiesidensityp, viscosity », specific heaC,,, and ther-
yield values of film thickness, heat transfer rates, etc., that are'THal conduqtlwtyk) with subscriptl are assumed to take their
. ) : . representative constant values for each phasel(or 2). Let 7,
good agreement with experimentally obtained values. While t

) ) . . the temperature fieldp, be the pressure fieldgg(p) be the
generates confidence in the proposed method of identifying stalg,ration temperature of the vapor as a function of local pressure

steady solutions, these stable solutions are shown here to be $emx pe the film thicknessim be the local interfacial mass flux,
sitive to minuscule bottom plate noise that are typically almogt, (x) (<7Z(p)) be aknowntemperature variation of the cooled
always present. This makes the interface wavy for most situatiomgttom plate, and/,=u,i+v,j be the velocity fields. Further-
The reported determination of phase speeds eratacteristics more, let h be the channel heiglgt, andg, be the components of
curves(along which disturbances propagdafer the waves im- gravity alongx andy-axes,p, be the inlet pressuré\ T="7¢(p,)
prove our understanding of these flows and leads to a proposalo?w(0) be a representative controlling temperature difference be-
a new hitherto unknown resonance condition whose efficacy fi¥een the vapor and the bottom plale, be the heat of vapor-

also demonstrated in this paper. It is shown that specifically dgation at temperaturdy(p), andU be theaverageinlet vapor

signed noise sources placed at suitably specified locations an ed determined by the inlet mass flux. Witrepresenting the

o e ) . ..~ aciual time andX, y) representing physical distances of a point
specified variations in frequency satisfy the resonance criteria alfh respect to the axes in Fig. k€0 is at the inlet ang=0 is

enhance the wave energy and heat transfer rates significantly. ot the condensing surfageve introduce a new list of fundamental
Unsteady simulations starting from steady solutions for the COqgndimensional ~ variables—viz. x{y,t,8,u, v, , 6, ,m)

strained exit cases are not considered here. In this case, compresgyoygh the following definitions:
ibility effects on the stability and noise-sensitivity are expected to
be important and these effects are one of the underlying causes {x,y,A,u;,m={h.x,h-y,h-8,U-u;,p,;-U-m}
behind various interesting experimental resitse Bhatt et al.
[29], etp) dealing with experiments whose exit conditions are [, 7, ,p, ,t}={U-v,,(AT)- 6,,po+pU% m,(h/U)-t}.
constrained. The stability and flow oscillations issues associated (1)
with this case are also believed to arise in applications such as ) ) ] ) )
Looped Heat PipegFaghri [4]) where limits on the power of Interior Equations. The nondimensional differential fo_rms
passive pumpingwicks, etc) cause pressure variation constraint§f mass, momenturfx andy components and energy equations
at the condenser exit while approximately constant values of prd@t incompressible flow in the interior of either of the phases are
sure and flow rate is retained at the condenser inlet. the well-known equations:

This paper restricts itself to consideration of single but arbitrary
Fourier components of bottom plate noi@anding wavesand %Jr @:
avoids discussions of wave interactions resulting from more com- ax ay
plex random noises made up of several Fourier components.
Within this limited context, we find that the front-steepening soli- Jdu, au, au, am o, 1 u,
tary wave patterns that are experimentally observed on alr/waterﬁ"rulﬁ‘“’lw— o TR Re v EYd
type vertical liquid films(see Liu and Golluf30] and Alek-
seenko, et al.31]) or the ones that are obtained by Miy4&2] in v, v, v, o,
the reported computational simulations for the Nusgbétprob- —+u— 7( )
lem that deals with condensation on a vertical plate, occur much at
more gradually for the gravity dominated internal condensing flow

+F71+ 1 2U|+l§’2U|
'y Re | axZ " ay?

2 2
cases considered here. Categorizatiotypical noise levelgwith 9,90, 00 1 ((9 0 9 '9|) @
a random mix of amplitude, frequency, and wavelengémsltypi- at " ox Yoy RePr|ax? " ay?)

cal responsesor strange attractorsas termed by Liu and Gollub . ) .
[30]) requires separate study and is outside the scope of this papérere Re=pUhw,, Pi=w,Cp/k, Fr,"=gh/U* and Fy
Furthermore, unlike gravity driven shallow or deep water waves gyh/UZ.
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Interface Conditions. The nearly exact interface conditions e at the top wall §=1,0<x<Xx,) at any timet:
(see Delhayd39], etc) for condensing flows are given in the B B _
Appendix (see Egs(Al1)—(A8)). Utilizing a superscript [ for U(x, 1) =0, v(x1,)=0, 6(x,1)=650).  (12)
values of flow variables at the interfaéé=y—A(x,t)=0, non-  Furthermore, because of the nature of boundary conditions in Egs.
dimensional forms of the interface conditions in the Appendix ar@0)—(12), 6,(x,y,t)=64(0) is assumed/prescribed to limit the
as given below. discussions in this paper to the flow of saturated vapor. This is
e The nondimensional form of the requirement of continuity O?one because, for tiyeure vapor flows considered here, it is easy

: o . o verify the well-known fact that the effects of superhéaim-
Laénc%enr]lggl component of velocities, as given by E42), monly in the 5-10°C rangeare negligible.

Up=U;— 8 (vh—v}), (3) Exit Conditions. ~ Any condenser section of the type shown in
_ Fig. 1 is typically apart of a closed flow loop. A flow loofisee,
where §,= 9/ ox. ) : S
e.g., Fig. 2, which maintains a constant flow rate and constant
%ressurep, (i.e. m,=0) at the inlet, may also be designed to
provide: (a) an unconstrained exit conditigmvhich is very often

* The nondimensional form of the normal component of m
mentum balance at the interface, as given by EB),

becomes the casg or (b) a constrained exit conditiofthis may arise from
o P2 o 1 Oxx o[ P1 downstream constraints in the flow loop or active flow control of
1T T 2yap) T —— 1l (4) the downstream floyAn exit condition, at any timé is specified
1 Wel[1+ 8] P2

o by either specifying the value of the average cross-sectional pres-
where We=p,U?h/o, and surface tension is assumed to syre of the vapor at the exit or, equivalentls seen later from

be nearly constant because of the nearly constant interfagg@uits such as the one in Fig), ®y specifying the exit vapor
temperature. As reported elsewhere, results for quality Z.(t). Exit vapor qualityZ.(t) is the ratio of vapor mass
=0o(74(py)) in Egs. (A3)—(Ad4), are nearly the same as theflow rate at exit k=Xx,) to vapor mass flow rate at inlet.

ones reported here for constant For the case ofonstrainedexit conditions, vapor compressibil-
« The tangential component of momentum balance at the intély effects cannot be ignored for unsteady simulations, and hence
face, as given by EqA4), becomes one cannot treat vapor denspy(x,y,t) to be a constant equal to
. . its inlet valuep,y. For these compressible cases, the “elliptic”
% ':&% I+[t] ) equations for the vapor would require specification of the exit
ay| wm1 Iy ' vapor qualityZ.(t) defined as
where the tern{t] in Eq. (5) is defined in Eq.(A9) of the 1
Appendix. Ze(t):f {p2(Xe Y, 1) paotua(Xe,y,t)-dy,  (13)
e The nondimensional form of mass flux@s, andmy in Eq. olxe V)
(A5) become while allowing for nonconstant unsteady/steady vapor density val-
MKE[UE((?ﬁ/W)—(vil—ﬁﬁlﬂt)]/\/m, and ues. This constrained exit case, though important in some cases

) , i 5 because of the interesting compressibility effects on flow stability
My = (p2/p1)[U(I8IX) = (vy— 36l 9t) 1IN 1+ (9l Ix) and noise sensitivitygsee Bhatt et al27], etc), is not considered
(6) here.
For the “elliptic” steady cases considered here fex0, the
vapor density is assumed to be a constant itk p,g and exit
Menergy=Ja Rey Pry) {36, /an|'— (K, /ky)d6,/dn|'},  (7)  condition is specified here by assigning a fixed value for the exit

where JaeC AT/RS, andh%,=hio(7:(Po)). vapor qualityZ, given by
« Nondimensional form of interfacial mass balance in &) 7 f
o=

* The nondimensional form ahgpery, in EQ. (A6) becomes

1

becomes U3 steadfXe Y) - dY. (14)
m_ _r-n\/ _r-nz = (8) Ostead§Xe)

“ “ e For unsteady cases under the assumption of constant vapor den-
» The nondimensional thermodynamic restriction on interfaciaitiesp,(X,y,t) = p,g, the “unsteady” equations are not “elliptic”

temperatures, as given by E@8), becomes near the exit and unsteady exit vapor quality(t) in Eq. (13

D i ; cannot be specified.
= by=Tu(p,) AT= (). © P
o . _ Initial Conditions. If t=0 is chosen to be the time when

Within the vapor phase, for the refrigerants considered hergturated vapor first comes in contact and condenses on a dry
changes in absolute pressure relative to the inlet pressure are typbcooled 7,,(x)<74(p,)) bottom plate, the above described
cally small to affect temperatures. Therefdtg )= 6,(0). continuumequations do not apply at early times<0) because
they do not model and incorporate relevant intermolecular forces
into the governing equations. These intermolecular forces are im-
a[58rtant in determining the evolution of very thiapproximately

Boundary Conditions. The problem posed by Eq$2)—(9)
are computationally solved subject to boundary conditions that

« at the inlet k=0,0<y=<1) at any timet: over 10—100 nm of film thicknegxondensate filmy(x,t). Be-
cause of the above modeling limitations, the strategy here is to
Ux(0y,t)=1 wvy(0y,t)=0 start att=0, with any sufficiently thick steadysolution of the

_ _ continuumequations where all the governing equations clearly
m2(0y,)=0 02(0y.1)=064(0). (10) apply. That is, if¢(x,y,t) is any variablgsuch asi, , v,, m, 6,
« at the bottom wall y=0,0<x=<x,) at any timet: etc), the initial values ofp and film thickness(x,t) are such that

u(x,00)=0, ©vy(x,00)=0, 6,(x,00)=6,, (11) d(X,Y,0) = dgeaqfX,y)  and  (X,0)= SsieaqfX),  (15)

where 6,=7,(x)/AT is a constant unless it is otherwise speciwhere ¢geaqyand dgeagy@re solutions of the governing equations
fied. In case of flow in Fig. 2, this situation arises whenever, for@btained by dropping all time dependencies in E@$-(12) and
given heat load, the coolant flow rate is high enough to make tkelving the resulting steady equatiomeich areelliptic near exij
coolant its temperature rise negligible as it flows past the tefsrr any arbitrarily prescribed value 0Z,(0)=2.,, whereZ, is
section. given by Eq.(14). The prescription ofZ, within 0<Z.<1 is
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Fig. 3 Computational grids for flow simulation. For chosen xu; lines, yv; lines in grid
A are first generated by points ~ P; on &(x,t). Above the “highest”  yv; line thus obtained,
the remaining yv; lines are independently generated with suitable unequal spacings.
Grid B lines at x=xud; are different from xu; lines and are used for tracking the inter-
face &(x,t).

arbitrary except that it should be such that it should allow a steatym, the fluid flow computational domains for each phdseX or
computational solution in the stratified/annular regime indicate?) are defined by grid A in Fig. 3. A finite number of discrete
in Fig. 1. It is shown later that there exists a naturally selectqubintsP; on the interface define a stair-step geometrical approxi-
value ofZ, (denoted aZ |y, Which allows the steady solution to mation for the interfaced(x,t). Use of this stair-step approxima-
be stable and consistent with the chosen constant vapor densitjon still allows second-orderG(Ax?) and O(At?)) accurate
An inspection of all the non-dimensional governing equationphysical values oB(xp,t) because these values are used to gen-
interface condlt_lons, and boundary conditions reveal th_e fact thatte higher order approximations to estimate intermediate physi-
the flows considered here are affected by the following set g values of5(x,t) for discretization of the interface conditions
nondimensional parameters: (e.g., piecewise linear approximations for evaluation of the slope
L P2 M2 B terms and cubic splines for evaluation @5/ 9x? term appearing
R&n,Ja,FL~ —, —,Pr,Xe,Ze(0),We,Fg *1,  (16) in the surface tension term of EGf)). Each interface poir®; , at
P11 x=xu (i), are marked by a tagging functiorx (i)” to identify
where Rg=p,Uh/u,=Re,. Here Reg,, Fr;l, and Ja are control Whether the point belongs to an increasingx (i)=1), flat
parameters associated with inlet spégdnclination a, and tem- (XX (i) =0), or decreasingXx (i) = — 1) section of the interface.
perature differencA 7. Forunconstrainedexit conditions consid- These points are also used to generate and defingutaed yv
ered here, it is seen later thEg(O) is not important because it lines that are parallel to the coordinate a)(eee Section 4.3 of
does not affect the naturally selected steady solution and its askt#ng [2] for detail9. These lines also form the faces of the rect-
ciated exit vapor qualityZ,|y,. For constrainedexit conditions angular finite volume cells in the interior of each of the two
not studied here, e.g., a prescription of time-averagett) Phases.
=Z7,(0) or Z,(t)=Z.(0) for all t=0, the value of the parameter For theinteriors of the two fluid phases defined by grid A in
Z+(0) becomes important. The density ratio/p, , viscosity ratio Fig. 3, the chosen CFD approach is same as the SIMPLER ap-
uo/py, and Prandtl number Prare passive fluid parameters.proach of PatankdrQ]. This makes the computations in the in-
Also, for unsteady or quasi-steady wavy-interface situations, thgyior quite conservative because all balance laws are satisfied
above equations imply additional dependences on a surface te¥en for the coarser control volumes. However, at any tirmed
sion parameter, Weber number ®jp,U2h/o, and a transverse location(x, y) where the control volumeésay of sizeAx.x Ay;)
gravity parameter l§r1£gyh/U2. For superheated vapors, there (&€ N€ar the interface cells, the truncation ertoés andA ¢ in

a very weak dependence, through E), on the thermal conduc- the discretizations for film thicknessand any other flow variable
tivity ratio ky/K; . ' ’ ¢ are given by the relations

Apr~VAQi+Aei+Ap!  and Adr~\AS+AS,

(17

here Ag,=do/dx-AX., Aey=0d¢ldy-Ay., Ae=deldt
“Ate, AS=0%810x%-(Ax.)?, and A&=09°8/0t?- (Aty)%. The
first order accuracy b above is due to second order discretiza-

Adaptive Grid and Computational Approach. At each in- tion of § and a mixed second-order and first-order discretizations
terface configuration, while solving the steady or unsteady profor the remaining terms appearing in the interface conditions.

3 Computational Approach for Steady and Unsteady
Solutions

For readers not interested in algorithm or code developme
only a cursory reading of this section is recommended.
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LIQUID DOMAIN CALCULATIONS VAPOR
UNDERNEATH 9§, (X,t)

. “GHOST” liquid over an “interface-cell” (see Fig. 3).
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(a)
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Fig. 4 (a) The liquid domain calculations underneath Ogniit (X, 1) with prescribed values of

(uhs,Vig, 05, on b4 (x,t) satisfy the shear and pressure condition on  &(x,t). (b) The vapor
domain calculations above  &(x,t) with prescribed values of  (uj,v5,05) on &(x,t) satisfy mx
= MEgnergy @nd the requirement of continuity of tangential velocities.

While consistent higher order discretizations of all the interfacgnd nearly constant temperatusand 6, obtained through Eq.
conditions can enhance accuracy, it is important to recall that t{®, the remainindfive guesses are updated to their correct values
overall discretization errors in the solutions is best estimated Qyth the help offiveinterface conditions—three from Eq8)—(5)
the convergence trends observed during refinement of the grigi§y two from Eq.(8). However, on use of the above described
(see Section 3.10 of Ferziger and Pdrd]). Since the nonuni- approach for obtaining a steady solution of the “elliptic” steady
form grid A is very refined in thei-direction near the interface problem, it is found that such steady solutions areurdgueand
(i.e., small Ay;) and acceptably coarse along thedirection many liquid/vapor interface configurations are possible unless a
(Axy), the overall convergence trenttiiscussed in Sectior) @re  suitable exit condition is specified. That is steady solutions carry
found to be good without excessive computational penalties the signature of the well-known degeneracy associated with satu-
terms of memory and speed requiremefstse Liang2]). rated vapor's qualityi.e., any liquid/vapor interference configu-
With the help of known inlet and boundary conditions and stanation or all vapor or all liquitl under quiescent and equilibrium
dard CFD approach for single fluid flows, separate solutions fgfiermodynamic conditions. To find a unique steady solution, the
each domain is easy to obtain provided one has a correct guesgxf vapor qualityZ, is specified(this is equivalent to specifying
the interfaces(x,t) and correct values dfu ,v},6;} on the in-  exit pressure or the amount of heat removedd only then a
terface in Fig. 4a) (or, as depicted in the inset of Fig. 3, on aunique solution is obtainetthis is accomplished by “creating’ a
representative liquid interface cell in grid)Aand, also, correct fictitious interface type condition described later in EtQ)). For
values of{u}, ,v5, 65} on the interface in Fig. @) (or, as depicted unsteady simulations, if the exit conditions are unconstrained and
in the inset of Fig. 3, on a representative vapor interface cell the vapor flow is incompressible, one can start from one of these
grid A). In reality though, one has to make tentative guesses steady solutions at time=0 and ascertain the real time evolution
these seven variables—vifu} v} , 6} ,u5,v5,605,5}—and then of this solution at>0 without specifying the exit qualiti(t).
iteratively arrive at their correct values by repeatedly updatings t— o, these unsteady solutions naturally seek out the right exit
them with the help of the interface conditions, vapor domain sgeeonditions that are consistent with the assumed constant value of
lutions, and liquid domain solutions. Disregarding the two knowthe vapor density. For these unsteady solutions, the five values of
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{u} v} ,u,,v5,8) at any time ‘t+At” are obtained from the domainé(x,t) is retained and the solution for the “ghost” liquid
known values of these variables at tim# &nd the fiveinterface  Of Fig. 4@) and the solution abovég(x,t) are discarded. In
conditions (three from Eqgs(3)—(5) and two from Eq.(8)) dis- short this method of fixing and adjustinfu’s,v}s, 6} on
cussed earlier. For the constrained exit case not considered in this(x,t) of Fig. 4a) allows one to find and adjusguil v'l il}
paper, prescription of the value @(t) at all times *t” (with the  on the actual interfacé(x,t) of Fig. 4a) while concurrently sat-
help of an equation of the type given in EG.9)) requires non- isfying the pressurdEq. (4)), shear(Eq. (5)), and temperature
constant vapor density, and this changes the list of interfaciaI(Eq. (9)) conditions on the actual interface.
unknowns to eight: viz{u} ,v,6} U5, v5,05,8,p5}. Again this It is important to note that the liquid and the vapor interface
compressible case becomes solvable with eight conditites cells depicted in the inset of Fig. 3 are not useéxplicitly satisfy
earlier seven interface conditions plus the eighth condition arisimgass, momenturtnormal and tangentiglenergy, etc. restrictions
from the specified exit conditiorfor eight interfacial unknowns on this cell. In this sense this approach is unlike some of the
that need to be guessed for the unsteady equations governing gaterface capturingandinterface trackingapproaches where bal-
densing flows with compressible vapor. ance laws arexplicitly invoked for the interface cells. The inter-
To obtain separate calculations for the vapor domain in Figace cells(see insets in Fig.)3are onlyindirectly used here to
4(b), the temporarily guessed valuesiaf, v} ,6,} on the inter- come up with a computational procedure where the values
face are temporarily held fixed along the interface and the entifg ,v' , 6} ,ul, v}, 6,5} are so adjusted that their converged val-
vapor flow field on grid A of Fig. 3 is obtained with the help of theyes satisfy thediscretized form of all the seven interface
inlet and the top wall conditions. After obtaining the full solutionconditions—viz. two for temperaturéEq. (9)), two for momen-
the flow field values underneath the interfdtfee liquid domain!  tum (Egs.(4)—(5)), two for masgEq. (8)), and one for continuity
is discarded because these values are neither sought nor do #feangential velocitieEq. (3)). Recall that the aforementioned
affect the vapor domain values obtained for the well-posed vapggjuations that are used were independently and analytically ob-
domain problem. The temporary fixing fi; ,v5, 65} on the in- tained to represent the restrictions imposed by various physical
terface 5(x,t) in Fig. 4(b) is accomplished by, respectively, addrequirements at a sharp interface.
ing terms calledt;,, t,;, and t;, to the right sides of the Between timest” and “t+ At,” adaptive grids(termed grid A
x-momentum,y-momentum, and the energy equations in B). and grid B are employed. At timé, grid A (as in Fig. 3 is based

with | =2. These terms are defined as on the geometrical features é{x,t) as a function ofx, and it
. . . changes whenever the liquid and the vapor flow variables need to
t15=Up* Ag(Xg)* 8(|X—Xg|) = Up* Ay (Xs ) * 8(|x—x]) be recomputed for a changed interfacial configurati®{m,t).
. , . However, to make the best changesdiix,t) which leads to ac-
to=0 5% Ap(Xs ) * (| X— X5 |) —v5* An(Xs ) )* O(|X—Xs5/|) curate prediction ob at time “t+ At,” a different grid (grid B) is
. 4 . generally required for the variables(,t), etc) appearing in the
t3o= 0% Ag(Xs)* O(|X— Xy |) — 0% Ag(Xg)* 8(|X—Xg]). interface tracking equatiottwhich results from one of the inter-

face conditions and has one less spatial dimension as ii2&g.
.. ) below) for this problem. Thus relevant variable values on grid A
In Eqg. (18) above,s is a “delta function” (see Greenberf#2])  are mapped onto grid B, and the best predictions for changes in
with x being the vectorial distance of any point from the origing(x,t) are obtained on grid B. These predicted valuessof,t)
Also, in Eq.(18), x5, is the position vector from the origin to any gre then interpolated back to obtain corresponding values on grid
p0|nt on the interface. With the additional terms in m) added A. At any time t, linear interpolations are employed for the ex-

to the appropriate equations on the right side of @.the modi- change of relevant flow variable values between grid A and grid
fied equations are discretized. The resulting equations and thgir

treatment, with appropriate choices of the interfacial-cell con-

stantsA, (1=1,2,3), lead(see Section 3.3 of Lianf2]) to the  Procedural Steps. The final solution is obtained by solving

“source term method” and its results given in E¢g.1)—(7.13 the liquid and vapor domairseparatelyanditeratively under re-

of Patankaf40]. The result of the above modifications is that thgpeated modifications of the interface configuratiéfx,t). The

original equations in Eq2) continue to hold in the interior while iterations modify, intimately connect, and converge the two solu-

the chosen values ¢fi,,vb, 6.} get fixed on the interfacé(x,t). tions with the help of all the interface and boundary conditions.
To obtain separate calculations for the liquid domain in Fay. 4This convergence is accomplished through the following substeps:

and to keep the interface sensitive to the pressure and shear cona) As described earlier, obtain grid A with the help of suitably
ditions (as given by Eqgs(4)—(5)) at the interface, instead of selected point$; on an initial guess or a tentative intermediate
guessing and temporarily fixing values faf; ,v , 63} on the in- prediction of the interface location.

terfaced(x,t) of Fig. 4(a), a scheméddescribed and termed the “ (b) Fi - . .

o - : - First extend the liquid domain by a singieterface cell

4 Ip rri1ethiod in Yu [17] and L'af‘g 2] is emplqyed where depicted in Fig. 3 and shown as the gray region in Fig))4to
{U1s,015, 01} are 9“955?" and f_|xed on th_e shlﬁed |_nt§rfac efine 5nin(X,t) as ashifted extensionf §(x,t). Utilizing the “
Ssnir(*,t) of Fig. 4(b). This extension of the liquid domain into -, method ‘described above and using guessed values of
the vapor domain by a single liquidterface cell(as depicted in {ul,,vi, 61} on the estimate for shifted interfackyq(x,t) of

e isetof Pl ard show, e e ey reson i P 114l abiana i volme SoUiorSINPLER (e o
i A p » . Patankaif40]) for the liquid domain underneat(x,t).

{U1s.015. 01} ON dghin(x,t) by the “source term method.” This ~ ¢ unsteady solutions fot>0 are being sought, one skips the

m?th?d i's identical to the one descrl_bed earllgr fo.r f'),('ngemaining operations described here in this paragraph and moves

{uz,v3,05} on 5(x.t) for the vapor domain calculations in Fig. o 1o the next substefr). However, for obtaining the steady so-

4(b). In this “7-p” method (see Liang 2]), the values oli;s are  |ution att=0, another liquid domain problem underneath the ac-

adjusted to ensure that the appropriate relationship between thgl interfaces(x,t) is solved toincorporatethe exit-condition

tangential stresses, i.e., E®), is satisfied. Similarly', values prescription necessary for obtaininguaiquesteady solution. For

are adjusted to ensure that the appropriate relationship betwelis, the just obtained values of liquid velocity components

the normal stresses’;, and 75, i.e., Eq.(4), is satisfied. The (u’,v}) and temperatur@; from the “r-p” method (which in-

values ofé; are presented to satisfy E). After the satisfaction volves dghir(X,t)) are now temporarily fixed on the actual inter-

of the pressure, shear, and temperature conditions on the acfage locations(x,t). The values ofx-component of interfacial

interface 5(x,t), the entire solution underneath the actual liquidelocity u} and temperatur@; are retained as they are while the
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y-component of interfacial velocity, is modified to satisfy the for the next time step t+ At” or is used merely to improve the
current status of the equation = Mgpergy This is in preparation €XISting estimates o and other flow variables for timet*

to achieve closure with the subsequent chain of mass flux equaltiAt.” Whatever be the case, at each relevanll liquid and

ties Viz.: My = Mgnergyin Substefic) below, and the exit condition vapor flow variables are linearly mapped to the new liquid and
restriction imposed asify ) modified= Menergy N SUbStepsd)—(e) ;/ap(:_r domains defined by each new prediction of the interface
below. ocation.

(c) Making use of the vapor domain calculation method de; REPetiion of the stepga—(€) above with a starting guess
scribed earlier, obtain guesses far, ,v! Hi} on the interface dgueskX) for the interface location leads first to a convergent so-
) far, ,v;, 65

A h lution dgeaaf X) Of the steady equations. This solution is consistent
8(x,t) in Fig. 4b) and then solve the vapor domain flow probleny i, theStearescr'bed exit qualitz.. becauses introduced and com-
by a finite volume techniquéSIMPLER technique of PatankarwI P ! xit quality usgs .

g S X A ‘“! puted in substepd) above satisfies the requirement gf—1.
[40]). Utilizing the liquid domain solution in substef@) above; Starting from this converged steady solutiort a0, steps(a)—(e)

values ofu}, are obtained from a first order discretization of thgphove are repeated a suitable number of times for each new time
continuity of tangential velocitiesondition in Eq.(3), values of step, viz.t=At, t=2At, etc. This leads to a convergent unsteady
v, are obtained from a discretization of the requirememt  solution consistent with the choice of initial and boundary data.
= Menergyin EQ. (8), and values o#, are obtained from the ther- The ability to improve the results at any time step by dwelling at
modynamic restriction in E¢9). that time step for repeated iterations between the time step under
consideration and the previous time step makes the process of

(d) While obtaining unsteady solutions for 0, this substep is forward time marchingimplicit (or, more appropriatelysemi-

skipped, and one moves on to the next subsgpHowever, to

X X - . -explicif).
\?g:)%l? c?uz[l?t?/%i 23';110)2 H{T:(c),r |’;h|is;120(rens(;s c?i;iyezjo \E’;Szfr:ggsa;nfﬁﬁfe The solution obtained by the above procedure not only satisfies

. el e : the pressure, shear, temperature, and continuity of tangential ve-

E)rl?e’lﬁglmé’g'{'gﬁ]’ﬁ] erSVSKole'r;g?gglgg?Hg?; aFI) %?&?tg 6'\2 St Tre anngf)((er , ,Jil(f(%'ty conditions at the interface, but also satisfies the various flow
o M ] ield restrictions that arise from having a nonzero interfacial mass

across the entire interfaoeomputed asfy"p1/p2- (Myk)modiied  flux m. The steady solutionatt=—0 satisfym, = Mgnergyin sub-
-V1+ 82.dx) consistent with the given value of exit qualiB,  Step(a), Myk=Mgnergy iN Substep(b), and the exit condition re-
(i.e., it is made equal to 4Z,). To account for changing vapor Striction imposed as k) modified™ Menergy iN SUbStEpS(d)—(€).
control volume and moving interface, suitable modifications ofheunsteady solutionatt>0 satisfymy = Mgnergyin substepb)
this approach is needed to specify exit conditions for compressit#8d M = Menergy in substep(d).
unsteady cases not considered in this paper. Ghiseobtained,
the interfacial values of liquid velocity, (denoted as)) are
updated so as to satisfy, for steady flows, the additional exit o
straint:

Discussions for the Interface Tracking Equation and Its So-
ion. When the right side of Eq20) is zero, spatial extension
of Eqg. (20) leads to a color functiori{ whose initial valuesi
Mk = (Myi) modified- (19) =0 and}=1 within each of the phases are retained for all times
t>0, and this forms the basis of the popular VOlume of
The steady solution procedure then moves to the next subBtepfiuids) techniquessee Hirt and Nichola§24], etc) for air/water
to updates(x) values from Eq.(22) given below at the end of type flows. Similarly, a suitable spatial extension of E20), in
substep(e). conjunction with some other techniques, is used in the level-set
method (Sussman et al[22], etc) for capturing the interface
through iterative single domaiftconsisting of both the phases
calculations. For boiling related phase change flows, the level-set
technique has recently been used by Son and [28ir In order to
better understand and sidetrack some of the problesss e.g., Li
and Renardy27]) associated with interfaceapturingtechniques

(8). The only remaining interface conditiam, x =Mgpe/qy iN
Eq. (8) (which, for steady flow computations, because of @)
above, becomesity k) modified™= Menergy 1S Satisfied in this substep.
It should be noted that the physical variable faimp, = Mg, Of
this equation arises from E@A7) in the Appendix, and can be
written in the following popular form fotracking the interface

H(x,y,t)=0: (be it level-set, VOF, et¢.that utilize Eq.(20), we look at the
e ' existing knowledge base for the reduced form of &) given in
IH . —ky 973 Eqg. (21). Equation(21) is theinterface tracking equatiomhich,
ot TV VH=E - — |[VH]. (20)  for t>0, defines the followingnterface tracking problem:
p1-Ngg N
Focusing on locating the interface prior to any break up or pinch 8—6+U(x t) a_‘szv—(x t)
off, the interface in Eq. (20) is represented by a simple single at ox '
valued form given byH=y—A(x,t)=0. Nondimensionalizing
the resul_tin_g Eq(20) unde_r Eq.(2), t_he followir_lg nonlinear and 5(0t)=0
hyperbolic interface tracking equation is obtained: 8(%,0) = SyeasfX) OF other prescriptions. (23)
) ) i i i i afi ; .
20T 2 =5, 1) The computational issues for discretization and numerical solu

ot ox tion of Eq.(23) are well understood and extensively discussed in
o ; — Abbott and Basc26] with regard to various algorithms’ stability
where u=u;+{Ja/(Re-Pr)}dd,/9x|' and v=v3+{Ja/(R& and accuracy in determining both the amplitude and the phase of
-Pr))}96,/9y|" typically depend strongly, but indirectly, oA its often-wavy numerical solutions. It is known from there that
While obtaining the steady solution &t0, however, all time among various possible discretizations for E2@), the one that
derivatives are set equal to zero, and the interface is updated byiges best results in marching from,f) to (x+Ax,t+At) has a

simple numerical integratiofirapezoid rulg of the steady formof  Courant number Cr (Gru(x,t) - At/Ax) equal to 1(i.e., Cr=1)

Eq. (21), which is and the following discretizations:
déldx=v(x)/u(x) for x>0. (22) S(X+AX,t+At)=8(x,t)+v(X,7)- At
In this substep, Eq(21) or Eq. (22) is solved to obtain new 981 t=[ S(x+ AX,t+At)— S(x+Ax,t) /At
values ofé. For the steady case, E@2) yields NnewdgeaqfX) and
for the unsteady case, EQ1) is solved to obtain new values éf 36l ox=[ 8(x+ Ax,t)— 8(x,t) ]/AX. (24)
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Fig. 5 The above predictions are for vertical channel flows of saturated R-113 vapor. The

flow cases are specified in Table 1 with
tions, viz. Z, =0.5and Z,,=0.38.

The intermediate time (t< r<t+ At) in Eq. (24) above(appear-

a=90 deg, x,=50 and two different exit condi-

of U at xu(i) locations. Theéd values thus obtained from Egs.

ing in the definition of Cr throughu and in the first equation (23)—(24) on grid B are then mapped back to grid A with the help
throughv) is chosen such that, by the end of iterations for thisf linear interpolations.

time interval,u and v satisfy u(x,7) ={u(x,t) +u(x,t+At)}/2

It is further noted that the discretizations in E@4) are the

andv(x,7) ={v(x,t) +v(x,t+At)}/2. It should be noted that one same as the discretizations for thmethod of characteristictsee,
can tentatively use any convenient and stable discretization fag., Greenberf2]). That is, evolution of5(x,t) as a solution of
48l dx andd sl dt in substepga)—(d) above, as long as the optimal Eq. (21) takes place alongharacteristic curves x x.(t) given by
discretizations in Eq.24) are employed and satisfiéy the endf
repeated iterations of subste{@—(e) for any given time step.
The above requirement of EuAt/Ax~1 in Eq. (24) is
handled by mapping theu(i) locations in grid A toxud(i) loca-
tions in grid B(see Fig. 3. This is accomplished by setting, at any
time t, xud(3)=xu(3)=&e>0 and sequentially finding all subse-
quent xud(i) for i=4 by the relation: xud(i+1)=xud(i)
+u(xud(i),t)- At whereu(xud(i),t) values are also sequentially
obtained from linear interpolations within the known set of valuesherex* is any given value ok between the inlet and the outlet

X(0)=x* or x.(t*)=0,

Xe

dt

u(XC(t)!t)

(25)

Table 1 Specification of reported flow situations involving saturated R-113 vapor

of the inlet. Properties of R-113 are taken from ASHRAE Handbook, [45].
Fig. # Po I(po) AT h U
for flow (kPa) °0) (°C) (m) (m/s)
Rei, Ja Fr"x Fr"y P2/P1 Ha/py We Pr;

5,6,7,8a, | 108.855 | 49.47 5 0.004 0.41
8b, 10, 11a,

11b, 1lc,

Lol 1200 | 0.0341 | 02379 | 032x10° [ 0.0053 | 0.0209 | 67.6335 | 7.2236
14b, 15, 16,

17,18
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0.10 4 Stability of Steady Solutions and the Role of Exit
0.00 Conditions

For slow laminar/laminar internal condensing flows considered
here, it is computationally shown in Fig. 5 that, for different exit
conditions(i.e., exit vapor qualityZ.=Z,(0)), oneobtains differ-
ent steady solutions for any given inlet pressure and inlet mass
-0.30 flow rate. In Fig. 6, we see that the prescription of a different exit
vapor qualityZ, is equivalent to a prescription of a different exit
pressurem,.=1/(1— 5)f};772dy. Because of the nonuniqueness
of steadysolutions in the absence of prescribed exit conditions,
the following questions arise with regard to different solutions
Fig. 6 For the flow situations specified in Table 1 with =90 associated with differenZ, values: (i) all else remaining the

-0.10

2e
-0.20

-0.40 '

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Z.

deg, x,=50, the figure shows the equivalence of specifying exit same, is there a range @f, values that can be prescribed at a
vapor quality Z, or exit pressure @.=1/(1—8)[}m,dy to givenx=X for which a range of steady solutions can be obtained;
specify exit conditions. It is computationally more convenient (i) is a particular steady solution for a givé&g stable or unstable

to specify exit condition  Z. in the absenceof exit constraints fot>0 (i.e., if Z,(0)=Z, but

Z(t) can take any value far>0); and(iii ) is a particular steady
solution for a givenZ, stable or unstable in thgresenceof exit
constraints fot>0 (e.g.,Z¢(t)=Z, for t=0)?
in Fig. 1 andt* >0. Equationg23) and (25) together imply that ~ Representative answer to questidhabove is given in Fig. 7
the evolution of §(x,t) along thecharacteristic curveds gov- Which computationally demarcates a rangeZgf0)=Z, values

erned by for eachx, while all other nondimensional parameters determin-
ing the flow are held fixed. The demarcation in Fig. 7 is of the
dst) . type Ze|min<Ze=<ZJmax Where the lower and upper bounds are

T:ﬁ(t) rather well defined. The parameter range shown in Fig. 7 changes

as the remaining significant parametéviz. Re,, Ja,a, p,/p1,
moluq, and Py) are changed.

Answer to questioriii) regarding stability of solutions for the
unconstrained exit case follows from results given in Figs. 8-9.
Based on two-dimensionainsteadysimulations results shown in
Fig. 8(a) for the idealized noise-free case and its noise-sensitive

of the type d(e,,t) =&, for any suitably chosem,>0 ande, quasi-steady counterpart in Figbd, it is found that, for uncon-

>0 does not affect the solutions x#¢,. Therefore, unless one stralngd exit qondltlons, as— oo, there is anattractive solution
is interested in the singularity at=0, the proposed approach(see Fig. 9 while the remaining steady solutions anestable All

works rather well for all cells except the first two to three cells aggﬁtigﬁl?r? lg'vegé)trif (;Ierlr%tee;azillg | Obtﬁ'?ﬁgcgotg tt?]?;lt&il;[tir;ﬁtelve
the leading edge cornéire., left corner of Fig. 2 This is because I | g- ' | o th elNa f oxi )
solution obtained away from the leading edge remains larg twrally selected value df, in the absence of exit constraints.
unaffected by changes in specific reasonable choices mads for is naturally selected attractive steady solution for unconstrained

. - - L exit conditions is found to betable(see definition oftability in
ande,. Thus, as expected, integrability of this singularity in twcgpseph[AS]) becausanitial two-dimensional disturbances damp

or three-dimensional calculations poses no problem. Howev : ) ;
resolution of the same singularity becomes more challenging ngt over time. It should be noted that a solution mightsbable

one-dimensional pproachee Narain et al19) tat empioy oy ¢! 08 ATEuL0 eali n practce becousefstvyto
semi-empirical interfacial shear models. yp :

stand the stability and noise sensitivity issues, the problem in Eq.
(23) and its solution along characteristics, as defined by Egs.
(25)—(26), is best rewritten in terms of the evolution of a distur-
bance 6’ (x,t)=6(X,t) — seaafX). Under this change of vari-

3(0)=5stead)(x*) or other prescriptions, (26)

where 5(t)= 8(x.(t),t) and5(t)=v(xc(t),t).
It is found that the integrable singularity &t-0 is such that
replacement of the conditiof(0,t) =0 in Eq.(23) by a condition

1.00 ables, the characteristics continue to be defined by(Zs).while
Eqg. (23) changes to
0.80
2 a2 =5
— +u(x,t) —=0(X,
0.60 r ot X
Z. 8'(0t)=0
040 1 Y “he r 5'(x,0) or other prescriptions, 27)
—_— Zn ) - o o
020 L —a— Zun I where 5(th)z[v(xvt)7Ustead)(x)7{u7ustead}(dastead)/dx)]
and Eq.(26) changes to
0.00 . : : : : ds'(t) .
0 8 16 2 32 40 a8 mrrai
Xe
5'(0)=0 or other prescriptions, (28)

Fig. 7 With all remaining flow parameters specified as in Table

1 with =90 deg, the above figure shows that exit condition where A&’(t)Eé’(xC(t),t) and 5(t)55(xc(t),t). It should be
specified by the number  Z, at a given x. must lie within two 04 that— T, o) and|d(x,t)| are identically zero for steady
well-defined values, viz.  Zg|min (X)) <Ze<Zmax(Xe). This restric- - L e . .

tion, presumably, arises from the fact  (see Carey [37]) that the ~ Solutions withs”=0 and are small for disturbances with smalll
assumed annular /stratified flows only occur within certain pa- The attractive solution in Figs. 8-9 is such that disturbances

rameter ranges. &' (x,t) again propagate along characteristics curves given by Eq.
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Fig. 8 (a) For flow situation specified in Table 1 with

a=90 deg and x,=30, the figure

depicts two sets of

&(x,t) predictions for

=0, and tends, as t—®, to the solution for

t>0. One curve C1 starts at Z,=0.51 at ¢
Z.|na=0.47. The other curve C2 starts at

Z,=0.44 at t=0 and tends, as t—o, to the same steady Z|y. Solution. (b) For flow

situations considered in Fig. 7

(a), the above predictions for

t>0 starts at t=

0 from the

same curves C1 and C2 in Fig. 7 (a). However, at t>0, there is a condensing surface
noise given by v,(x,0,t)=g- sin (2@x/\)- sin (2#t/T), with €=0.3E-6, A=10, and T=24. As
t— o, the mean part of wavy quasi-steady solutions coincides with the smooth solu-

tion, shown in Fig. 8 (&) for Z,=Z,|\.=0.47.

(25). For the steady solution in Fig. 10, representative character-
istics curvesC,, C,, etc. are shown in Fig. 14). These curves
are generated by numerical integratiéourth-order Runge Kutja

of Eg. (25) with the characteristic spe@r{X,t) = UgeagfX). Figure
11(b) shows that the characteristics speed for small initial distur-
banceqwhich, because of the nature and form of E2j7), is the
same as phase spgeshtisfiesu(x,t) =UgeaafX). For intrinsic
waves induced by small initial disturbances, unlike gravity waves
on water(see Lighthill [31]), the waves are nondispersivie.,
wave speeds are nearly independent of wavelengthd become

somewhat dispersive only for large amplitude initial disturbancesy. 9 Qualitative nature of the stable, steady

(seeu for this case in Fig. 1(b)). For the steady and initial dis- solutions
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Fig. 10 For flow situations specified in Table 1 with =90 deg and x,=20, the
above 4(x,t) predictions (At=2.5) are for initial data  J(x,0)= bgeaqy (X)+ ' (x,0),
where a nonzero disturbance &’ (x,0) has been superposed at t=0 on the steady
solution  &geaqy (Shown as curve C1 above for t<0). The steady solution corre-
sponds to Z,=Z.|n.=0.5. Here &'(x,0)=0 except in the interval x*<x<x*+10,
where x*=3.5and &' (x,0)=0.5 6geaqy (X) - SiN (27x/5). Itis clear that even this large
a disturbance damps at later times.

turbance cases shown in Fig. 10, Fig(cdlshows values of the Z.=Z.|\, Solutions, are expected. However, unsteady simulations

“growth/damping” factoro (t) along a representative characterisfor initial disturbances while retaining exit constraint at all times

tic curve(such asC; in Fig. 11(a)). The initial disturbance in Fig. are outside the scope of this paper as such simulations require

10 typically damps because, in Fig.(&] we have a typical re- allowance of density fluctuations in the vapor phase and account-

~ . , ing for their interactions with fluctuations in other variables. It is,

sponse Ofv(tzfo for all sufficiently larget and &"(xc(1).t)  however, easily conjectured that many steady solutions with con-

=¢6"(x*,0)+ [ou(7)-d7 tends to zero as—c along characteris- strained the valuegt all timeg sufficiently farfrom Z|y,, such

tics originating on thé=0 line. Furthermore, besides damping OEasZe:O.26 case shown in Fig. 1@ith its unlikely liquid veloc-

initial disturbances along the characteristics curves, disturbanggsprofiles resulting from the inappropriate constant density as-

leave the computational domain€Xx=<x,) with a forward phase sumptiong, will have oscillatoryinstability in response to initial

speed ofi>0. As a result, in Fig. 1f)), at a fixedx ast—o, one disturbances. This is because sustained density and other

would leave the solid line initial disturbance characteristics origfluctuations/waves are expected.

nating on thet=0 line and get on the characteristics originating

on thex=0 line (these curves are overt* for anyt* >0). The

values of " on these characteristi¢ever t=t* andt*>0) are

not affected by the nonzero initial disturbances since these chgr- Effects of Noise and Resonance Condition

acteristics only carry the nearly zero-noise information of

0'(0t)~0 for allt=t*. This stability of a natural steady solution  The natural and stable solutions described in Fig. 9 and ob-

associated with the exit conditiaf,=Ze|, is typically true for tained in Fig. 8 were shown, in Fig. 10, to igrinsically wavyto

any initial disturbancenot just the large initial disturbance ex-injtial disturbances. It is shown in Fig. (@ that, despite the

ample used in Fig. JQunder unconstrained exit conditions. Whilestapility, the interface is quite sensitive to even minuscule vibra-

the small intrinsic initial disturbance waves damp out as theyons of the bottom plate. This is because transverse condensate

propagate downstream with increasing wavelengths and incregstocity component, is very small(e.g., if axial vapor velocity

ing speedi~UgeaqfX). For the initial disturbance cases with ini-jq 0O(1), axial condensate velocity is often abdd{10 ), and

tial wavelength ), at later timest the wavelengthsh(x,t) transverse condensate velocity is often al@(20 %)) and yet it

=N (xc(1),t) with A(x;(0),0)=\. Here reciprocal oh(x,t), as s a significant player in the forcing term on the right side of the

in Lighthill [33], is in terms ofx-derivative of phase angles thatinterface tracking equation in E423). The small bottom plate

are constant as they propagate along the characteristics curygsses considered in this paper correspond to a velocity

Since these derivatives get smaller with increasingecause of 4, (x,0t)=¢- sin(2m/)\)- sin(2mt/T) whose amplitude: is in the

the increasing«-separation among incrementally apart charactefange of X 107°— 3% 107°. For the representative cases consid-

istics (this is also the case with finitely spaced characterigfics ered heregle.g.,, T=12, A\=5, h=.004 m, andU=0.41 m/s), the

C,, etc. shown in Fig. 1(h) the wavelengths?(x,t) increase as maximum displacement amplitude of the vibrations is about 0.25

the disturbances propagate forward under continued damping. #m, the maximum velocity amplitude is about 0.A&/s, and the
Earlier, in Fig. 5, it was shown that different steady solutiongaximum acceleration amplitude is about 624 m/S

are possible for different exit constrairtise., different values of (which is less than 10* g, g=10 m/€). Such transverse con-

Z.). With regard to stability of such steady solutions to initialensing surface vibrations are typically induced by structural or

disturbances whilexit conditionsare constrained to keep valuescoolant noise sources and are indeed commonly present in the

of Z, fixed in theimmediate vicinityof Z|y,, stability, like the 0-30 Hz range considered here. Thus these noise-induced waves
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Fig. 11 (a) For flow situation specified in Table 1 with =90 deg and x,=40, the charac-
teristics curve C; denote curves along which infinitesimal initial disturbances naturally
propagate on the stable steady solution. Curve C; denotes characteristics along which
finite disturbance arising from forced bottom wall noise actually propagate. On character-

istics originating at x=0, &(0,f)=0 implies &'=0. (b) For flow situations defined in Table 1
with @=90 deg and x.=48, the above u(x,t) predictions for t=0 are for (i) steady flow with
Zo|na=0.524, (ii) resonant case in Fig. 13, (iii) nonresonant case in Fig. 13, (iv) large initial
disturbance of Fig. 10 and (v) small initial disturbance &’ (x,0) which is one-fifth of 6’ (x,0)
in Fig. 10. (c) For flow situations defined in Table 1 with a=90 deg and x,=50, the above
v(t) values are along actual characteristics curves like C; in Fig. 11 (a). The predictions are
for (i) the steady and stable flow with ~ Z.|y,=0.578, (ii) the resonant case of Fig. 13, (iii)
the nonresonant case of Fig. 13, and  (iv) the small initial disturbance case  (scaled up and
shown in the lower figure ) in Fig. 11 (c).

discussed/studied here are the waves that appear as wavy intesfizere “i” in the arguments of the exponential functions appearing
cial oscillations in laminar/laminar condensing flows under unn Eq. (29) denotes the complex numbgr1 and “Re }"in Eq.
constrained exit conditions. (29) denotes real part of the expression withif}*
The Fourier component of the standing-wave disturbance Fyrthermore, results in Figs. @8 are in accord with the ex-
v1(x,01) used in Fig. 18a) is equivalently written as the sum of hectation(see Miyara[32] for the Nusselt probleinthat noise
two traveling waves. Denoting the forward traveling wave’s phasgnpiification is either sustained or increased with increasing
angle asa;=2m{x/\ —t/T} and the backward traveling wave's yo\ynstream distances and film thickness values. For resonant or
phase angle as,=2m{x/\+t/T}, the bottom plate noise is nonresonant condensing surface vibration considered in Fig. 13,
given as the corresponding oscillatory “growth/damping” facté(t) val-
ues in Fig. 11c) (computed along the actual unsteady character-
_¢ . _ . istics such a<C; of Fig. 11(a)) are also, on average, either sus-
v1(00=3 [Refexpliay(x,1) ~expliaa(x.0)}],  (29) tained or amplified. In Fig. Xb), at large times, the noise-induced
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Fig. 11 (continued )

waves' characteristics speafx,t) has a meani,.,{x) (with above discussions for the bottom plate noise in @§) allow us
Umead X) =UgeagfX)) and superposed oscillations/waves oo assume that the form of(x,t) and the form of the associated
UnmeadX). It is seen in Fig. 1¢a) that theintegrationinvolved in  6’(x,t) are given by

obtaining the characteristi€3; ,C,, etc. smooth out the effects of : _ . .
the fluctuating part oﬁ(x,t«)%lwhilfe its MmeanUpyeq(X) mainly af- 5(X,1) = Re{v gy (x, D) expli g (x,1) + v ga(x, ) expli ap(x,1)}

fects thecharacteristicsat largex-locations where the noise ef- , _ ; ;

fects are large and nonlinezgr effects associated with the size of (x,t)—Re{ggl(x,t)exp(lal(x,t)+ggz(x,t)exp(|az(x,t)}(,

|8’ (x,t)| play a role. For the nonresonant wall noise case in Fig.

13(a), both the “growth/damping” facto (x,t) values(shown in where the phase angles and a, are same as in Eq29). Fur-
Fig. 11(c) aso(t) alongC,) and &' (x,t) values have been com- thermorecomplex-valuegrowth ratesy; ando g, for v(x,t) and
putationally verified to sustain waves with approximately theg: andsg, for §’(x,t) are assumed to be non-oscillatory. Under
same wavelength and frequency,= 1/T as that of the external this assumption of nonoscillatoy(x,t) =uea{X), the relation-
forcing noise. Thus the phase angles associated with these ing#ips among the growth rates f@x,t) andé’(x,t) are found by

facial waves are same as those associated with the forcing noisgiiBstituting Eq(30) in Eq. (27) and equating coefficients of the
Eqg. (29). To better understand the connection between these tyg, exponentials. This gives

variables in terms of the resulting phase speeds and the intrinsic

phase speed for the flow, analytical implications of E2f) are ds
presented next for the case of small amplitude bottom wall noise. —gl+i(DAl)g 1=Uq1
For the purpose of identification of resonance conditions, it is dt ¢ ¢
assumed, as is the case in Fig(l)1that an amplitude &” for
bottom wall noise can be found up to whi¢he., small to mod- @H(DA )Sqp="D 31)
erate values of) the approximation(x,t) =UgeaqfX) holds. The dt 2)Sg2~ Vo2)
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Fig. 12 For the above flow situation specified in Table 1 with =90 deg and x,=50, the
steady solutions are obtained for  Z,=Z|nin=0.26 and Z|y,=0.36

where DA =(27UIN—foy), DA=(27UIN+Tgy), e =1/T, Although it is not presented here, effects of aggneraltwo-
and theordinary time derivatives in Eq(31) are taken along the dimensional noisgas measured experimentally by accelerom-
characteristicsk=x.(t) defined in Eq.(25). With J=1 or 2 de- eterg can also be estimated by looking at the power density func-
noting the numerical subscripts in E(1), the solutions of the tion of v,(x,0t), through FFT, in thek-w space(wave number
two equations in Eq(31) subjected to the requirement of zerok=2#/\ and angular frequencyw=27f) and representing the
growth rates up ta<0 are given by disturbancev1(x,0t) by a representative sum of Fourier compo-
) nents of wavelengths and frequencie&
qu=exp(—i(DAJ)t)f vgy(T)EXp(i(DA))7)-d7.  (32) The_ CFD s_|r.nuli1t|on restrictions on Wal/e_lengmﬂ;hat can be
0 investigated iSAX*/2<\<X./2, whereAx* is of the order of
. L ) magnitude of the largestwidth in grid A and grid B andk, is the
_From Eq.(32) it is easily inferred that, ifiDA,| values are isiance between the inlet and the outlet. The smallest time step
significantly nonzero_foﬂ: 1 and 2(as in nonresonant cagethe At* is the minimum of Ax/U) values due to Ce 1 restriction in
growth ratesv, for v(x,t) andsg, for &'(x,t) are of the same pq (24 This restricts the maximum frequenéy= f s, that can
order of magnitude. Thus the physical mechanisms inherent in '533 computationally studied to those that satisfy the Nyquist crite-
(27) do not affect these growth rates in aspecialway. However, ria fh<1/(2-At*). Despite these restrictions on noise-

for |DA1t|:O in Eq. (32), sq1_ significantly starts growing as sensitivity analyses, thstability results in Section 5 are true for
Isg1|=|/ovg1(7)d7[=tlvg(Xc(1),1)|a,=O(z ). Therefore by g5 wavelengths\. This is because the resulting interfacial wave-
choosing frequencye= fex(X)=1/T(x) to satisfy the resonance |engths are increasing in nature and they increase to a value where
condition|DA4[=0, i.e., it can be resolved by the refined grids employed in this paper.
—Tix ) =0 =T With regard to noise sources other than the bottom plate noise,
Mexd(X) = U(X,1) = Ustead X) = Umeal X). (33) it was found that noise or fluctuations in the inlet velocity profile
one can match the phase speed,(x) of the bottom wall noise only leads to fluctuations in the vapor profile and h#le impact
to the phase speegfqqfx) Of the intrinsic initial disturbance on the interfacial waviness. In other words, under unconstrained
waves It should be noted that, even for this cadeA,| is non- exit conditions, only fluctuations in flow variables that signifi-
zero. Indeed, under these conditions, this resonance phenomeg@itly influence fluctuations in transverse liquid velocity
is seen in Fig. 1&). The fact that, in Fig. 1®), interfacial waves’ v ,(x,y,t) cause significant interfacial waviness. However, this pa-
wavelengths only approximately equal wall-noise wavelength per can not account for density fluctuations that necessarily appear
andu(x,t) only approximately equaligeaqfX) is due to the fact in the study of effects of superposed fluctuations in the exit con-
that the amplitude ofs’(x,t) are not infinitesimal(as was as- ditions while the inlet conditions are being held fixed.
sumed in the above analysisAll else being the same in Fig.
13(a), it is clear that the resonant case has significantly more waye
energy than the same amplitude non-resonant noise. Thus when- .
ever resonance condition in E(@®3) is satisfied, the mechanismstn€ Solutions
represented by Eq427) imply that the forward moving component For a computational solution to be accurate, it needs to satisfy
of the noise and the small amplitudetrinsic interfacial waves the following criteria:(i) the convergence criteria in the interior of
have the same phase speeds and this leads to phase reinforcenagiats fluid(i.e., smallness of B” defined on p. 125 of Patankar
and significant increase in the amplitude &t [40]), (i) the satisfaction of all the interface conditiortsi,) grid
Although the results shown in Fig. 13 are for a sinusoidal stanthdependent solutions for grids that are sufficiently refined, and
ing wave on the condensing surfaceyat 0, more complex two- (iv) unsteady simulation results for the sensitive interface loca-
dimensional or three-dimensional patterns will arise from a mot®ns should be free of computational noise in the absence of
general noise that wouliypically be present. Furthermore, even ifphysical noise. The simulations presented here satisfy all the
the noise itself is two-dimensional any three-dimensional impeabove criteria.
fection in the geometry may cause the wave to become three-The satisfaction of the governing equations in the interior and
dimensional further downstream, and this is perhaps the reasadhthe conditions at the interface is demonstrated in LigjgFor
why two-dimensional waves become three-dimensional in sorsefficiently refined gridi.e., both grid A and grid B described in
of the known experimenttsee, e.g., L§21]). Section 3 and sufficiently large(but not too large number of

Convergence, Accuracy, and Other Regularities of
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Fig. 13 (a) For the flow situations specified in Table 1 with «=90 deg, x,=50 and
Z,=0.578; the above &(x,t) predictions compare the nonresonant noise with a
resonant noise of the same amplitude (¢=0.9E-4). The noise is given by:
v1(x,0,t)=¢€- sin (2@x/\)- sin (2%t /T), where (i) A=10 and T=24 for the nonresonant
case, and (i) A=10 and T=T(x)=\/Ugeaqy(X). (b) For the flow situations consid-
ered in Fig. 13 (a), the above depicts the wall heat flux  g},(x,t), in W, at t=25 for
the resonant case, and its time-averaged values g,,(x), in W, for all other cases.

iterations, the combined sum of decreasing truncation and increasise. In fact, in Liand2], it is shown that inappropriate discreti-
ing roundoff errors are minimized to a plateau level and the solmation schemes for the interface tracking equation or unsuitable
tions in Fig. 14a) are grid independent to within 1-2%. Thechoice of splines for mapping variable values between grid A and
number of grid lines; X n;|_ X ny|, given in Fig. 14, respectively, grid B can lead to wavy interface solutions even in the absence of
indicate the number of grid lines over <k<x,, O0<y physical noise. Such waves that are entirely due to computational
< OsteadfX), aNd SgeaqfX)<y=1 for the interface location @ noise have been eliminated from the present study.
=0. These numbers somewhat change with time. For grid 1l in Another regularity of the proposed computational approach is
Fig. 14a@), (AX)a,=Xe/nj=0.77, (Ay)a, 1 =38(Xe)/n;| =5.77 its ability to make steady predictions for the classical Nug&git
X 1074, (Ay)avvz{l—5(xe)}/nj|v=0.015, andAt=5. The cor- problem in agreement with its classical solution while allowing
responding representative grid spacing values in physical vafier improvements in it. This is shown in Fig. 15. The unsteady
ables are £x),,=3.08mm, QAy),, =2.31um, (Ay), predictions for this classical problem will be discussed in a sepa-
=0.06 mm, andAt=0.049 s. For a technical estimate of totarate paper.
discretization error—Section 3.10 in Ferziger and Pédit] is
used for estimating error on a representative flow varidbés, A .
film thickness in Fig. 1)) due to the coarseness xfgrid. On ! Tr.ends of the Steady, Stable and Noise-Sensitive
successive refinement of thggrid, the results in Fig. 1) yield Solutions
the error to be within 3%. Considering this and the refinement The steady and stable solutigassociated wittZ,=Z|y,) in
used in the time and in thg-direction, the total error of all re- Fig. 8 for the vertical-channel case was found to be sensitive to
ported results in this paper is about 6%. noise in Fig. 13. Despite the waves, as seen in Figh)1&ere are
Smooth interfacensteady solutions reported earlier in Figgl8 no significant enhancements in heat transfer rates for the nonreso-
establish that the highly sensitive interface predictions are freemdint case. This is because the oscillations around the mean film
computational noise whenever there is an absence of physittdtkness are small and nearly symmetric, and temperature pro-
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Fig. 14 (a) The above é&(x,t) predictions for t>0 are for the steady solution curve
C1=C2 at t=0 and initial noise specified in Fig. 10. The  t=0 solutions are obtained on
two grids | and Il with  (n;Xnj,Xnj,)=(30X30X20) and (n;Xn;, Xn;,);=(50X50
X30). The t>0 solution are shown as curves C1 and C2 and are, respectively, ob-
tained on grids that have:  (n;Xn; Xn;,),XAt=(30X30X20)X2.5 and (n;Xn;,
Xnjy) X At=(50X50X30)X5. At t>0, the number of grid lines  (n;Xn; Xny,)
changes somewhat from their value at  t=0.

files are nearly linear. This yields heat flgg (x,t) ~AT/5(x,t)

whose time-averaged values show no significant enhancement un- 015
less the wave amplitudes are large. As a result, for the larger & Cune§ 0.04ms
amplitude resonant case in Fig. 13, there is a significant heat | | e -
transfer enhancement of 10% or more in the downstream half of y=yl & —o—Cune 4
the channel. Therefore these stable and quasi-st€aehZ|na §=A/L;

solutions obtained in Fig. 8 are important in their own right for the
purpose of estimatintypical heat flux values. Hence it is good to
ascertain the trends of thegatural steady solutions as the inlet ¢
Reynolds number Regand the temperature difference7 (or,

equivalently, the parameter)Jare changed. Figure 16 shows theig 15 For the vertical plate situation specified in Table 1 with
effect of these changes @ =Z,|y,, Fig. 17 shows the effects on =90 deg, x,=48 and L,=0.004 m, Curve 1 is a plot of the
wall heat fluxqy,(x), and Fig. 18 shows the effects on flow fieldsanalytical solution of ~ &(x) as given in Nusselt [5]. Curve 2 is
(OsteafX), €tc). Since the vertical channel configuration studiedhe computational solution under the Nusselt assumption for
here is gravity-dominated, vapor motion does not significantﬁ}ag”‘"‘”t vapor and zero liquid inertia. Curve 3 is the computa-

affect the condensate motion and, as expected, changes in iR Solution under the assumptions of stagnant vapor while
allowing for liquid inertia. Curve 4 is the computational solution

Reynolds number Re ha_s" no effects on' me'an film th'_CkneS%hat allows vapor motion and liquid inertia (the vapor /liquid ve-
OsteaafX) OF wall heat fluxqy,(x). However, in Fig. 18, a thicken- |ocity profiles are shown only for this case ). Though not shown
ing of dseaqfX) OCCUrs due to an increase in temperature diffeabove, vapor velocity tends to zero as =~ y—.

———

10 £ 30 0
x=x/Le
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Fig. 16 The above is a plot of natural values of  Zg\, for different x, values
for a representative flow situation specified in Table 1 with a=90 deg and
X.=48. The “Increased Re ;," case just changes Re ;, to a new value of 1300.
The “Increased Ja” case just changes Ja to a new value of 0.0443 (e, AT
=65°C).
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Fig. 17 For the flow situations described in Fig. 16 and Xe=25.0, the above

figure reports the representative wall heat flux values qyw(x), in W, as a func-
tion of x with 0 =x=x,
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Fig. 18 For the flow situations described in Figs. 16—17 and X=30.0, the
above figure reports the values of  dgeaqy (X)
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enceA7. This thickening occurs in a way so as to concurrently ¢
meet the requirements of increased heat flux valses Fig. 1Y
and increased liquid flow rates.

Streamline patterns for the flow, effect of shear over gravity as
tilt angle « is reduced from its 90 deg value, comparisons with
experimental results for condensing flow simulations for a hori-
zontal channel, effects of surface tension, effects of microgravity,
negligible Marangoni effects, effects of fluctuations on the mean,
etc., are not discussed here but are reported in Liang gt]al.

8 Conclusions

e An algorithm for a successful computational approach ca-
pable of accurate simulation of unsteady wavy interface con-
densing flows has been presented.

The “ellipticity” of the steady vapor flow equations and the

role of exit conditions for steady and unsteady simulations

have been discussed.

e For unconstrained exit conditions and nearly incompressible
vapor flows, an unsteady noise-free simulation method for
identifying and obtaining theatural and stablesteady solu-
tions has been presented and successfully used.

* The noise sensitivity of thetablesteady or quasi-steady so-
lutions to ubiquitous minuscule bottom plate vibrations has
been demonstrated. To assist in quantitative noise-sensitivity
studies, a method for obtaining the underlyttaracteristics
curvesand estimating “growth/damping” factors for interfa-
cial disturbances has been presented.

» For design of smart condensers with actuators imbedded on
the condensing surface, a new and hitherto unknown reso-
nance condition has been proposed, and its efficacy in en-

The tangential component of momentum balance at any point
on the interface, for nearly constant surface tensiomne-
duces to

S A-t=S,A-t+ Vo= St (A4)

* The mass fluxesn,kx andm g as determined by kinematic

restrictions imposed by interfacial values of vapor and liquid
velocities are

M= —pa(Vo—Ve)*N and M x=—py(vi—Vy)-A. (A5)

The energy balance at a point on the interface imposes a
restriction on the interfacial mass fluRg,eqy, and this is
given by

. o . do
Menergy™ l/hfg[{leTlll'n_k2V7—2||'n}+E
s

1' i 12 i i12
+§m{|V1—VS| _|V2_Vs| }

+{S1A(V1 = Vg~ SA(v— Vo))

Zh

i 67—2
Kion

_k_
29N

=1/h¢qg . (A6)
Mass balance at any point on the interface requires single
valuedness of the interfacial mass flux. That is

My =Myk= r-r\EnergyE m. (A7)

hancing wave energy and heat transfer rdtgsto 10% or .

more has been demonstrated.
¢ For unconstrained exit situations, some trends of dtable
steady or quasi-steady solutions have been discussed.
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Appendix
The interface conditions that apply &f(x,y,t)=y—A(x,t)

=0, involve values of flow variables at the interface that are de-

noted by a superscripti:” The unit normal at any point on the

interface, directed from the liquid towards the vapor, is denoted by

f and is equal t&/+/|VH|. The unit tangent at any point on the
interface, directed towards increasingis denoted byt. Each

phase is modeled as a viscous and incompressible Newtonian fluid

with stress tensofl = —p,1+ S, where S = u,{(grad v,) + (grad
-v))T}/2 and1 is the identity tensor.

e The surface velocitwiS of a point on the interface{=0) at

time t is associated with this point's movement to a new

mapped position on the interface at time At. All such
mappings must be such that the normal component ofvthis
is given by

Vi-A=—(aH/at)/|VH]. (A1)

* The tangential component of the vapor and liquid velocities

at the interface must be continuous, i.e.,
Vh-t=vhet. (A2)

« Ignoring normal component df ;o and viscous stresses, the

normal component of momentum balance at a point on the

interface is given by
py=phy+m(Up,—1py) + o Vel —Veo-ii+ (S~ S, A

=ph+m?(Lpo— Lpy) — (oA, /[ 1+ AZ]%°. (A3)

Journal of Applied Mechanics

To account for the effects of nonzero interfacial mass ftyx
the interfacial pressurepzil and pi2 (along with their differ-
enceAp'=p} —p,) that appear in Eq/A3) are often consid-
ered to be controlled by nonequilibrium thermodynamic ef-
fects that are represented by the functiop$=p} , ¢(74)

and pb=p},, (7). whereT'} is the liquid side interfacial
temperature and’i2 is the vapor side interfacial temperature.
In the limit of zero mass fluxn, these thermodynamic pres-
sures reach their equilibrium thermodynamic values and are
denoted ap’=ps(71) andpsL=ps(75), Wherepgyis the
inverse function of the saturation temperatgép). Respec-
tively denoting the non-equilibrium and equilibrium values of
the interfacial pressure differences @§x),.eq and Ap')sar,

it is common toseek or model a function f such that
(AP n-eq= FH{(AP)san M}, Wheref, be it explicit or implicit

in form, allows the two pressure differences to become the
same for zero mass flur. It is common tomodel fby
considerationgsee, e.g., Plesset and Prospefddi and Sec-
tion 4.5 of Careyf37]) involving kinetic theory of gas for the
vapor phase, the concept of accommodation coefficients, etc.
The assumption that use of eithe¥ff) ,.¢q Or (Ap')sado Not
significantly affect the value of 7'=7¢(p,+Ap') — Zo(p))

is well known and well justified in the present context where
significantly larger thermal resistance is offered by the thin
condensate at points away fror~0 (see Section 4.5 of
Carey[37] and Son and Dhif22]). Furthermore, the compu-
tations in this paper also show that the solution further down-
stream is not affected by the nature of the singular solution at
x~0 and computed values in this zone always satisf'
=T(p,+Ap')—7Ty(p5)=0— in the sense thah7'<AT,
whereA T is the number defined in E@l). Therefore, under
negligible interfacial resistance approximation, the interfacial
temperature values satisfy:

TY=TH=Tp)). (A8)

» The term[t] on the right side of Eq(5) is given by
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Three-Dimensional Instabilities in
Flow Past a Rotating Cylinder

S. Mittal Flow past a _spinning circul_ar cylinder _p_Iaced_ in a uniform stream_is ir_1\_/estigated via

. three-dimensional computations. A stabilized finite element method is utilized to solve the
incompressible Navier-Stokes equations in the primitive variables formulation. The Rey-
nolds number based on the cylinder diameter and freestream speed of the flow is 200. The
nondimensional rotation ratey, (ratio of the surface speed and freestream speed) is 5. It
is found that although the two-dimensional flow ter=5 is stable, centrifugal instabili-
ties exist along the entire span in a three-dimensional set-up. In addition, a “no-slip”
side-wall can result in separation of flow near the cylinder ends. Both these effects lead to
aloss in lift and increase in drag. The end conditions and aspect ratio of the cylinder play
an important role in the flow past a spinning cylinder. It is shown that the Prandtl’s limit
on the maximum lift generated by a spinning cylinder in a uniform flow does not
hold. [DOI: 10.1115/1.1631032
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1 Introduction lift on a rotating cylinder is quite difficult due to the limitations

. . . . sed by the rotation of the cylinder. Tokumaru and Dimotgkjs
One of the earliest experiments for flow past a rotating Cylmd%ﬁvised a method to estimate the mean lift acting on a rotating

were carried out by Prandfl]. He argued that the maximum “ftocylinder in uniform flow. It is based on an inviscid point-vortex

gqe;nzeia{ezdisgn y S espglr;glnsgtu%);lelgdteg elne;elé?n:;)frZntljo‘évolrfd:gﬁidatn@odel and the transverse velocity that is measured, experimen-

aspect ratio. An increase in the overall lift coefficient was of@!ly: ahead of the cylinder. Their results for R8.8x 10° show
served by utilizing end plates and using cylinders of higher aspdB@t Prandt's limit on lift coefficient € _=4m) can be ex-
ratio. Since then, various studies have been conducted. ceeded. For example, far=10 and a cylinder with span to di-
Recently, two-dimensional simulations for flow past a rotatingmeter ratio of 18.7, they report an estimated lift coefficient that is
cylinder have been presented by Mittal and Kurf@r The Rey- more than 20% larger than this limit. Further, the trend of results
nolds number based on the cylinder diameter and freestreanggests that, can made larger for higher rotation rates and by
speed is 200 and various spin ratess(@<5) are considered. taking cylinders of larger aspect ratio. They have suggested that
Here, « is the nondimensional rotation rate of the cylinder and igerhaps it is the unsteady effects that weaken Prandtl’s hypothesis
given asa=aw/U whereU is the freestream speed ands the and that the three-dimensional/end effects are responsible for low-
angular velocity of the cylinder about its own axis. Fos@ ering the value of lift coefficient that could be achieved in a purely
=<1.9 a von Karman street is seen in the wake behind the cylindavo-dimensional flow. However, Chew et 45] have reported
For nonzeroa the vortex street is deflected away from the centehat their two-dimensional computations are in agreement with
line. The wake becomes narrower and the Strouhal number frandtl's postulate. They find that for R&000, the estimated
vortex shedding decreases with increase in rotation rate. Vortexean lift coefficient approaches asymptotic values with increase
shedding ceases beyomd-1.9. At high rotation rates it is seenin a. At =6 they predict a mean lift coefficient of 9.1. Glauert
that the lift for purely two-dimensional flows can be very largel6] proposed a solution for a cylinder spinning at high rotation
The values of the lift coefficient obtained in the present workates where the separation is suppressed. The solution of the flow
exceed the maximum limit based on the arguments of Prandtl. Tinethe boundary layer is obtained in the form of a power series and
flow remains stable for 1.8da<4.34 but looses its stability, an expression for the circulation on the cylinder is obtained.
again, fora~4.35. For this rotation rate, unlike the shedding foGlauert found that Prandtl’'s limit can be exceeded and that the
lower e, the cylinder sheds vortices of counterclockwise sensgrculation increases indefinitely with. The assumed model for
only from its lower surface. Vortex shedding continues for highgpe flow is valid only for those values af when the flow sepa-
spin rates and the flow becomes stable, yet againy¥o#.8. This  ration is suppressed.
was confirmed by carrying out a linear stability analysis of the \ost of the other investigations have been limited do
flow. A possible cause for this interesting behavior of flow stabil<3 25  chen et al[7] computed flow for Re200 and a
ity was also proposed. ) _ _ <3.25. Their computation forr=3.25 does shovC, whose in-
One of the issues that remains unresolved is the maximum Wfantaneous value exceeds, 4narginally. However, they report
that can be generated by a rotating cylinder placed in a uniforggits only fort<24. Computations by Badr et dB] for a=3
flow. Researchers in the past have reported varied results on ] Re=1000 are limited td<22. Att=22 C, is 8.8, approxi-
magnitude of lift that can be generated via the Magnus effe¢hately, and the trend of their results suggest higbefor larger
Goldstein[3], based on intuitive arguments by Prandtl, suggestsnes. The drag coefficienCp,, reaches almost a steady-state
that the max@mqm valge of the lift coefficient that can be genefm e of 5.2. The mean values for, andC, for the fully devel-
ated by a spinning cylinder is4(~12.6). The measurement Ofoped flow reported by Chew et 45], for «=3, are 2.8 and 8.7,
- respectively. Recently, Chd®] has also reported computational
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  ragylts for this flow problem. The time histories 6f, and C,
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . _ -
CHANICS. Manuscript received by the Applied Mechanics Division, December 1ér9m his computations, for Re1000 anda_—S, match quite well
2002; final revision, April 21, 2003. Associate Editor: T. E. Tezduyar. Discussion owith those from Badr et al[8] for early times. However, fot
e o achnes oot Enon et ety o Cooeg > e Tepors much larger values Of and smaller valles of
| VI | Ing, Vi | I | e i 1 H
SarEta Barbara, Santa Barbara, CA 93106-5078, and \gfjvill be acc{:‘pted until ?OCLiFt'hlt IS interesting to obserye that the .Stre.am“ne pattern‘s from
e three sets of computations are quite similar and are in good

months after final publication in the paper itself in the ASMEURNAL OF APPLIED & > - NS ¢
MECHANICS. agreement with the flow visualization results. Yet, the discrepancy
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in the time histories of the aerodynamic coefficients is quite large. Results are presented for three-dimensional computations past a
Our results fora=5 for various Re, reported in earlier articlesfinite cylinder for various aspect ratios and with different end
Mittal [10,11] result in large values of, . Recently, Stansby and conditions. One of the objectives of the computations is to inves-
Rainey[12] have reported computational results for=R00 and tigate the existence of three-dimensional instabilities in the flow
0= a=<5. They observe an unsteady flow for lower rotation ratefor a«=5. We also wish to study the effect of end conditions. It has
For high rotation rates a steady flow with very lai@e is real- been observed in experiments that the use of end plates can lead to
ized. a substantial increase in lift generated by the cylinder. The present

Fig. 1 Re=200, a=5 flow past a rotating cylinder: closeup view of the vor-
ticity (left) and magnitude of velocity (right) for the fully developed two-
dimensional flow. The freestream flow is from left to right and the cylinder is
rotating in a counterclockwise sense. Solid lines denote positive while the
broken lines show negative vorticity.
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Fig. 2 Re=200, @=5 flow past a rotating cylinder: time histories of the lift
and drag coefficients for two-dimensional and three-dimensional computa-
tions with cylinders of various aspect ratios (AR)
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Fig. 3 Re=200, a=5 flow past a rotating cylinder for various aspect ratios:
variation of the spanwise averaged pressure coefficient on the surface of
cylinder

computations show that flow for Re200 anda=5 is associated I' denote the boundary &1. The spatial and temporal coordinates

with centrifugal instabilities that exist along the span of the spirare denoted by andt. The Navier-Stokes equations governing

ning cylinder. Further, in the presence of a “no-slip” side wall thencompressible fluid flow are

flow near the wall separates leading to unsteadiness in the wake.

As expected, the effect is more drastic for low aspect-ratio cylin-

ders. It is the end wall and aspect-ratio effects that limit the lift

generated via Magnus effect. P
The outline of the rest of the article is as follows. We begin by

reviewing the governing equations for incompressible fluid flow

in Section 2. The problem setup is defined along with the bound- V-.u=0 on Q for (O,T). (2

ary and initial conditions. The SUPGtreamline-upwind/Petrov-

Galerkin and PSPQpressure-stabilizing/Petrov-Galerkistabi- Herep, u, f, and o are the density, velocity, body force, and the

Ilzat_lon techn_lque[13], |s_employ(_3d to stabilize our computationsyy, g oq tensor, respectively. The stress tensor is written as the sum
against spurious numerical oscillations and to enable us to

: ; ; . its isotropic an viatori rts:
equal-order-interpolation velocity-pressure elements. Sectlon%?[S sotropic and deviatoric parts

describes the finite element formulation incorporating these stabi-

lizing terms. In Section 4 computational results for flows involv- 1 T

ing rotating cylinder are presented and discussed. In Section 5 2= —PI+T, T=2ue(u), &(u)= 5((VU)+(VU) ),
few concluding remarks are made. 3)

Ju
E+u-Vu—f)—V-o-=0 on Q for (0,T), Q)

2 The Governing Equations wherep and u are the pressure and coefficient of dynamic vis-
Let QCR"d and (OT) be the spatial and temporal domainsosity. Both the Dirichlet and Neumann-type boundary conditions
respectively, whereg is the number of space dimensions, and letre accounted for, represented as
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AR=5, t=50.01, slip walls

AR=5, t=51.60

| AR=10, t=50.20

AR=15, t=50.425

Fig. 4 Re=200, a=5 flow past a rotating cylinder: isosurfaces of the spanwise com-
ponent of vorticity (=0.4) for various aspect ratios. The top frame corresponds to the
simulation with slip walls as the end condition. For the other three frames, the upper
wall is a no-slip wall.

u=g on I'y, n-o=h on Iy, (4) 3 Finite Element Formulation
wherel'; andI', are complementary subsets of the boundary Consider a finite element discretization Qfinto subdomains
The initial condition on the velocity is specified & Q° e=1.2,...,ny, Whereng is the number of elements. Based
on this discretization for velocity and pressure, we define the finite
u(x,00=ug on Q, (5) element trial function space!%l“J andS';, and weighting function
o spaces/ and V. These function spaces are selected, by taking
whereu, is divergence-free. e Diricuhlet bopundar conditions into account, as subsets of
The force and moment coefficients are computed by carrying an;, n 1hy h ! L
integration, that involves the pressure and viscous stresses, ar d (Q.)] * and_ HY(Q), where H (Q.). IS _the finite-
the circumference of the cylinder: |men3|9nal function space ov@n The stablllzeq finite element
formulation of Eqs(1)—(2) is written as follows: findi" e SE and
1 p'e Sh such thatvw"e Vi), q"e V]
CDzli (on)-n,drl, (6)

— 2 lqcyl
5pU2al

oun
f Wh~p(—+uh-Vuh—f
Q

dQ+ j e(w":o(pM,uMdQ
ot Q

CL:%f (on)-n,dr’. @)

) Nel
2 I 1
EPU 2aL 7 +f q"v-uhdQ+ E E(Tsupd)uh-VWth TpspV "),
Q e=1 Jq°

Heren, andn, are the Cartesian components of the unit veator
that is normal to the cylinder boundaly,,, a is the radius of the
cylinder, L its spanwise lengthl) the freestream speed, ady
andC, are the drag and lift coefficients, respectively.

The various parameters that influence this flow are RAR
and end conditions. The Reynolds number is defined as Re
=2Ualv wherea is the radius of cylindellJ the freestream speed +> 7LsicV-W'pV-udQe= f wh-h"dl’.  (8)
and v is the coefficient of kinematic viscosity of the fluid. The e=1 Jaf Tn
rotation rate of the cylinder is nondimensionalized with respect to
the freestream speed and is givena@as aw/U where o is the
angular velocity of the cylinder about its own axis. The aspect The variational formulation given by E@8), includes certain
ratio, AR, of the cylinder is the ratio of its spanwise length andtabilization terms added to the basic Galerkin formulation to en-
diameter. All the results presented in this article are with respecthiance its numerical stability. the first three terms and the right-
the non dimensional time=Ut/a, wheret is the actual time.  hand side constitute the Galerkin formulation of the problem. De-

dQe

aun
p| o+ VU=V a(p".u")

Ne|
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t=10.025 t=15.425

Fig. 5 Re=200, a=5, AR=15 flow past a rotating cylinder with a no-slip end
wall: isosurfaces of the spanwise component of vorticity (=0.4) at various time
instants following an impulsive start

tails on the formulation can be found in referen¢&8,14. The normal to and the component of stress vector along these bound-
stabilization terms involve the use of a characteristic “elemeniries is prescribed zero value. The initial condition for all the
length.” In the present computations this length is defined as te@mputations is an impulsive start, i.e., tat0 the velocity is

minimum edge length of an elemeft3]. assigned value that corresponds to potential flow past a stationary
) ) cylinder. The outer boundaries are located atC1@fm the cen-
4 Results and Discussions ter of the cylinder.
All the results in this article are for the R&00 anda=5 flow. Figure 1 shows the fully developed solution obtained from the

two-dimensional computations. Clockwise vorticityegative on

41 Two-DlmenS|0r_1aI Computations. _The cylinder r_eS|des the upper surface and counterclockwise vortidipositive) on
in & rectangular domain and a flow velocity corresponding to t Gwer surface of the cylinder is generated. The high rotation rate
rotation rate« is specified on the cylinder surface. The rotation i y 9 : 9

in the counterclockwise direction. A freestream value is assign@l the cylinder causes this vorticity to move outward as tightly
for the velocity at the upstream boundary while, at the dowrvound spirals. The stability of this flow has been ascertained via
stream boundary, a Neumann-type boundary condition for the Jéear stability analysis,2], and also by computing the flow for an
locity is specified that corresponds to zero viscous stress vecg@gcentric cylindef10]. Detailed results for=>5 and other rota-
On the upper and lower boundaries, the component of veloctign rates have been presented in Mittal and Kup2ar
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4.2 Three-Dimensional Computations. Very large lift co- the three-dimensional centrifugal instabilities would still be
efficients can be obtained for two-dimensional flows past a cylipresent and lead to loss of lift and increase in drag, compared to
der for high rotation rates. Tokumaru and Dimotaki§ have the two-dimensional flow.
reported a strong dependence of the lift coefficient on the aspecFigure 5 shows the isosurfaces for spanwise vorticity at various
ratio of the cylinder(ratio of spanwise length to diametemnd its time instants forAR=15. It is interesting to note that, as was the
end conditions. To study the same, three-dimensional compugase with two-dimensional computations, only one spanwise vor-
tions for flow past a rotating cylinder with an impulsive start aréex (the startup vortexis shed fore=5. The development of the
carried out for various end conditions and cylinder span-tgentrifugal instabilities along the cylinder span can also be ob-
diameter ratio. Kalro and Tezduygt5] used a very similar finite Served in the figure. Their initial development seems to be insti-
element formulation to study flow past a nonspinning cylinder. gated by the end conditions. The shear generated by the boundary

In the three-dimensional simulations the cylinder extends alof@yer on the side wall is also responsible for the twisting of the
the entire span of the computational domain. One of the si§&rtup vortex. The end effects can be eliminated/minimized by
boundaries, that intersects with the cylinder, is assumed to béi€ing end plates. Prandtl observed a valu€pf-3.2 for a cyl-
“no-slip” wall for the velocity while symmetry conditions are inder of AR=4.7 and at Re5.2x 10" (as reported by Tokumaru
imposed on the other side wall. These boundary conditions sin2d Dimotakis[4] and Goldstein[3]). However, on using end
late a rotating cylinder, without end plates, placed in a tunngllates of diameter 1.7 times the cylinder diameter, he observed
Only one half of the tunnel is simulated. MittE16] investigated that the value of the lift coefficient goes up to, approximately, 5.
the flow past low aspect-ratio nonspinning cylinders in the pres- Very high lift coefficients are observed for high rotation rates of
ence of wall. The aspect ratios considered in the present work 4 cylinder. The present results support the observation by Toku-
5, 10, and 15. A computation fekR="5 with “slip” side walls is  Maru and Dimotaki$4] that Prandtl’s limit does not hold for large

also carried out to assess the effect of end conditions. The finggPectratio cylinders. It certainly does not hold for the two-
element mesh for the computation withR=15 consists of imensional flows. The lift coefficient from the two-dimensional

284,199 nodes and 270,000 hexahedral elements. At each tifi@Putations approach the values from the three-dimensional

step approximately 1.1 million nonlinear equations are solved f€tUP for large aspect-ratio cylinders.

eratively. The time histories of the lift and drag coefficients for .

these simulations are shown in Fig. 2 along with the results from Concluding Remarks

two-dimensional computations. It is observed that both the endThree-dimensional flow past a cylinder, rotating in the counter-

conditions and the cylinder aspect ratio have a significant impagtbckwise sense, and placed in uniform stream £R@0) has

on the aerodynamic coefficients. Compared to the steady-stBtgen analyzed for a spin rate corresponding t05. A stabilized

two-dimensional flow, the “no-slip” side wall results in lower lift finite element method is utilized to solve the incompressible

and higher drag. The lift coefficient reduces with the decrease Mavier-Stokes equations in the primitive-variables formulation.

aspect ratio of the cylinder. An increase in the aspect ratio of thelt is found that the aspect ratio of the cylindepanwise length/

cylinder reduces the effect of the “no-slip” wall. With the “slip” diametey and its end conditions play an important role in deter-

end conditions on the velocity on side walls, fairly high lift andmining the amount of lift generated by the rotating cylinder. While

low drag coefficients are obtained with a low aspect-ratio cylind¢he two-dimensional flow fora=5 is stable, the three-

(AR=5). This study brings out the effect of end conditions imimensional flow is associated with centrifugal instabilities. These

such flows. A similar observation was reported by Tokumaru ardstabilities are observed even for the case with “slip walls” and

Dimotakis[4]. are quite similar to those observed in flow between rotating cyl-
Shown in Fig. 3 are the spanwise averaggddistributions for inders. The presence of a no-slip side walb end platesresults

the various three-dimensional computations at approximatelyin flow separation. Both of these effects contribute to loss of lift

=50. It is well known that for a stationary cylinder, the surfacend increased drag as compared to a purely two-dimensional flow.

pressure distribution for the viscous and potential flows are quali-is found that very large lift coefficients can be realized for large

tatively different. This is attributed to the flow separation in tha@spect-ratio cylinders via the Magnus effect and that Prandtl’s

case of a real fluid. However, for a rotating cylinder spinning aimit does not hold.

a=05, itis interesting to observe that the pressure distributions for

t_he two-dimensional and potential flows are very s_imilar, q”a"t%cknowledgment

tively. As expected, compared to the two-dimensional flow, the ] .
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Existence of Critical Wavelength
for Gap Nucleation in
Solidification on a Rigid Mold

Previous theoretical models of pure metal solidification on a patterned mold surface
neglected either the thermal capacitance of the solidifying shell material (which is equiva-
lent to assume that thermal diffusivity is infinitely large) or interfacial coupling between

the thermal and mechanical fields along the mold-shell interface. In the present work,

Faruk Yigit however, we examine the combined effects of thermomechanical coupling at the mold-
Department of Mechanical Engineering, shell interface and non-negligible thermal capacitance (or finite thermal diffusivity) of the
King Saud University, solidifying shell material during solidification of pure aluminum and iron shells on a
P.0. Box 800, rigid, perfectly conducting mold. It is assumed that the mold surface has a sinusoidal
Riyadh 11421, Saudi Arabia corrugation with a small aspect ratio, and the surface is perfectly wet by the molten metal
g-mail: fyigit@ksu.edu.sa which is initially at its melting temperature. The undulatory geometry of the mold surface

lead to nonuniform heat extraction and hence initiated a nonuniform evolving distortion
of the metal shell. This distortion produces a critical wavelength that corresponds to the
situation where both the contact pressure and its time derivative simultaneously fall to
zero. This critical mold surface wavelength serves as a cutoff between those wavelengths
that lead to gap nucleation in the troughs and those that lead to gap nucleation in the
crests. The conditions for gap nucleation in the mold surface troughs are examined since
a corresponding increase in contact pressure at the crests signals the possibility of a
growth instability in the metal shell at later stages in the process. Gap nucleation times,
associated mean shell thicknesses, and critical wavelengths are calculated for pure alu-
minum and pure iron shells under identical process conditions. It is found that the iron
shell nucleates gaps faster than an aluminum shell, with the associated critical wave-
lengths of iron being substantially larger than those for aluminum.

[DOI: 10.1115/1.1641065

1 Introduction topography effect on shell growth uniformity, Hector et [dl3]

. developed a model of pure metal solidification on a rigid, per-
e o B concucing mod i @ susoial suface of lw sspc
- . q Y : ttio. The total contact pressure along the mold-shell interface was
uniformity, [1-3]. Therefore, considerable amount of effort ha

been directed towards the understanding of the effect of a lculated. Irregular distortion of the shell due to nonuniform heat
. . 9 ) P&Xiraction along mold-shell interface led to gap nucleation once
terned or “textured” mold surface on metallurgical structure o h

the cast product, where quality is either created or lost. Ex erl-e contact pressure dropped o zero. It was found that gaps al-
St P ' q YIS Jost. Exp ways nucleate at the lowest points of the surface troughs, while
mentalists have addressed the issue of shell thickness n

uniformitv with a number process-related enhancements. One > evolving distortion of the shell increased the contact pressure
y P : SN b%yond the hydrostatic pressure at the highest points of the crests.
the most common enhancements involves the application of a s

s - Rﬂ’ey also found that gap nucleation time and the mean shell
S'ﬂc molndtsurface tI;).pogtrhaptr(\sgeH;hlZ]). Iiorgxgmplt?, perlchdlc thickness were influenced by the topography wavelength such that
groove" topographies that mimic the extended surtace ot a r Jap nucleation was delayed or even prevented over the time frame
diator, and hence allow for multidirectional heat flow at the mold=

L interest with increasing wavelength. Yigit and Hecfa#,15

e . . ) . With low aspect ratios. The contact pressure at the lowest points of
tion in interfacial heat extraction. This leads to more uniform SUthat surface of the mold in contact with the solidifying shell was

face features, improved microstructural properties, and more Upkcjated for systems where the mold and shell materials were
form shell thickness. A similar observation can be made about tESmbinations of pure aluminum, copper, iron, and lead. The the-
matte finish although the contact conditions differ due to wettingjca| results lead to the suggestion that for a given mold-shell
characteristics of the molten metal. Unfortunately, at present, thefgierial combination, a wavelength selection process occurs since
are no design criteria that might suggest how mold surface topagpang of wavelengths for which the contact pressure always falls
raphies can be “tuned” to a specific casting process and materig). zerq at the lowest points of the troughs was identified. A band
Based upon existing experimental works on the mold surfage yejimited by two “critical wavelengths” which were defined as
those wavelengths for which the interface pressure and its time

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF derivative simultaneously fall to zero at positions of extreme sur-
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-

CHANICS. Manuscript received by the Applied Mechanics Division, January 3, 20033C€ curv_ature(l.e., the troughs At the same time, the contact

final revision, July 16, 2003. Associate Editor: M.-J. Pindera. Discussion on the pa@ieSsure increases at the surface crests. This signals the onset of a
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligsbssible growth instability in which the initial shell nonuniformity
Mechanics, Department of Mechanical and Environmental Engineering, UniversﬁgcomeS exaggerated to improve local heat transfer above the
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepje . ! .
until four months after final publication in the paper itself in the ASMEJRNAL OF ighest points on the mold surface. Wavelengths that lie outside of

APPLIED MECHANICS. the band lead to gap nucleation at the highest points of the mold
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surface, i.e., the crests, with a simultaneous increase in conta

pressure in the troughs. The time to gap nucleation was largel liquid y

dictated by the mold-shell material combination and its associate: freezing front

distortivity ratio which is indicative of the extent to which the t

materials deform at the interfadd,6]. The bandwidth was largest shell mold
for the iron-copper shell-mold combination. Much greater care s surface
would therefore have to be exercised in the selection of a molc frft\ ™~ (rosy
wavelength. On the other hand, the bandwidths were smallest i/ W W /4 X
those cases where a less distortive shell mat&siath as copper \ o 0 &

solidified on a more distortive mold materi@uch as lead or if becos (mx) planar reference

the distortivity ratio of the two materials is near unity. The band- mold

widths predicted for solidification of a more distortive shell on a |<——— A ———l

less distortive mold generally exceed those for a less distortive

shell solidifying on a more distortive m_old irrespective of the sizgig. 1 Pure metal shell solidifying on a sinusoidal mold

of a selected process parameter. Yigit and He1df recently gyrface

reformulated the model presented[it3] to include the thermal

diffusivity of the solidifying shell material. The thermal and me-

chanical fields were not fully coupled at the mold-shell interface

since the thermal stress field is controlled by the temperature figling between the thermal and mechanical fields along the mold-
but not vice versa. The mold was assumed to be a rigid, perféttell interface and finite thermal diffusivity of the solidifying shell
conductor of heat, and the shell solidifies from the molten metalaterial. Hence, the importance of the combined effects of ther-
due to a prescribed constant heat flux at the mold-shell interfag@omechanical coupling and nonzerwn-negligible thermal ca-
Heat extraction through the mold-shell interface is mitigated Hyacitance of the shell material in solidification on a rigid mold has
the sinusoidal geometry of the mold surface, and this leads to thet been thoroughly delineated. For this reason, we extended the
evolution of a nonuniform stress field in the shell. The contaghodel presented ifil7] to include coupling along the mold-shell
pressure profile at the shell/asperity interface, which is indicativterface through a pressure-dependent thermal contact resistance.
of shell distortion due to the mold surface geometry, was obtainetlis requires that the contact resistance be a functional of the
The effects of the mold wavelength and shell thermal diffusivitgontact pressure and hence can be smeared out along the mold-
on the contact pressure, temporal and spatial evolution of gajpell interface as a continuous function. This is a continuum rep-
nucleation at the mold-shell interface, and mean shell thicknegsentation of imperfect contact between the highest frequency
were examined in detail. It was subsequently concluded (ihat components of the shell and mold surfaces due to microscopic
increasing the thermal capacitarce decreasing the thermal dif- 9aPs upon initial fluid wetting: It does not alter apparent wetting
fusivity) of the shell leads to a decrease in the contact press@ehe macroscale topography. Hence, the present model is a direct
perturbation due to nonuniform heat extraction at the sinusoid@fld logical continuation of the works by Hector et 3] and

mold surface.(ii) The diffusivity effect is negligible for small Yigit and Hector[17], in that we coupled the thermal and me-
wavelengths.(iii) An increase in the mold surface wavelengtk?ha“'P"?" fields at th(_a mqld-shell mterfac_:e and included the thermal
increases the time to gap nucleati@n the time when the mold- diffusivity of the solidifying shell material. o
shell contact pressure drops to 2et@form a separatior(iv) For The effects of the mold wavelength and shell thermal diffusiv-

a given mold wavelength and mean liquid pressure, an increasdy©n the contact pressure, temporal and spatial evolution of gap
the thermal capacitance of the shell leads to an increase in fcleation at the mold-shell interface, and mean shell thickness

time to gap nucleatior(v) For a given mold wavelength and mearf:'® €xamined for pure aluminum and iron shells. The impact of
P ; ; i56lected process parameters on the existence of the critical wave-

length is explored through variation of the mean pressure of the
Juolten metal, the pressure sensitivity of the thermal contact resis-
tance, the amplitude of the mold surface, and the mean contact
resistance. These results are qualitatively compared with compa-
E@ble results presented in Yigit and Hecf&b]. Finally, a discus-

ion of the importance of surface wetting effects on the evolution

e shell thickness is presented.

leads to a thicker shell at any time. As[ib3], it was again found
that gaps always nucleate at the lowest points of the surf
troughs. Yigit and Hectof18] very recently reconsidered the
problem developed in Yigit and Hectpt4,15 removing the re-
striction that heat extraction through the mold-shell interface o
curs across a pressure-dependent thermal contact resistance.sﬁﬁ
role of interfacial coupling between the thermal and mechanic3
fields along the mold-shell interface and the mechanical properties
of the mold was examined via qualitative comparisons with t .

results presented in Yigit and Hectpt4,15. Perhaps the mosthf Formulation of the Thermal Problem

significant feature of uncoupled physics was that the distortion of A quiescent bath of molten liquid is assumed to perfectly wet
the mold material plays no role in the evolution of the contathe sinusoidal surface of a rigid mold at initial time as shown in
pressure and the time and location of gap nucleation due to digg. 1. Molten material is initially at its melting temperatufe, .
tortion of the shell material as it grows from the melt. HoweveiThe instantaneous location of the solidification frérelative to
when the thermal and mechanical problems are coupled througthe mold surfaceis given bys(x,t). All material properties are
pressure-dependent thermal contact resistance, and the molé@sisumed to be constant and independent of temperature. Relative
modeled as finite and deformable, the mold and shell interfactal a planar reference, the mold surface is located yat
distortions interact to produce two critical wavelengths as dissa cos(2mx/\) where a is the surface amplitude and is the
cussed earlier. Hence, it was concluded that in order to theoretiavelength or center-to-center spacing between adjacent crests.
cally predict the critical wavelengths, it is necessary to model thighe temperature field in the solidified shdl(x,y,t) is governed

mold as finite and deformable and to couple the thermal and niey the heat conduction equation

chanical problems at the mold-shell interface a$l4,15. And

yet, the critical wavelengths will not be predicted when a pure V2T = Eﬂ (1)
metal with infinitely large thermal diffusivity solidifying on a k gt

pling as demonstrated by Hector et [dl3,19. However, neither

of these studies examined the combined effects of interfacial cou- T(x,8,t)=Th, (2
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oT Js conditions, we separate expressions corresponding to the zeroth-
Ka—(X,S,t)=LpE(X,t) (3) order and first-order thermal problems, which are written as
y follows:
aT T(Xy,t)—T
Q(x,t)=K E(X'y't): w at y=1ecogmx) The Zeroth-Order Problem.
4) 7o 14T,
S =g 8
s(x,0) =1 e cogmx) (5) ady
wherel=\/27=1/m and e=all is the mold aspect ratio. The To(Sp,1)=Th 9)
latter quantity is a convenient perturbation parameter since we
assumee<1. Justification of this assumption is discussed in Hec- L dso(t) _Kﬁ_To ¢ 10
tor et al.[13]. Note thatk, K, L, andp, are the thermal diffusivity, LTI ay (So.t) (10)

the thermal conductivity, the latent heat of fusion, and the density

of the solidified shell, respectively. Equati¢®) states that freez- dTy To(0t)

ing front is isothermal at the melting temperature, wtiB de- QO(t):KW(O't): Ro (11)
fines the energy balance between heat conducted away from the

moving interface into the shell and the latent heat released duringThe First-Order Problem.

solidification. Equatior(5) implies that the thin shell is compliant

to the sinusoidal mold surface at initial time. Heat extraction ﬂ )~ mM2T (v t _ 14Ty ¢ 12
Q(x,t) from the casting to the mold is opposed by a thermal ay? () =mTy(y,t)= k ot .0 (12)
contact resistancR, defined by Eq(4). T4 iS the temperature
of the rigid mold, which can be taken to be zero without loss of dTg
generality. si(t) oy (So,t) + T1(sp,t)=0 13)
Physical causes of the resistariRénclude the presence of air
gaps and inclusion materials of poor conductivity at the interface. ds,(t) IT1(So,1) 321-0(50],[)}
Experimental and theoretical investigations of the conduction of Lp =K +54(t) (14)
heat between conducting solids show that contact resistance is dt 9y ay*
very sensitive to the local contact pressigx,t), probably be- JT 1 JT
cause increased contact pressure increases the proportion of the ¢ ()= —(0)= —[Ie—O(Ot)+T1(Ot)
interface over which the solids are in intimate contact. The resis- ay ' Ro ay '
tanceR is therefore assumed to be a continuous and differentiable T-(0t
function of P, but no assumptions are made about the precise _ ol ’)R’P (t)} (15)
nature of this function. '
Note that Eq(4) is more appropriately written as where we have used the following equation Ry:
n.Vng ©) Ry(P(x,1) =R'Py(t) (16)
] ) ~ which comes from the Taylor series expansion
wheren is the unit normal vector to the mold surface at any point.
However, the difference between E¢#) and(6) can be shown to R(P(x,t)) =R(Pg(t)+P(t)cogmx)) (17)
be O(€?) (this relies in part on the fact that the unperturbed solu- ,
tion ig in)dependent of).FjA similar observation also ra)lpplies to Eq. =R(Po) +R'(Po)Py(t)cogmx) (18)
(3). The following perturbation analysis will only keep track ofgnd
terms toO(e€), and hence we may retain E@) without loss of
generality. ,_dR(Py)

2.1 Perturbation of the Thermal Problem. When the
moving solid-liquid interface is a plang=sy(t), and tempera- S .
tures and stresses depend onlyyon, the problem has a simple 3 Determination of the Stress Field
one-dimensional solution which is called the “zeroth-order” solu- To determine the stress field, we will follow the procedure out-
tion. However, if a very small spatial perturbation was introduceihed in [13], noting, however, that in his case the simplification
into the mold temperature or the thermal resistaRcthe thermo- k—o permitted the temperature field to be obtained in closed
mechanical coupling associated with the boundary condi@n form, whereas in the present problem it is determined numerically
might lead to unstable growth of an associated perturbation amd, therefore, is defined in discretized form. Since the analysis is
temperature and stress fields. In particular, we assume the follasiesely related to that if13], only the essential steps are pre-
ing forms for the temperature fieldT(x,y,t), the casting sented in the following derivations, readers being referrdd 8
thickness, s(x,t), the heat fluxQ(x,t) and thermal contact for more details.

istanceRr: . L
resistanc 3.1 The Zeroth-Order Solution. Derivation of the zeroth-

T(X,Y,t)=To(y,t) + T1(y,t)cogmx) order solution is readily available [120]. We therefore summarize

only the final results:
S(X,t) =sg(t) +s1(t)cogmx)

) Ea
Q(x,t)=Qq(t) + Q4 (t)cogmx) UxxO:_p+1TV[Tm_T0(y’t)]; Uyyo:_p; UXYUZO'
R(P(x,t))=Ry+ R;(P(x,t))cogmx) (20)
where terms with suffix 1 are implicitD(e). We insert Eq.(7) 3.2 The First-Order Solution. We next consider the ther-
into Eq. (1) and separate the zeroth-order and first-order govermoelastic problem corresponding to the first order temperature
ing thermal equations. We then expand E@®3, (3), and(4) in a field T,(y,t)cosfmx). A suitable particular solution for the stress

Taylor series about=sy(t) andy=0 to O(e€), respectively. After field can be defined in terms of a thermoelastic displacement po-
grouping terms corresponding to the zeroth-order and first-ordential ¢ (see[21]), where
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ea(l+v)

= f(y,t)*mTo(Ol)sinh(my) cogmx). (21) ayy, (XY, 1) =1 [a;(t) +ay(t)y]cosimy)
Equation(51) of [13] then requires thaf(y,t) satisfies the equa- —[ag(t)+a,(t)y]sinhmy)—g(y) +f(y,t)
" Eae To(0t)sinh(my) { m? cogmx)
- Si X).
PRy, Ea m(1—v) ° y

2 (1-») (29)

Note that this equation must be satisfied fortatind hence it is A_Is_,o, using the _elastic con_stitutive relations for plane strain con-
essentially an ordinary differential equation for the functioﬁi!t'on to determine the strain components and hence solve for the

f(y,t) in which t appears only as a parameter. The first-ordéPSplacemems’ we obtain

ay

stress components corresponding to this potential are then ob- 14 1.
tained by substituting into Eq$52) of [13] in the form Uyr(X,y,t)=— ?[ - Ef’(y,tH a,(t)+ay(t)y
b Y Eae . 1—v
ofy,=—|f (y,t)—HTO(O,t)S|nHmy) cogmx) (23) i a,(t) [sinh(my) + | as(t) +a,(t)y
p , Eae . 1-v .
ahy,=—|mf'(y,t)+ mTo(o,t)cosr(my) sin(mx) — — @(t)|cosimy) rm cogmx) (30)
(24) where(-) denotes differentiation with respect to
E e We now consider the boundary conditions corresponding to the
oy = m2f(y,t) — —— To(Ot)sinmy) |cogmx) (25) first order problem. Since the perturbation on the stress field is
! (1-v) small, we can expand the stress field in the vicinity of the mean

, . o . . solid/melt interface positionj=sy(t) in a Taylor series. Then the
where(’) denotes differentiation with respect yoTo satisfy the fist houndary condition in Eq49) of [13] can be written, drop-

boundary conditions of the problem, the pgrticule}r solution mu [ng the higher order terms in small quantities, s;, as follows:
be supplemented by a homogeneous solution which we present in

terms of the Airy stress functio®. Since the strain rates, but not &axxo(so,t)
strain, are required to be compatitfkee[22]), it follows that the Oyx,(So,t) + P si(t)cogmx) + oy, (So,t) = — .
time derivative of® must be biharmonic and hence that the most y 31
general function of the appropriate sinusoidal fornxiis (31)
Separating periodic and uniform terms and using &), we
@ ={[a;(t)+ax(t)y]coshimy) +[as(t) +as(t)y]sinh(my) obtain the boundary condition far,, aty=se(t), i.e.,
+g(y)}cogmx) (26) N

E
Oy (X,Sp(1), 1) = ——T{(Sp,t)s1(t)cogmx). 32
where the arbitrary time-dependent coefficieatét) —a,(t) and R0 1—p 070 (32)

the arbitrary time-independent functigfy) are to be determined The remaining boundary conditions in EG9) of [13] can be
from the mechanical boundary conditions corresponding to tl&%tained by applying the same procedure as follows:
first-order problem. '
Using Eqgs.(23)—(26), and (69 of [13], we can construct the Try,(X,S0,1)=0;  ayy (X,S0,1)=0. (33)
complete solution of the first-order problem in the form ! !
The total shear stress on the mold surface given by(&g. of

[ 2a,(t) [13] may be written in terms of the planar reference via
oo (XY 1) =1 ag(t) +ax(t)y+ coshimy) _ .
7 R m Tni(X,Y.1) = 0y (COS($) — SN ()) + 7y~ ”XX)S'”("’)COS‘(ﬁZ |
2a,(t
+|as(t) +as(t)y+ 20 sinh(my) which, using Eq(55) of [13], may be written as
1 . . on(X,y, 1) = Oxy™ (O'yy_ Txx) € SIN(MX) (35)
+ E[g (y)=f"(y,0)] and we obtain
Eae _ Eea .
+ TO(O,t)sinr(my)] m? cos mx) T, (O0) == 7= [Tm = To(O) Jsin(m>) (36)
m(1—v)

where we have retained terms @(¢). Also from Eq.(48) of

@1 [13], we have

(t)

a ul (ot)=0. 37
ay(t) +ap(t)y+ — N 37)

sinhkmy) +| a;(t)

nyl(xxy:t)_(
Applying boundary conditiori36), using(28), we can obtain

a,(t)
+ay(t)y+ ZT

1
coshimy) + E[g’(y)— fr(y,t)]

at) 1 Eae
()=~ T+ 1000 O o T
(38)

Eae

5 .
+ —mz(l— . To(0,t)cosh my)] m-sin(mx)  (28)

Application of Eq.(37) gives

Journal of Applied Mechanics JANUARY 2004, Vol. 71 / 99



14
a,(t).

1
as(t)=
Solving the last two equations together, we get

£/(01)

EaeT,,
a(t)= 2(1

2m(1-v)?

—)

(1-2»)f'(0}t)
2m(1—v)

(1-2v)EaeT,
2m3(1—v)?

ag(t)=

where we have imposed arbitrary conditigh(0)=0. Substitut-
ing for the stress components from E@27)—(29) into the re-
maining boundary condition&2), (33), we obtain the equations

which serves to determine the unknown residual stress function
g(y). Onceg(y) is known, we can recoved;(t) and a,(t) by
solving Egs.(43), (44), with the result

msw
cosiimsy) H1+ 2
B EaeTy(0})
m2(1—v)

(39)

f(sg,)— 9(so)

Mg
1+ ——

()=
(40)
sinhmg)

(41) Eu

m?(1—

msw
2

1
s1(D) To(sp, ) + — (f"(Sp, 1)
V) m

ms
cosiimsgy)

EaeT,,—m(1—-v)f'(0})
2m3(1—v)?

—9"(s0)) |+

cosiimgy)a(t) + Zcoshms))+303|nf(mso) a(t) (1 20)sink )H o)
—2v)sinims,
+ 1 I!( )
—9(So 1
m2 a4(t):m[E[f”(s()!t)_g”(so)]
1 F(so.0) EaeTy(0t) . " )
= —f"(sg,t) = ————sinh(m E
m? 0 m?(1— % +m[g(sg) —f(Sg,t) ]+ m(l—iv)sl(t)T(’)(sO,t)
B sy syt + CXEm M= )TOD £/(01) EaeT
m2(1— ) 0{So0,1)Sy 2m?(1—v)? —msinﬁms{,)+ml—_:;25inr(mso) . (47

X[mg coshimsg) +(3—2v)sinh(msy) ]

sinimsy)a,(t) +

To(01)

1 1
Esinf(mso)+so cosiimsy) |a4(t) + Eg’(so)

(42) Finally, we determine the perturbation in contact pressure

P,(t)cos(mx) at the casting-mold interface, from Edq46) of [13]
and(29) as

P1(t)=m?ay(t) - f(01)] (48)

where we have imposed the arbitrary conditg®)=g'(0)=0,

:—f (So.t )— cosiims) / . ) .
m2(1—v) since the free constants in the solution of Etp) can be assigned
to satisfy this condition.
N EaeT,,—m(1—v»)f'(0}) )
2m3(1— v)2 [ sinh(ms) 4 Dimensionless Formulation
_ Before proceeding to the solution of the problem, it is conve-
+2(1=v)cosims)] (43) nient to define the following dimensionless parameters:
costimsp)ay(t) + o sinmsp)as(t) +9(so) m m?K T,
Y=my, S(B)=ms(t); Si(B)=—si(t); B=
(st EaeTy(0}) €
(o=, SMme) T, T KT,
To(Y.8)= TY.B)= — i =t
m
. EaeT,— m(l—v)f’(O,t)[ ims)
ms, cosiimsy — Qo(t) — Q(1) —
2m?(1-)? QA= o Q=i w=tan(S)
mKT,, emKT, 49
+(1-2v)sinhmsy)] (44) (49)
— = EaTyn _, (1-v)K
where we have used Eqgl0), (41) to eliminatea,(t) andag(t). Ro=mKRy; R'= (1- )R, R Pup)= Eael,, P1(t)
These three equations must be satisfied for all values ahd 5 5
hence we can use them to eliminatgt) anday(t). Letus define  — =~ mi(1-p)K = ~_ m(1-v)K
w=tanh(ns/(t)); therefore, we obtain ai(B)= TETmal(t)f FIY.B)=—=—=—"f(y.1)
(0—Mgo’+ms)(g"(so) — f"(Se,t)) —2m(g’ (o) — ' (S0, 1)) — m?(1—v)K
G(Y)= g ——9(y):
aeT,

+m?(0+ Mg’ ~mg)(9(s) — f(Sp,t))

Hence, the governing Ege8) and(12) for?o(Y,,B) and?l(Y,ﬁ),

= Ty (0 mew+ me)si(O TS0,
2EaeT,(01)

* (1-wv)cosimsy)
EaeT,,

“an

Mgo—2(1-v)
(1-wv)cosims)

mf’'(0t) (45)
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PTo(Y.B) _ dTo(Y.B)
N T B (50)
FTUY.B) = TY.B)
_— 51
(B = (51)
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The boundary condition$9)—(11), corresponding to the zeroth with time due to the growth i$y(t). This permits the last node to

order temperature field,(Y,8) become be identified with the zeroth-order solid-liquid moving front at all
— times, but implies that the node locations move in time, necessi-
To(So.8)=1 (52) tating the inclusion of convective terms in the updating algorithm
q a1 for temperature. Thus, for example, the instantaneous zeroth-order
S(B) _ o(S0.8) (53) temperature field is represented by the temperatures atl the
dag aY points Y=(i—1)6, i=1,2,... N+ 1. The increase of the shell
— - thicknessS, during the next time incrementis determined from
ITo(0,8) _ To(0,8) (54) the finite difference form of Eq53)
aY Ro
. . T . . .
and the boundary conditior{¢3)—(15), corresponding to the first shtt=s+ 2—5(3T5N+1*4T10N+ TbN—l)' (62)
order temperature fiel@,(Y,3), can be written as
— after which the temperatures at the interior node®,3, ... N
Sy(B) ITo(Sp.B) +?1(So B)=0 (55) are updated using the finite difference form of the heat conduction
Y ’ Eqg. (50
dSi(B)  ITy(Sy.B) PTo(S0.8) = T o=
= Fl_Tl (Tl —oTlaTl ) =
T NS — G8)  T=Tht 5(Th,m2ThHTh ) i=23.N
— 63
Qu(B)= v which can be corrected using convective terms through
1 rﬁo(oﬂ) p— o 5P ﬁ”=ﬁ+l+(i—l) —5]+1_ J(F”—?“)' i=2,3 N
= Eo T+T1(Oy,3)_To(o:B)R Pi(B) . 0; 0; 5 O 70 /» A
(57) 64)

Thus, the heat conduction problem is reduced to the determinat%ﬂééeg%e;tgﬁi?;tnggggi {f?;égtzhltg%uilhtgﬁs \I/\r/]h\iléﬁw

of two pairs of functionsTo(Y, ), So(8) andT(Y,B), Si(B) I determines the first difference in the first element.

Egs. (50) and (51), which satisfy the boundary conditiori§2)—  Egsentially, the same procedure is used to determine the evolu-
(54) and (55)—(57), respectively. These equations would comign, of the first-order temperature field, using E€l) and (55)—

pletely define the temperature field if the heat flgkx,t) of Eq. . .
(7) were prescribed, as ifl7], but, in the present problem, the(57)’ except thaR, () must be determined from E¢57) which

heat flux is related to the temperature and the contact presslif¢essitates the solution of the thermoelastic problenP{p),
through Eq.(57). The procedure here is to solve E@2) for USIiNg Eqgs(58)—(61). If the time increment is sufficiently small,
f(y,t) and Eq.(45) for g(y), after which we can fingy(t) from the thermal and thermoelastic updating algorithms can be per-

Eq. (46) and henceP,(t) from Eq. (48). The dimensionless form formed sequentially and hence explicitly. )
of these equations is The choice of an appropriate value feris motivated by the

desire for computational efficiency, while retaining acceptable nu-

PF(Y,B) — merical convergence and stability. Extensive investigations were
e F(Y,8)=T.(Y,B) (58)  made into the effect of both space and time discretization to en-
sure that the final results are reliable. With the explicit scheme
(Sgw?—Sy— ®)G"(Sp) +2G' (Sp) — (Spw?+ w— S) G(Sy) used here, the maximum time step for stability is proportional to
— Y , — £ 8% and hence the stability requirement generally places the most
=(Sp0"— Sy~ w)F"(S,8) +2F (S, 8) — (Spw™+ @ severe restrictions om when good spatial accuracy is desired,
. — o = necessitating small values éf However,S, and hence increase
So)F(S0.8)+(So So~ ®)Su(B)To(S0.8) during the process, permitting the time step to be increased as the
2T5(0,8) Syw—2(1—v) _ system evolves, without loss of stability.
— + F'(0,8)-T 59 " . . . .
coshims) (1—v)cosh$0)( (08)=Tm) (59) 5.1 Initial Conditions. With the algorithm described above,

_ it is clearly not possible to start at the instant of first solidification,
%}G(So) since atSy=0, all the nodes would coincide. Instead, we need to
2 use an asymptotic solution of the problem at small times to pro-
S vide a suitable initial condition for the numerical algorithm at
_ : _ D@ / ” finite time. Fortunately, the limiting solutiofgiven in the appen-
To(0,8)SINN(Sy) 2 [S:(B)To(S0.B)+(F(S0.8) dix to verify that the present more general solution reduces to the
result previously obtained in case of zero thermal cappdifg to
S +1 Hector et al[13], which assumes that diffusivity of the solidified
coshSy) shell material is infinitely large, becomes progressively more ac-
curate at small times, since the temperature drop across the solidi-
) fied layer is small at the very beginning of the process. We can
_2”)5'”“30)” (60)  therefore start the process with a small but finite thickness, using
— o the limiting solution given iM13] to define the initial values for
P.i(B)=ai(B)—F(0,8). (61) the temperature field in the solid layer.

_ 1 ©
ay(B)= —H1+ SL}F(SO,B)— 1+
cosh(Sy) 2

Tm—F'(0,8)
2(1-v)

—G"(S)]+

5 Numerical Algorithm

Both zeroth-order and first-order problems require numerical : o
solution, for which we use the algorithm developed 17]. The 6 Gap Nucleation Criterion
zeroth-order solid phase<0Y<Sy(t), is divided into a fixed  Determination of the conditions for gap nucleation can be
number of elementl, so the space step siz&= S, /N, increases achieved through examination &, which is the ratio of the
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Table 1 Material properties for pure aluminum and iron at the 1.2 I |
melting temperature
MATERIAL A =50mm
Al Fe
PROPERTY Value Value Fe Reference
T (°C) 660 1536 [25]
K(ﬂ) 229.4 36.2 [26]
m-°C
p< kg 2650 7265 [27]
3
m
|_( 1o5k_J 3.9 2.7 [28]
g
E(10%Pa) 6.0 14.4 [29]
(10 ¢°Cc™h 37.8 234 [30] 0.0 |
v 0.33 0.33 [29] DE+0 1E-3 2E-3 3E-3
’ 2! ec
k(lo—sﬂ) 8.2 16.1 [31] t (sec)
s

Fig. 2 P! versus t for selected values of \: pure aluminum
shell. (P,=10000Pa, R,=10"°m?sec°C/J, a=10"®m, R’
=0 m? sec °C/J-Pa).

total (dimensional contact pressure at the lowest points of the
troughs,P, to the mean pressurB,, at the mold surface troughs.

Hence mation on the temperature-dependence of these materials, the
reader is referred to Heinlein et 4R4]. The process parameters
P"zi - Py 65 & chosen to bd&Ry=10"°m?sec °C/J,R’' =0 n? sec °C/IPa,
Po Py’ P,=10,000 Pa, and=1.0um (unless otherwise specified

Figure 2 examines the evolution of the contact pressure at a
trough in the mold surface for a pure aluminum shell. The six
curves correspond to wavelengths)of1 mm, 3 mm, 5 mm, 7

Note that forP,/Py—1, the following condition, which is de-
rived in [13] must be met:

R'P, mm, 10 mm, and 50 mm. The smaller wavelengths lead to faster
- <1. (66) gap nucleation, while the larger wavelengths, sucha80 mm,
0 do not lead to gap nucleation over the time frame of interest.

This limits the proposed gap nucleation analysis to weakly Figure 3 shows the evolution of the contact pressure at a trough
coupled systems. All other perturbation quantities are requireditothe mold surface for a pure iron shell with the same process

be much less than one. conditions used in Fig. 2. A comparison of Figs. 2 and 3 shows
Gap nucleation occurs when that the time to gap nucleation for pure iron is nearly an order-of-
ptr—Q 67) magnitude smaller than that for pure aluminum for any given

value of\. The controlling property that creates this distinction is

If P'>0 during the time frame of interest, then gaps will nothe thermal capacityc=K/pk. A pure iron shell has a smaller

nucleate in the troughs. Gap nucleation at the troughs will indicaifzermal capacity than a pure aluminum shell. Hence, the tendency

the possibility of irregular growth of the shell since contact wilPf the aluminum shell to store latent heat liberated at the freezing

simultaneously increase at the crests. Beyond gap nucleation time,

the present model is no longer valid since it cannot account for

continued growth of the gaps and the shell. 1.2 I I
As defined by Yigit and Hectdrl5], a wavelength is critical if

it corresponds to

- A =50mm
dPtl’ —]
tr _
P a0 0. (68)
Note that Yigit and Hectof15] found that wavelengths bands 08~ A=10mm |
were delimited by upper and lower critical wavelengths. Wave-
lengths that fell between the two critical wavelengths led to the ptr

condition given by Eq(68). Wavelengths that were either smaller A= 7mm

than the lower critical wavelength, or larger than the upper critical =
wavelength led to gap nucleation at the highest points of the 0.4
crests, instead of the lowest points in the troughs. A= 5mm

. . A= 3mm -1
7 Results and Discussion A= 1mm

The material properties used in the calculations are listed in
Table 1 along with pertinent references to those properties. Note g g L L ! !
that the properties for pure aluminum are taken from Richmond OE+0 1E-4 2E-4 3E-4 4E-4 5E-4
et al. [23]. The symbolsE, «, and v denote Young’s modulus, t (sec)
thermal expansion coefficient, and Poisson’s ratio, respectively.

Although it is assumed that each property is a temperatumg. 3 P! versus t for selected values of \: pure iron shell.
independent constant, most of the reported values were measui®g=10000 Pa, Ry=10"°m? sec °C/J, a=10"%m, R’
close to the melting temperature of each material. For more infe£0 m? sec °C/J-Pa).

102 / Vol. 71, JANUARY 2004 Transactions of the ASME



\
\‘ AN
L} M N~
\ ~ -~ A
0.8, \ ~ .l
Vi . -~
I- \\ N T A‘_ EOTm
A \~ T - o
0.6H 3 . ~_ =
PY I'. A\ T L teme
. “; R A=9mm T =]
0.4 \. \\///
R A NS LY -
“x=7mr.ﬁ‘~‘. AR 963mm
0.0 L I [
0.0 0.1 0.2 0.3 0.4
t (sec)

Fig. 4 P versus t variation for aluminum shell showing the Fig. 5
critical wavelength at Ap=4.84mm. (Py=2.0MPa, R,
=10"°m?sec°C/J, a=10"®m, R'=0 m? sec °C/J-Pa).

P! versus t variation for iron shell showing the critical
wavelength at Ag=9.63mm. (P,=2.0MPa, R,=10"°m?
sec°C/J, a=10"%m, R’=0 m? sec °C/J-Pa).

front is greater than that for a pure iron shell. In other words, he@.} increasing the wavelength to 5.0 mm, as shown in Table 2.
diffuses (propagatesmore quickly through the iron shell than it njgie thatt,= 0.5856 sec fo=0, however, gap never nucleates
does the aluminum shell, and the result is that the evolving theg; {=0.00114. For small values of, the thermal diffusivity ef-
momechanical distortion of the aluminum shell is less than thglc exerts little influence on the thermomechanical distortion of
for the iron shell. . _the shell since there is a small difference with the case in which
Solidification process conditions are not always conducive {fie shell has infinitely large diffusivity. However, as the wave-
gap nucleation. For example, Fig. 4 shows the evolutioR'dfor  |ength is increased, which means that the mold surface gradually
solidification of a pure aluminum shell with the same processecomes smoother, thermal diffusivity is much more significant
materials considered in Fig. 2, except that the nominal contaghce the time to gap nucleation increases rather dramatically, or
pressure has been increasedRg=2 MPa. Six curves corre- gaps never nucleate for wavelengths that are larger tanhen
sponding to wavelengths of 4 mm, 4.6 mm, 4.84 mm, 8 mm, ke thermal capacity of the solidifying material has been included.
mm, and 30 mm are shown. Over the 6-sec time frame conS|dereq|:igure 5 shows the evolution &' for selected values of the
in Fig. 4, P'" due to 30-mm wavelength exhibits the smallesiold surface wavelength, for a pure iron shell. Note that the
deviation fromP""= 1. As the wavelengths are decreased,de- pehavior observed in both Figs. 4 and 5 is the same. The gap
creases more rapidly at the earlier stages of solidification. Thisrigcleation time can be decreased by decreasing the mold surface
evident from a comparison of the curves corresponding=+d0 wavelength. It is immediately apparent that gap nucleation time is
mm and\=30 mm (for examplg. A larger value ofx leads to a over an order-of-magnitude faster for the iron shell than for the
smaller value of the contact pressure perturbattanover the aluminum shell considered in Fig. 4. The critical wavelegth crite-
earliest solidification times, and this causes the apparent orderifighas been met atz=9.63 mm which is larger than that the one
of the P'" curves in Fig. 4. Figure 4 shows that the wavelengtbbserved in Fig. 4. Gap nucleates gt 0.342 sec. Table 3 list the
denoted by\ which is equal to 4.84 mm meets the critical wavegap nucleation times for botl=0 and¢=¢(\) for the mold sur-
length criteria in Eq(68). Gap nucleates dk=5.52 sec. Wave- face wavelenghts considered in Fig. 5. Note that the significance
lengths less thaig lead to gap nucleation. Gap nucleation timesf finite thermal diffusivity for both pure aluminum and iron shell
for A\=4.0 mm, 4.6 mm, and 4.84 mm are listed in Table 2 along evident in Tables 2 and 3 when the gap nucleation times for the
with calculated gap nucleation times for the idealized case of zefe:0 and{=¢(\) have been compared.
thermal capacity materidl.e., material with infinitely large ther-  Although it cannot be established a quantitative comparison
mal diffusivity), {=0. For the A=4 mm, tz=0.1549sec and between the present formulation and that in Yigit and Hector
0.4523 sec forg=0 and {=0.00114, respectively, and hence thg14,15, it is instructive to examine results from their model for
diffusivity effect does not significantly influence thermomechanihe appropriate process parameters. Our intent here is reveal im-
cal distortion of the shell. Fok=4.84 mm,tz=0.4495sec and portant qualitative differences between the present theoretical ap-
5.52 sec fory=0 and{=0.00114, respectively. Including thermalproach and that followed ifl4,15. For this purpose, we present
capacitance of the shell increases the gap nucleation time aFigs. 6 and 7 which examine the evolution of the contact pressure
trough by more than 5.0 sec. This difference is further increasestio due to selected mold-shell combinations. Note that the time

Table 2 Thermal diffusivity effect on gap nucleation time for
an aluminum shell

Table 3 Thermal diffusivity effect on gap nucleation time for
an iron shell

Mmm)  £=0.2843<1073\ tg(sec) for{=0 tg(sec) for{=¢(A\) N (mm) r=0.0280<10 3\ tgr(sec)for{=0 tg(sec) for{={(\)
4.00 0.00114 0.1549 0.4523 7.00 0.000196 0.0289 0.0491
4.60 0.00131 0.3168 1.6472 9.00 0.000252 0.0586 0.1493
4.84 0.00138 0.4495 5.5200 9.63 0.000269 0.0729 0.3420
5.00 0.00142 0.5856 e 10.0 0.000280 0.0822 e

Journal of Applied Mechanics

JANUARY 2004, Vol. 71 / 103



1.5 T T T T

-------- R,=10000 Pa .

12k —-— R=5000Pa -
R (. Py=3000 Pa R
£ ool R=1000Pa A

ptr

o 10 20 30 40 50
A (mm)

Fig. 8 sqg(tg) versus M\ for selected values of Py: pure alumi-
num shell. (Ry=10"°m2sec°C/J, a=10"®m, R'=0m?
sec °C/J-Pa).

Fig.6 P' versus tat t=tx for selected X, aluminum solidifying
on copper, P,=10,000Pa, hy=0.5mm, R,=10"°m?sec°C/J,

I 1_ 2_ . . ~
with critical wavelengths at ~ Az=0.22mm and Aj=60.0 mm larger critical wavelengths, are, respectively=2.1x 10 *sec,

tr=9.22x 10" 2 sec. Figure 7 shows the evolution Bf' for an

iron shell solidifying on a copper mold at the surface crests. It is
scale in each of the following two figures is logarithmic due to thgnmediately apparent that gap nucleation is over an order-of-
large range of gap nucleation times for each combination. Thisagnitude faster for the iron shell than for the aluminum shell in
required that we select different wavelength values for each cofy. 6. The smaller critical wavelengthi=0.05 mm corresponds

bination. Figure 6 shows the evolution 8" for an aluminum g gap nucleation at;=7.0x 10~ ® sec. The larger critical wave-
shell solidifying on a copper mold at the mold surface crests. N @ngth )\éz 194.3mm corresponds to gap nucleatiortat 6.0
that two wavelengths which meet the criteria established by 10 Lsec. Clearly, the iron shell nucleates gaps faster than the

. r e _ 2
(68) were identified as critical. These akg;=0.22 mm and\g  4juminum shell and has a broader band of wavelengths that lead
=60 mm. Wavelengths that fall within the range delineated by thg gap nucleation at the mold crests.

critical wavelengthsi.e.,A=0.2, 5, 40 mmlead to gap nucleation Figures 8 and 9 show the mean thickness at gap nucleation
at the crests in the mold surface. Wavelengths that lie OUtSidet%e,so(tR), as a function of mold surface wavelength in mm for
the range delineated by the critical wavelengthe. A=0.1, 80 ggjected values of the mean contact pressege,for a pure alu-

mm) lead to gap nucleation in the troughs of the mold surfagginym and a pure iron shell. Increasing the mean pressure causes
since the contact pressure in both cases a(_:hleves_a miniMam 1 shell to grow thicker in both figures. For any given wave-
zerg value and then turns around toward increasing values. NQigqih gaps nucleate more rapidly during solidification of an iron
that the gap nucleation times corresponding to the smaller a.g\qe”_ For both cases, an increaseFig for fixed \ leads to an

increase in the mean thickness of the skg|l, It is interesting to
note that and increase iR, for the solidification of pure iron

1.0 leads to a shell thickness that is thinner than that for the alumi-
num. Clearly, the thermal conductivity for the iron shell is smaller
0.8
0.4 T T T T
~~~~~~~~ Py=10000 Pa
0.6 — - = P,=5000 Pa
= 0.3 T
o —_ | - Py=3000 Pa
g Fp=1000 Pa
0.4 < o
- 0.2 T
L - : 4
0.2 (/)O - - -
0.0
1£-7 1E6 1E-5 1E4 1E3 1E-2 1E-1 1E+0
t (sec) ~o 10 20 30 40 50
A (mm)

Fig. 7 P' versus t at t=tx for selected A, iron solidifying on
copper, P,=10,000Pa, hy=0.5mm, Ry=10"°m?2 sec °C/J, with

Fig. 9 so(tg) versus \ for selected values of Py: pure iron
critical wavelengths at  A5=0.05mm and A%=194.3 mm

shell. (Ry,=10"°m?sec°C/J, a=10"%m, R'=0 m? sec °C/J-Pa).
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Table 4 Thermal diffusivity effect on mean shell growth at A

5 300 ] | T T
mm and selected pressures

So(tn) (mm) for £=0 so(t) (mm) Aluminum shell

P, (MPa) Al Fe Al (=056 Fe(¢=01% | ~°~°~°° Iron shell

0.01 0.1158 25189102 0.1221 2.5425< 1072 200
0.10 0.3987 8.5999< 102 0.4376 8.8331x 1072
1.00 2.2027 0.3439 2.9841 0.3836
2.00 11.005 0.5752 ‘e 0.6812

Ag (M)

100
than that for the aluminum shell and this leads to slower growth of

the former material. It is therefore not surprising to note that the
pure iron is less sensitive to an increase in the mean preffsure
the chosen range of) when compared with the pure aluminum
since the spread in the maximum valuessgffor the former
system is less than that for the latter system. Note that the influ- 0 ! ' L L
ence of the mean contact pressuPg, on the mean shell thick- 0.0 0.2 0.4 06 0.8 1.0
ness variation with the mold surface wavelength, Bg.ys. \ is , 40 .2 o
almost linear for lower mean contact pressupg, whereas the -R'(x 10" m“sec C/J.Pa)
linearity gradually diminishes as the value B is increased.
Table 4 lists values of they(tg) for the Py, £ combinations at Fig. 11 Ag variation with R’. (Po=1.0MPa, Ry=10"°m?
A=5.0 mm considered in Figs. 8 and 9. Increasing the mean pr&gc °C/J, a=10"°m).
sure causes the shell to grow thicker. For any given valueyof
a shell that stores latent heat liberated at the freezing front tends to
grow thicker than one that does not. Figures 8 and 9 show thatgap . . ) .
nucleation always occurs at the troughs on the mold surface. Pt Po IS increased\r decreases nonlinearly in both cases. Both
any given wavelength, gaps nucleate more rapidly during solidystems give .n'ear.ly constant valuesagf as further increase in
fication of an iron shell. The shell thickness increases very littlo has a diminishing effect. For all values 8% considered in
through inclusion of the diffusivity effect a,=1000 Pa since Fig- 10,\g for the pure aluminum is less than that for the pure
So(tr) =0.1158 mm and 2.518910°2 mm for /=0, andso(tg) iron. Hence, the wa_velengths that Iead to gap nucleation can be
=0.1221 mm forg=0.001422 and’=0.000140 for a pure alumi- decreased by selecting casting material with higher thermal capac-
num and a pure iron shell, respectively. However, this differend® at increased mean pressures. "
gradually becomes substantial as the mean pressure is increasef@!dure 11 shows the variation ak with pressure-sensitivity of
Note thatsq(tg) = 11.005 mm for the pure aluminum shell solidi-h€ thermal contact resistand@; over the 0.0 sec °C/dPa<
fication with Py=2 MPa andz=0. However, gap never nucleates— R <1.0x 10~ **n? sec °C/3Pa range. The remaining process
with the same process conditions when the thermal capacity &fameters were fixed #,=21.0 MPa, Ry=10"°m?*sec °C/J,
been included. anda=1.0um. Notice thatR’ will generally be negative because
Figure 10 shows the variation ofz with mean pressure?,. the thermal contact resistance falls with increasing contact pres-
The remaining process parameters were fixed=afl.0um, R, sure. Figure 11 shows thag for both cases are always increased
=10"°m?sec°C/J, andR’'=0nm?sec°C/JPa. The smallest by a greater negative value &', implying that the interfacial
mean pressure evaluated in the figur@®is= 10 kPa. The\g val- coupling between the thermal and the mechanical problems pro-
ues for both mold materials are greatest at the smallest pressurnegtes the possibility of undulatory growth of the shell in a very

500 | | T
! 160 T T T T
\ P
400 — Aluminum shell P
X 120 ----- fron shell ,/ -
[
~~ ' . | | -
£ 300 -:- ———— Aluminum shell =
é e mmmes iron shell £
o ! ~ 80
< ! o
200 f! = J:
1
40
100
0 | 1 ' = O
0.0E+0 4.0E+2 8.0E+2 1.2E+3 1.6E+3 2.0E+3 0
Po (kPa) a (micron)

Fig. 10 A\p variation with Py. (Ro=10""m?sec°C/J, a Fig. 12 A variation with a. (Py=1.0MPa, R,=10"5m?
=10"%m, R'=0 m? sec °C/J-Pa). sec °C/J, R'=0 m? sec °C/J-Pa).
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200 T T T T T the mold-shell interface wherein the contact pressure falls to zero.
_____ This implies the possibility of nonuniform or undulatory growth
---------- of the shell at later stages of the process since the contact pressure
160 .- — simultaneously increases at the highest points of the upper mold
-~ surface crests. The shell thickness above these points increases,
whereas the shell thickness above the lowest points of the troughs
Aluminum shell diminishes. The critical wavelength was shown to exist for both
20~ | hell 7] pure aluminum and iron shells under specific process conditions.
rons Those wavelengths that are larger than the critical wavelength do
not promote gap nucleation in the troughs of the mold surface.
80 - They are more likely to cause gap nucleation at the crests of the
//’ mold surface and thereby promote planar growth of the shell at
early times. Critical wavelengths and associated gap nucleation
times were calculated for both pure aluminum and pure iron shells

Ag (mm)

40 under identical process conditions. It was found that the iron shell
nucleates gaps faster than an aluminum shell, with the associated

| [ . critical wavelengths of iro_n being subste}ntially larger than those

O1 L 4 : 7 10 for aluminum. Effects of important casting process parameters,

such as pressure, pressure-sensitivity of contact resistance, the
5 2 o mold surface amplitude, and resistance, on the size of the critical
Ro (x 10™ m°sec°C/J) wavelength were also examined in detail.
Perhaps the most significant result of the present model is that
Fig. 13 \g variation with R,. (Pg=100.0kPa, a=10"°m, R’ the coupling effect, when combined with the thermal capacitance
=0 m? sec °C/J-Pa). effect considered if17], leads to critical mold surface wave-
length that surves as a cutoff between those wavelengths that lead
to gap nucleation in the troughs and those that lead to gap nucle-
large range of the wavelength of the mold surface. This situati@tion in the crests. However, when the thermal and mechanical
is enhanced for solidification of casting materials with higher theproblems are uncoupled in the presence of thermal capacitance of
mal capacity. the shell material[17], or when the thermal and mechanical prob-
Figure 12 shows the variation afy with amplitude,a, of the lems are coupled in the absence of thermal capacitance of the
mold surface over the 1,0m<a;<10.0um range. The remain- shell material,[13], critical wavelenghts were not predicted.
ing process parameters were fixed #&,=1.0MPa, R, Hence, in order to predict the critical wavelengths theoretically, it
=10"°m?sec °C/J, andR’ =0 n¥ sec °C/JIPa. Variation ofa in  iS necessary to model the system as one of the followingo
the pure iron leads to a rapid increase inxig whereas a similar model the mold as finite and deformable and to couple the thermal
variation in the pure aluminum leads to much smallgr Hence, and mechanical problems at the mold-shell interface without con-
\g for a shell with smaller thermal capacitan@® larger diffu- sidering the effect of thermal diffusivity of the solidifying shell
sivity) is more sensitive to changes in the mold surface amplitudieaterial,(ii) to model the mold as rigid, perfectly conducting and
than a corresponding shell material with higher thermal capacif couple the thermal and mechanical problems at the mold-shell
Figure 13 shows the variation &f; with mean contact resis- interface including the effect of thermal diffusivity of the solidi-
tance,R,. The remaining process parameters were fixed at fying shell material. Table 5 summarizes the works done so far on
=1.0um, P,=100.0kPa, andR’=0 m?sec °C/JPa. For both the effects of three major features on the existence of critical
materials, variation of the mean resistance over the 1vavelengths during solidification of pure metals. We observe that
X 1075 m? sec °C/& Ry<10.0< 10 5m?sec°C/J range gives the problem defined in Case 5, where the mold is modeled as
little variation in Ag since both curves are nearly horizontal. ~ finite and deformable in the absence of interfacial coupling be-
tween the thermal and mechanical problems with finite thermal
. diffusivity of the solidifying shell material, must be solved to
8 Conclusions obtain a definitive conclusion about the prediction of a critical
The combined effects of thermomechanical coupling at theavelength theoretically. Do two features among tHiee, inter-
mold-shell interface and non-negligible thermal capacitance of tfecial coupling, mold deformation, and thermal capacity of the
shell material during solidification of pure aluminum and irorshel) have to be included in the model to predict a critical wave-
shell on a rigid, perfectly conducting mold was presented. THength or thermomechanical coupling along the mold-shell inter-
evolution of the contact pressure at the lowest points of the mdialce is necessary but not sufficient condition? This question is
surface troughs was examined. The mold surface was assumedgen at present, and is the subject of an ongoing investigation.
have a sinusoidal corrugation with a small aspect ratio. The un-The perfect wetting assumption used in the present model is
dulatory geometry of the mold surface led to nonuniform heainlikely to be valid for sufficiently short mold surface wave-
extraction and hence initiated a nonuniform evolving distortion déngths since surface tension effects tend to predominate the wet-
the metal shell. This distortion produces the nucleation of gapstatg process. Also, the interaction between imperfect wetting at

Table 5 Effect of modeling on the existence of critical wavelength, Ar, concept
Case Coupling Mold Distortivity Thermal Capacity Existence\gf Reference
1 Yes Yes Yes Not yet investigated .
2 Yes No Yes \R €exists [current worK
3 Yes No No NOA R
4 Yes Yes No \R EXists [14], [15]
5 No Yes Yes Not yet investigated
6 No Yes No NoAg [18]
7 No No Yes NoA g [17]
8 No No No NOoAg [19]

106 / Vol. 71, JANUARY 2004 Transactions of the ASME



Sow

the microscale and macroscale roughness becomes important. The _

75/ . _I
mechanical boundary conditions in the present model would need SoL}G”(SO)— —_—
to be changed to include the effect of surface tension on the gap |2 €OSHtSo) coshSy)
nucleation process and to delineate a possible surface tension- EEOE’ ( R’ (cosl’(SO)sinr(SO)So)

induced wavelength selection process for uniform shell growth.

SotRy |2 costiSy) So+Ry
sinh(Sg) E’Esinr( )
Acknowledgments —coshSp) — R—So] Si(B)Jr[WmS)O
The author wish to express his gratitude to Dr. L. G. Hector, Jr. 0 0
of GM R&D Center, Warren, MI, for his encouragement and con- ] coshSy) 1
tinuous guidance during all phases of the work. —sinh(Sp) — . Si(B)+ =
0 0
R o +w(l1-2 A6
Appendix 2(1—) | cosR(Sy) (1-2v) (A6)

Limiting Solution for Zero Thermal_ Cap_ac_it_y. It can be where we have 55(0):6'(0):0 since these are arbitrary and
demonstrated that the solution fgr-0 is a limiting case of the i hot affect the final results. Note that Eqg\d) and (A5) con-
present more general theory. This simplification permits the prégy e a pair of coupled differential equations to determine the

dominantly analytical solution to be obtained. . . . o
The results of limiting case are useful in the development amlknown quantitiess(Y) andSy(8), given suitable initial con-

checking of purely numerical solution of general case, as well 8§ions atY=0. OnceG(Y) and S,(B) are determined, contact
in providing a start-up solution for the general problem. In physRressure perturbation can be determined from

cal terms, this simplifying assumption is equivalent to the state-

ment that the casting material has zero thermal capacity. In othep, (B)= 1 [(1_2") So

words, the heat diffusivity of the casting is infinitely large. It then 1 2 cosliSy) 1-v /[ (1-2v)coshSy)
follows that Eq.(50) approximates Laplace’s equation and in view — _ —

of the condition,ds/dx<1, that the temperature profile in the + Sow[ G"(Sp) —G(Sp) ] —2G(Sp)
solidified layer is linear inY. In this case Eq(50) can easily be

+sinh(Sy)

solved using the boundary conditio(&2)—(54) with the result - STR 50531(3)+ZEO sinh(Sp)
_ 0
TY,B)= 0 (A1) +[S(B)inN(So) + S4(B)coshiSy) ]
’ B —— 1
° So(B)+Ry s,
Substituting (A1) into (53) and solving the ordinary differential x| sinh(Sy) — oSSy H (A7)
equation forSy(B) we obtain the unperturbed solidification front
as Note that Eqs(A1)—(A6) are exactly equal to the results reported
_ in [13].
So(B)=—Ro+ VR3+28. (A2
Substituting(Al) into (54) gives the zeroth-order heat flux
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Coupled Belt-Pulley Vibration in
Lingyuan Kong Serpentine Drives With Belt
Bending Stiffness

Robert G. Parker’

‘ Mem. ASME A method is developed to evaluate the natural frequencies and vibration modes of ser-

e-mail: parker.242@osu.edu pentine belt drives where the belt is modeled as a moving beam with bending stiffness.
. o Inclusion of bending stiffness leads to belt-pulley coupling not captured in moving string

Department of Mechanical Engineering, models. New dynamic characteristics of the system induced by belt bending stiffness are
The Ohio State University, investigated. The belt-pulley coupling is studied through the evolution of the vibration

206 W. 18th Avenue, modes. When the belt-pulley coupling is strong, the dynamic behavior of the system is

Columbus, OH 43210 quite different from that of the string model where there is no such coupling. The effects

of major design variables on the system are discussed. The spatial discretization can be
used to solve other hybrid continuous/discrete eigenvalue problems.
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Introduction on analytical and numerical methods to calculate the steady mo-

. . . o tion and the effects of design parameters on the steady state and
Serpentine belt drives with flat multi-ribbed belts are used t oupling indicator.

drive individual accessories of an automobile. Most of the mode SBelt-pulley coupling from bending stiffness is more consistent

used in the literature only address the pulley rotational motiQiy, ohserved automotive serpentine drive vibration problems
with the spans modeled as axial sprinfis-4]. These discrete ynan prior models. In these cases, span vibrations most commonly
models are relatively smple and have beer_l used extens_lveggcur at low(engine idl¢ speeds and at the engine firing fre-
Many factors have been incorporated to describe the dynamic bgrency from pulsations to the crankshaft pulley. This precludes
havior such as damping, dry friction of the tensioner arm, sligeit or pulley runout as root causes because they lead to span
between the pulley and belt, and so on. Its assumptions exclug§rations at frequencies other than the firing frequency. Paramet-
the span transverse vibrations which may be large and intergetinstability from tension or speed fluctuation$3—15, occurs
strongly with the pulleys, as seen in experimeff, and com- in practice only at high engine speeds.

municated by automotive manufacturers and suppliers. Based on the moving beam-pulley modgll], this study in-

In contrast to the discrete model, more refined models inclugestigates serpentine belt drive dynamic analysis. Computation of
the span transverse vibrations, pulley rotational motions, and ttee natural frequencies and vibration modes is a central task. Ser-
interactions between these continuous and discrete componepesitine belt drives belong to the class of hybrid continuous/
Ulsoy et al.[6] considers the possibility of parametric instabilitydiscrete systems, and solving the eigenvalue problem for such a
and presented a mechanism which may cause large transvéigiem is challenging. For the simpler case of a string model of
span vibration due to tension fluctuations. Beikmann efsl] the belt, three paper$5,8,10, develop numerical methods to
treats the belt as a moving string and studied a prototypical thré&&lve the serpentine drive eigenvalue problem. The first two meth-
pulley model, which captured a linear coupling mechanism b&ds, [5,8], fail when the spans are modeled as moving beams
tween the tensioner rotation and the transverse vibrations of th@cause both require the explicit solution form for axially moving

two spans adjacent to the tensioriEig. 1). Other spans are de- continua while no _such form _exists for a traveling beddg].
coupled from pulley rotations in the linear model. Zhang et aPOth methods retain the continuum model and seek roots of a

[8,9] build on this model by adding damping and give a compIeQ”merica”y ill-behaved characteristic equation. The numerical

modal analysis of the serpentine belt drive system. Pakey singularities(see[10]) can lead to missing or false roots and sig-

S I . nificant computational expense to try to avoid these errors. To
l(ley\gelops a spatial discretization of this model extendex i address these issues, the third mettdd), discretizes the two

. . . . spans adjacent to the tensioner and uses Lagrange multipliers to
By incorporating the belt bending stlff_ness, Kong and Park%’ﬁforce the geometric boundary conditions at the belt-tensioner
[11] .prese.nt another model. Each span IS an Euler ela@i@, interface. The method is presented for a genespllley drive.
moving with constant speed. Modeling the belt as a moving beampne of the main developments of this paper is a spatial discreti-
shows that transverse vibration of every span is linearly couplgdsion to solve the serpentine belt drive eigenvalue problem with a
with the rotations of the two adjacent pulleys at its ends. Theoying beam model. Compared with characteristic equation
degree of span-pulley coupling depends on the steady state cuiy@thods[5,8], the present approach can incorporate bending stiff-
ture of the span. Further, a coupling indicator is defined for eagless, is numerically economical with dramatic reduction in com-
span to quantify coupling strength. [hl], the attention is focused putation time, avoids numerical singularities, and does not require
advance estimation of the natural frequency bandwidth. After a
1cT o ‘tN_T)OT g%”e;pogdelhcg '\S;lholéld be %dd-reSSEdﬁEA - coordinate transformation and some mathematical modifications,
ontrioute y the Applie echanics Division ol MERICAN CIETY OF H 5 H H
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- the governing equations are re.W“tten into an extended operator
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 24f,9rm that retalr]s the ma}the_matllcal Str.UCture Qf a. gyrqscoplc con-
2003; final revision, July 3, 2003. Associate Editor: O. O'Reilly. Discussion on thinuum. Galerkin discretization is readily applied in this extended
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal@lﬁerator context. Although the reformulation initially seems com-

Applied Mechanics, Department of Mechanical and Environmental Engineeringy: ; : ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will ge'zlcated’ the key ideas are such that the method is straightforward

accepted until four months after final publication of the paper itself in the ASMEO Implement when de\_/iSing QOde- The concepts can be naturally
JOURNAL OF APPLIED MECHANICS. extended to other hybrid continuous/discrete systems.

Journal of Applied Mechanics Copyright © 2004 by ASME JANUARY 2004, Vol. 71 / 109



parallei to
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Fig. 1 A prototypical three-pulley serpentine belt drive

The three-pulley system in Fig. 1 is used to demonstrate the
method and results. The method can be extended to multi-pulley
serpentine drive systems. A comprehensive, multi-pulley analysis
code based on the method has been developed for use in the
automotive industry.

The relationship between belt-pulley coupling and bending
stiffness is investigated from the perspective of evolution of the
vibration modes. When the bending stiffness is appreciable, all the
continuous (span and discrete(pulley) components interact
strongly with each other, and the former classification of the
modes for the string modépulley rotationally dominant vibration
modes and span transversely dominant vibration md&es,10)
does not apply. When the bending stiffness is small, the dynamic
behavior converges to that of string models. Finally, the effects of

key design parameters on the natural frequencies are investigated.

Linearization of Equations of Motion

Figure 1 depicts a prototypical three-pulley system that includes
the primary components in automotive serpentine dri{e8,9.
The spans are modeled as Euler-Bernoulli beams translating with
constant speed. Each span is subjected to constant moments at
its ends arising from the bending of the continuous belt around the

El
w3(0t)=0 E|W3,xx(01t):E ws(l3,t)=0

(4)
El
E|W3,XX(I31t): r_
1
Jlbl+ﬁlrl_ﬁ3rlzml %)
szz—ﬁlr2+52r2=0 (6)
J3b3—52r3+53r3:|\~/l3 (7)
30+ K, G+ [mews (1) + (P —mc2+ Po)w (1)
+Elwy(l1)]ri cosBy + (mCZ*E’l)rt sin B,
—[MCW,,(0) + (P, — M+ Py)Wy,(0)
+EIw,4y(0)]r{ cosg,
—(ME—P,)r,sinB,=0 (8)

pulleys. Movement of the belt-pulley contact point due to beWhere

vibration is neglected,17—19. Detailed description of the model

is given in[11]. Only essential equations and some key concepts
are repeated here. Hamilton’s principle applied to the prototypical
serpentine belt drive leads to the equations of motion

m(Wi,tt_ 2CW; it CzWi,xx) —[(Pi+ Pi)Wi,x],x+ EIW; xxxx=0

- EA : 1o,

Pi=7—| ~rabatrifi—ribsinp+ | Swpdx)  (9)
1 0

- EA . 21

P2:|_ — 303+ 50,+1,6,SinBy+ sz,xdx (20)
2 0

I~3—E—A(—r O+ 0+f|3iw2 dx) (11)
3™ I 1Y1 3Y3 2 3x
3 0

)
i=1,2,3
El
Wl(O,t)=0 Ellexx(o,t): I’_
1
El
wy(l1,t)=r6; cosp; ElWl,xx(Ilnt):_E (2)
El
Wa(0)=ri0;cosB, Elwyy(0t)=——
I
®3)
El
W2(|2,t):0 Eleyxx(lz,t):E
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and M;(t) are dynamic accessory torques. All dynamic motions
(pulley rotations#;(t), tensioner arm rotatior,(t), transverse
belt deflections\{;(x; ,t))) are measured relative to theference
state corresponding to a stationary, string model system subject to
any steady accessory torqugkl]. Different spans may have dif-
ferent reference tensiori® due to the accessory torqugs, , are
the orientation angles of the tensioner arm relative to the two
spans adjacent to the tensioner in the reference @tade 1).

The following nondimensional variables are introduced:

Transactions of the ASME



I T PN P T Po - P, El W3(01)=0 Wa(1)=0 W3, (01)=0 Wa,(1H)=0 (18)
Xi=+ W;= = = _ Pi:_ gf=—
l; li 3 ml? 0 Pol?
m P,=P,—s+P*,
s=c m (12) s (19)
= B
= I 51 It . 11 2
k. EA Ji J; M; Pi=vy —— 605+ =07 ——06f sinB,+ | —(wj,)“dx
ke= y=— m=—— m=—— M;=—r I, I, I 02 X
Pory Po mr;l? mr? Por
wherePy is the uniform tension at zero speed with no accessory _
torques using a string modgll1]. Substitution of(12) into (1)— P,=P,—s’+P%, 20
(11) leads to the nondimensiondynamicequations of motion for (20)
the prototypical serpentine belt system, from which the equations
governing the steady motion can be obtained by equating time
derivative terms to zero. Methods to determine the steady motion _ rsa . T2 . Te oL,
and its properties are discussed i]. Po=y—y Tt Oisinfot | o (wp)dx
Linearization for small motions about the steady-state configu- 2 2 2 0
ration yields the following nondimensional equations, where
0,(t), 6,(t), wi(x;,t) now represent small vibrations about the
steady motion(not about the reference state as (h—(11)); — -
steady motion quantities are denoted by asterisks. The hats on P3=P3—s"+P3, 1)
dimensionless variables have been dropped. The span vibration
equations are
* Mo, T3 1 * )2
P3:‘y—E01+E03+ E(W:ﬂyx) dx|.
1) (11} 1) (11 )= ’
r_t T Wy — 28 T r_t W™ | = |P1Wixx
2
+g2 T Wi o Y l)[_T2 0,+ N 0, The pulley and tensioner arm equations are
ly) \ry) r (B Iy
Mt ; ! * *
_ E OrsinBy+ | wy, W, dx|wy,,=0 (13) r r r r oo
0 ml - Oln-i-y - __02+_01__0tslnﬁl
re) = re l1 I4 l4
re ra) [* * I M I3
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1
(14)
ra) (* " ry
e W3, W3, dX= T M4 (22)
15\ (1,)2 PAVA P I\ — tJo !
T Wau= 28| 7 T Waxe™ | 1 PaWaxx
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re) = It I P P
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- — r r r 1
my 0t+s( I_) cosB1Wy(1)+ Py cosBiwy (1) +y cos,Bl( - |—2 0,+ |_1 0,— l—t 0, sinB,+ f W1,xW’{,de) Wi, (1)
1 1 1 0

| — r r r 1
— s( I—Z) C0SB,W5(0) — P, cosBWo,(0) — ¥ COSB2< — |—3 05+ |—2 0,+ I—t 0, sin B+ f Wz,XWZ"XdX) Wf,x(o)
2 2 2 0

2

2 I r r r
,ez(l_) cos,Blwlvxxx(l)Jrez(l—) 2 ! —
1 2

1
t . .
COSBoWa xy( 0) — 'y( N 0+ N 01— I 0, sin B, + fo wlyxw’l*xdx) sinB,

r r r 1
- |—3 03+ |—2 0,+ l—t 6, sinB,+ f WZXWS’XdX) sinB,+k0,=0. (25)
2 2 2 0

Equations(13)—(25) reveal that the transverse vibrationsadif —attack the eigenvalue problem presented here because both meth-
spans are coupled with the pulley rotational motions, in contrastaas require the explicit solution form for an axially moving string,
string models for the belt. Notice that E@.7) for span 3 shows [20]. For the present model, no such explicit solution exist6].
that its transverse vibration is now coupled with the two adjaceRurthermore, both of the two methods need a pre-specified band-
pulleys’ rotational motions and the degree of the span-pulley cowidth to search for roots of the characteristic equations. Singulari-
pling is determined by its steady state curvatw®,, [11]. If ties and numerical ill-behavedness of both characteristic equations
there is no bending stiffness, this sp@nd any others between complicate the root-finding proced$,10], leading to time con-
fixed center pulleys in an pulley systemremains a straight line suming calculations, especially when coded for general multi-
with w%, =0 at steady state, meaning that its motion is conRulley systems. Due to the numerical concerns, the accuracy and
pletely decoupled from the rest of the system. This expanded cG@mpleteness of the calculated natural frequencies cannot be guar-

pling is the primary ramification of inciuding belt bending stiff-2nteed(that is, some computed natural frequencies may be false
ness. and true natural frequencies in the specified range may be

missed.

) In [10], a third method is developed to solve the string model
Extended Operator Formulation eigenvalue problem. There the spans adjacent to the tensioner
The above system can be expressed in the extended operétdtich are the only ones coupled to the pullegee expanded in
form, [5,8,10, a series of basis functions. The inhomogeneous boundary condi-
. . tions at the belt-tensioner interface are treated as constraints and

MW +GW+KW =F (26) the Lagrange multiplier method is applied to impose them. This

,{QFthOd overcomes the drawbacks of the first two methods and
could be extended to models with bending stiffness. A result of the
Lagrange multiplier approach is that the discretized matrices lose

where the displacement vector, external force vector, and in
product are

W={w;,W,,Wj3,0;,60,,05,60}" (27) the symmetric/skew-symmetric properties of a conservative gyro-
- scopic system, although this does not influence the accuracy of the
F=1{0,0 O(r—1>M O(r—3)M 0 (28) results.
P ) T ) T A different technique is developed in this work to solve the

eigenvalue problem of the moving beam model. The key concepts
T T o — _— are to reformulate the span deflections in terms of variables satis-

(W,u)= . waupdx+ . WaUpdX+ . WaUzdx+ Zl fioi+ 69t fying homogeneous boundary conditions, cast the equations into a

(29) structured symmetric/skew-symmetric extended operator form,
and apply Galerkin discretiztion to this form. The reformulation is

and the overbar means complex conjugate. The differential opefigeded to transform the troublesome mixed continuum/discrete

torsM andK are symmetric whileG is skew-symmetric. There- boundary conditions at the belt-tensioner interfgadd) and (16),

fore, the above linear model constitutes a conservative gyroscopigo homogeneous boundary conditions.

system. The factord(/ry) in the span equations and (r) in the First, the following coordinate transformations are applied:

pulley equations are necessary to preserve the symmetric/skew-

3

! A r
symmetric properties df1, G, andK. _ Y1 =W;— —X COSB16,
Although the above model is linear, solution of the correspond- l1
ing eigenvalue problem is difficult because of the belt-pulley cou- r
pling in the differential equations, belt-tensioner coupling in the Yo=W,+ — (X—1)cosB,b, (30)
boundary conditiongsee(14) and (16)), multiple spans, and gy- 2
roscopic character. Even for the simpler case of modeling the Y3=Ws.

spans without .benlding ;tiffness, which eIiminates the belt-pu[le%e new unknown functiong, satisfy the trivial boundary condi-
coupling, solution is difficult. In that case, the main obstacle |Iet§0ns '

in the inhomogeneous boundary conditiditd) and (16) that re- )

sult from rotation of the tensioner arm moving the endpoints of ¥Yi(0) =0 yi(11)=0 y;x(0)=0 y;x(1t)=0, i=1,2,3

the two adjacent spans. (31)
Three distinct methods have been presented for the eigenvaistead of the mixed continuum/discrete boundary conditions in

problem of the string model. The first one is by Beikmann et al14) and (16). Substitution of(30) into (13)—(25) leads to a new

[5], who determine a boundary condition error function akin to set of equations. When directly rewritten in the extended operator

characteristic equation. The second approach is by Zhang andfgim (26), however, these new equations do not lead to the req-

[8], who established a closed-form characteristic equation, fromisite symmetric/skew-symmetric properties of e G, andK

which the eigenvalues for the belt drive system are numericalbperators. To recover these operator properties, more manipula-

computed. The above two methods, however, cannot be useditms are needed.
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In the following derivation, thev; in (13)—(25) have been re-
placed by they; through Eq.(30). Multiplying Eq. (13) for the -y
first span byr,/I1x cosB; and integrating over the span yields
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— 0+ =60~ —6;sinBi+ | Y ,WI,dx
Iy Iy Iy 0 ’

1
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-p X COS dX+82(—) f X COS X Similar manipulations of Eq(15) for the second spaffirst mul-
Yo Pry 1 11/ Jo B 100l tiplying —r3/1,(x—1)cosB, and then integratinggive
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(x—1)2dx8,+ 2s

I\ (2
I_)j (Xx—1)cosBry X

0

2r1
_2( )( )f (X 1)COSZ,82dX0t+sz (X 1 005/32szde 8( ) I(X—l)COSﬁzyZXXX)ﬁX
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1 1 r
+y —EG I 62+| 0, sin B+ foyz,xwg,xdx—f (|2

COSBZOtWZXdX)f (x—1)cosB,w5,,dx=0. (33)

Addition of (32), (33), and(25) leads to a new equation for the tensioner arm, which is not given here for the sake of brevity. This
process is similar in spirit to pre-multiplying by the transpose of the transformation matrix to retain a symmetric form when transform-
ing coordinates in symmetric, discrete equations of motion.

Equations(13)—(24) and this new tensioner equation can be expressed compactly in the following extended operator form:

MY +GY+KY =F (34)
Yz{)’lvyz,}’a,91192:03v9t}-r (35)
] |1 |l 2 2 o
T yi+ COSB1X 0,
2

T
2—(|—) COoSB,(X—1) 6,

HE

it

M
MY = my 1y, 0, (36)
2
2
2 2
(|I—1> jolxcos,Blyldx (Il—z) L (x—1)cosByy-,dx+ M 46,
B .
( )( ) Lt 2s )cos,[%‘zé?t
3
GY= (T )y“ (37)

| 1 | 1
—5[(|—1)f 2% cosﬁlylyxdx—(l—z)f 2(x—1)cosB,y,,dx
0 0
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KY ={K;,K;,K3,K4,Ks,Kg, K7} (38) ro) (* i Fi\ (Tl
Ks=7y r_t OW’J\:,xyl,xdxf'y r_t W3><y3,xdx+'y |1

l1) = 1214 r ro\(r r
Klz_(r_) P1Yixxte? I_) (r_ Y1 xxxx + 0,—y g 02—7(—1 [sinBy—cosBwi (1)]6,
t 1 t I3 rof\ls Iy
Ly [t ! r ro\/r
- ')’( r_) J WI,xyl,deV\fl(,xxf ( r )Wl a0t 7( )Wl xx02 - 'y( —l) (—3) 03 (42)
t/ Jo re/\ls
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2
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1 1 1
K7=—ysing, fo W1,y 1xdX+ y COSB1WY,(1) J'O WI,Y1xdX+ysing, jo W3, Y2xdX+ y COSBW3,(0) Jo W3, Y 2xdX

_[ (rl)smﬁl (:i)cosﬁlw’{(l)}el—[—y(lr—:)sinﬁl— (lr )sm,BZer I )cos,elwl(l) 'y( )cosﬂzwz(O)}

Iy

+|y )SIn2ﬂ1+y( )sm2/32+k +P, )co§,81+P2 | )c052,82+y )cos’-ﬁl(wl(l))
+y Ir;)cos?ﬁz(wz(O))2 Zy(l )smﬁlcosﬁlwl( 1)+2v|; )S|nﬁ2cos,82W2(O) y(:—z)sinﬁz
+y(|r—z cosﬁzw’g(O)}&t (45)
|
where Mg=m+1/3(r/I1)(11/1)? coS By+(r/1)(12/1)* coS Bs]. i ={sin(kmx),0,0,0,0,0,07 k=1,2,...N;,

The external force vectdf remains the same 487). After these

manipulations, the system seems more complicated. The key ad- #={0,5iMmmx),0,0,0,0,07 k=N;+1,... N;+N,
vantage, however, is that the new operatdrandK are symmet- m=k—N
ric and G is skew-symmetric with an inner product analogous to v
(29). =1{0,0,si(n7x),0,0,0,7 k=N;+N,+1,... N;+N,
+N3 n:k_(Nl+N2), (46)
Galerkin Discretization #={0,0,01,009" k=Ny+Ny+Ns+1,
The mathematical structure of the extended operator {8d- 4={0,0,0,0,1,0,07 k=N;+Np+N3s+2,
(45) and the trivial boundary conditions i(81) allow classical _ T k=N Not Nt
Galerkin discretization. The extended variallés expanded in a #%={0,00,00.19" k=Ny+Np*+Ns+3,
series of basis functions as #=1{0,0,0,0,0,01" k=N;+N,+Nz;+4
Np+Np+Ng+4 whereN; is the number of basis functions for tite span. The/,
Y= 2 a(t) (%), are global comparison functions where each one describes a de-
k=1 flection of the entire system and satisfy all boundary conditions.
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Table 1 Physical properties of the example system, from which nominal dimensionless pa-
rameters are calculated

Pulley radiusr; 0.0889 m Pulley center X4,y1) (0.5525,0.0556m
Pulley radiusr, 0.0452 m Pulley center X,,Y5,) (0.3477,0.05716m
Pulley radiusr 5 0.02697 m Pulley center X3,Y3) 0,0
Tensioner arnt, 0.097 m Pulley center X, ,yy) (0.2508,0.063pm
Rotational inertial; 0.07248 kgm?  Belt modulusEA 120000N
Rotational inertial, 0.000293kgm? Initial tensionP,, 300N
Rotational inertials 0.000293kgm?  Belt mass densityn 0.1029kg/m
Rotational inertial; 0.001165kgm?  Tensioner stiffnesk, 116.4Nm/rad
Span length, 0.1548 m Alignment anglg, 135.79°
Span length, 0.3449 m Alignment angl@, 178.74°
Span lengthH 0.5518 m Tensioner rotatiof, 0.1688 rad
They form a complete set. After substitution @f6) into (26) Figure 4 describes a type of vibration mode not captured with

(with w—vy), the error(residual is constrained to be orthogonalthe string model. Wheg is small (=0.01), the dominant motion
to the ¢ using the inner produd®9). This gives the equations of is the transverse motion of span 3 while all other components

motion and eigenvalue problem have small motions. But whea is appreciable, say=0.07 or
- . £=0.1, the modal amplitudes of other components are significant,
[M]JA+[G]A+[K]A=F (47) indicating a strongly coupled mode. Note that as bending stiffness
_ 2 ; _ — aiot decreases, the span 3 deflection increases markedly relative to
@ IMp+io[Glpt+[K]p=0, A=pe (48) other deflections. In the limit as—0, span 3 is completely de-
p={aj.a,, .. .aNl+N2+N3+4}T (49) coupled from the rest of the system, as in prior string model
results,[5].

Mij=(My;, i) Gij=(Gy.¢)  Kij=(Kiyj, i), (50) A key point of Figs. 2—4 is that bending stiffness induced
_— modal coupling with spans connecting fixed center pulleysh
1Jj=1...Ni+Np+Ny+4 as span Bprovides an explanation for the observed vibration of

f={f1,f2, .. Fnonenaial’  fi=(F, ), these spans in vehicle applications. String models have no means
v (51) to capture this known behavior except using parametric excitation
i=1...N;+N,+Nz+4 models[13,14], that are not relevant at the idle/low speed regions
. . . where span vibrations are commonly observed.
where the inner product is an extended one similar to th@W  These figures also reveal another tendency for all types of

The matrices[M], [K], and [G] inherit the symmetry/skew-
symmetry of the corresponding differential operators. These prop-
erties ensure that the eigenvalues are purely imaginary, as required
for a conservative gyroscopic system.

The present method has several advantages over continut a)
characteristic equation approachgsgl: (1) It is easy to imple-
ment because of the simple basis functions and trivial bounda
conditions.(2) It is efficient, accurate, and greatly reduces com-,/ T~~~ coo——————
putational time(3) It does not require a user-specified bandwidt

to search for natural frequencidg) It is numerically robustand T eeeeTT
free of missing/false natural frequency concel(3$.Because the
method uses Galerkin discretization, all properties of that ar
proach are retained, including convergence of the eigenvalu b)
from above (6) Dynamic response analysis is trivial to implement
using (47).

Results and Discussion .

In this section, results are presented for a prototypical three
pulley system(Fig. 1); the physical properties are shown in Table
1. Because the motion of the crankshaft ) is typically pre- C)
scribed in practical applications, it is treated as a specified exciti
tion source andd;=0 in the following free-vibration analysis.
Special attention is given to the interaction between span 3 ar <
the rest of the system because this span is bounded by fixed pt=1—
leys, and its motion is decoupled from the rest of the system f¢ —<============
vanishing bending stiffness.

Figures 2 and 3 show that when the belt bending stiffness
small (¢=0.01), there are two distinct types of modes: pulley ro- d)
tationally dominant vibration modes and span transversely dom
nant vibration modes. These mode types are similar to the resu
computed with the string model except that here span 3 has sor N
small transverse deflectiofas opposed to being straight in the \_|
string model[5]). These two figures also show that when bending
stiffness increases, the magnitude of the span 3 deflection 5 - Rotationally dominant mode ~ (e=0) for increasing belt
creases accordingly, and the relative magnitudes of the initiaiénding stifiness. The dimensionless natural frequency for
dominant components diminish. The coupling between the spagso is w=4.1205. (a) £=0.01, (b) £=0.04, (¢) £=0.07, (d) £=0.1.
and pulleys becomes stronger for these modes. s=0, ky=4, y=400, P,=P,=P;=1, $,=135.79°, B,=178.74°.
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Fig. 3 Span 2 transversely dominant mode  (e¢=0) for increas- =
ing belt bending stiffness. The dimensionless natural fre-
qguency for £=0is ®=3.0951. (a) e=0.01, (b) £=0.04, (¢) £=0.07,
(d) e=0.1. s=0, ks=4, y=400, P,=P,=P;=1, f,=135.79°, B,
=178.74°.

D
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Fig. 4 Span 3 transversely dominant mode  (£=0) for increas-

ing belt bending stiffness. The dimensionless natural fre-

quency for £=0is w=1.9968. (a) £=0.01, (b) £€=0.04, (¢) £=0.07,

(d) €=0.1. =0, ks=4, y=400, P,=P,=P;=1, ;=135.79°, B,
modes: When the belt bending stiffness increases or the span ten78.74°.

sions decreaséhat is, ase increases the magnitude disparities

between the dominant components and the other parts of the sys-

tem decrease. In essence, the distinction between different tygeapling causes the strange phenomenon because for transversely
of modes becomes less pronounced. Eventually, this classificatifiminant modes the increased belt-pulley coupling is similar to
of vibration modes does not apply any more. This can be segflaxing constraints at the boundaries of the dominant span. Nu-
from the cases ot=0.1 in Figs. 2—4 where all the spans andnerical experiments confirm that if the steady state is fiflet!
pulleys have nearly the same order amplitude. In this case, all i@ steady state terms marked by asterisk in the B§5-(45) be

pulley and span vibrations are strongly coupled, and the system’s
dynamic operating condition response is quite different from that
when belt bending stiffness is neglected=0.04 ande=0.07 fall 10
into the transition region between the string and the beam mode
For practical serpentine belt drives, manufacturers approximeS
the bending stiffness of a poly-ribbed belt typical of vehicle ap@&
plications by El=(m—1)2.867<10 3N-m? (where m is the
number of rib%. Notice thate depends on the relative magnitude
of bending stiffness and belt tension becasde E1/Pyl?. For
the range of belts and span tensions in use, reasonable valges -
fall in the range 0.0%¢<0.12.

Figure 5 shows the relationship between the natural frequenc
and the bending stiffness. As bending stiffness increases, sog
natural frequencies decrease when the belt bending stiffness%
small. This interesting phenomenon is inconsistent with the line.g
system requirement that natural frequencies increase with sti@
ness. The root cause is that although increased bending stiﬁnig
tends to increase the natural frequencies for a fixed steady stdd 2 1
the increased bending stiffness changes the steady state, wr
also influences the natural frequencies, as shown in the dynan 15— 0o 0e 008 04 042 014 016 018 02
Egs.(39)—(45). This change in the steady state causes some na ) Belt bending stiffness, &
ral frequencies to decrease with increasing bending stiffness. The
mechanism is that increased bending stiffness increases the steagys Natural frequency spectrum for varying belt bending
state curvature, and correspondingly the coupling between the kgifness. s=0, k,=4, y=400, P,=P,=P,=1, B,=135.79°, B,
spans and pulleys also increasgkl]. The increased belt-pulley =178.74°.

| Frequency, ®

atural
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Dimensionless Natural Frequency, ®

Dimensionless Natural Freque

0 002 004 006 008 01 012 014 016 018 02 0 04 02 03 04 05 068 07 08 09 1
Belt bending stiffness,& Speed, s

Fig. 6 Natural frequency spectrum for varying belt bending Fig. 8 Natural frequency spectrum for varying belt speed.
stiffness. — — —, fix steady state; ——, fix bending stiffness ——, 5=0 (B,=6853°, B,=111.47°); — — —, =078 (B,

value in (39)-(45). s=0, k=4, y=400, P1=P,=P;=1, 1 13579, B,=178.74°). £=0.04, ky=4, y=400, P,=P,=Py=1.
=135.79°, B,=178.74°.

Generally, only four or five basis functions per span are needed
for all natural frequencies of practical importance to converge to

assumed constanthen all the natural frequencies increase as they iy 304 More terms are needed for increasing speed and higher
belt bending stiffness is increas€Big. 6), which is consistent

with our physical intuition. If the changing belt bending stiffnes natural frequencies, as discussed by Jha and PEaEgrFor the

. . %tring model critical spees=1 andw<<11 in Fig. 7, six terms per
only influences the steady state while the value’in (39-(45)  gpan are needed for the eight natural frequencies to convergence
is held fixed, then Fig. 6 shows that some natural frequencigs ithin 3% with =0.1 for e=0.01. 16 terms per span are
decrease due to the increased belt-pulley interactions. Eventu o e

‘ X . : uired for the 16 natural frequencies.
for large enougt, further increases in bending stiffness lead 10 trqgh changing the orientation of the tensioner arm, the ef-
monotonic increases in all natural frequendiEw. 5).

. . ! X fects of the tensioner effectivenegson the natural frequencies
The relationship between the dimensionless natural frequencigs qescribed in Figs. 8 and 9.is an indicator of the ability of
hstf% tensioner to maintain constatmactive belt tension despite
&hanges in belt speed or accessory tordi@sFor a generah
U ey system with the tensioner pulley as puliepne has[11],

small (¢=0.01), the spectrum is similar to the string model. T
frequencies of transversely dominant modes decrease quickly
speed, but speed has little influence on the natural frequencie
rotationally dominant modes. As the bending stiffness increases to 1
£=0.1, the influence of speed on the natural frequencies is mark- 7=

edly smaller, and there is no clear distinction between rotationally 1

dominant modes or transversely dominant modes. Notice that the OUINE P I, cos' B+ I cos' Bz | +ks
natural frequencies do not decrease monotonically as they do for ! +1
the single span moving string or beam systems. Y (sinB;—sin B,)?

Dimensionless Natural Frequency, ®
Dimensionless Natural Frequency, ®

[ 01 02 03 04 05 06 07 08 09 1 0 0.1 0.2 0.3 0.4 0.5 086 0.7
Speed, s Tensioner effectiveness,n
Fig. 7 Natural frequency spectrum for varying belt speed. Fig. 9 Natural frequency spectrum for varying tensioner effec-
—, £=0.1; — — —, £=0.01. k=4, y=400, P,=P,=P;=1, B, tiveness 5. —, €=0.1; — — —, £=0.01. s=0, k=4, y=400,
=135.79°, B,=178.74°. P,=P,=P;=1.
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and tends to increase the natural frequencies for modes with ap-
preciable tensioner rotation. With higher bending stiffness, the
opposing effect is from the resistance of the tensioner to deflec-
tions of the endpoints of the spans adjacent to the tensioner. For
small 5, the tensioner orientation is such that it strongly resists
translational deflection of the tensioner pulley in the radial direc-
tion that span deflections want to move it because the rigid ten-
sioner arm can not be compressi@dg. 10a)). In contrast, for
larger 7 the tensioner resistance to span endpoint deflection comes
primarily from the compliant tensioner spriri§ig. 10c)). Con-
sequently, this effect causes the natural frequencies of coupled
belt-pulley modes to decrease for increasing his second effect
tends to dominate the first one noted above as seen by the decreas-
ing natural frequencies in Fig. 9. The exceptions are modes domi-
nated by tensioner rotation such as the lowest natural frequency in
Fig. 9. Still, the increase rate of this natural frequency is markedly
smaller fore=0.1 thane=0.01 because of the additional coupling
with the adjacent spans and the increased resistance to span end-
point deflection for smalb.

Summary and Conclusions

Dynamic analysis is conducted for serpentine belt systems
when belt bending stiffness is modeled. Free vibration about non-
trivial steady motions that result from belt bending stiffness are
Fig. 10 Fifth vibration mode for varying tensioner effective- examined. A mathematical reformulation of the governing equa-
ness 7. (@ =0 (B,=6853", B,=111.47°), (b) #=0.5 (B1 tjons leads to an extended operator form that has the mathematical
=95.53°, B,=138.47°), (¢) #=0.78 (B, =135.79°, B,=178.74°). g \cture of a conservative gyroscopic system. In contrast to prior
€=0.1, s=0, ky=4, y=400, P,=P,=P;=1. . ; 4 X .

formulations, the mixed continuum/discrete boundary conditions

at the interface between the belt and the tensioner pulley are re-

placed by trivial boundary conditions for all spans, including
For well-designed systems; is close to unity, while for poorly those adjacent to the tensioner. This transformation admits an ef-
designed systems; is away from unity. Figure 8 shows how theficient spatial discretization using Galerkin’s method applied to
tensioner effectivenessginfluences the relationship between natuthe structured extended operator form. The method is numerically
ral frequencies and belt speed. For larger0.78, the decrease robust and free of missing/false natural frequency concerns, while
rate of the natural frequencies with belt speed is smaller than tlaitthe same time preserving the conservative gyroscopic character
for »=0 because of the stronger ability of the tensioner to conef the discretized model. Dynamic response calculations using the
pensate for the tension loss induced by belt speed due to centrifiscretized model follow naturally.
gal action(»=0 and%=0.78 can be visualized in Fig. L&Bimilar Belt bending stiffness introduces a linear coupling between the
behavior occurs with the string mod¢§]. Further inspection of belts bounded by fixed pulleys and the rest of the system. For
Figs. 7 and 8 reveals that for the properly designed system wippreciable bending stiffnegsr low tension, all modes are spa-
7=0.78, the decrease rate of the natural frequencies with speediafly distributed and involve transverse deflections of all spans in
Fig. 8 (¢=0.04 is between the two cases=0.01 ande=0.1 in addition to the pulley rotations, in contrast to zero bending stiff-
Fig. 7. This is because=0.04 falls in the transition region be- ness models where the modes divide into rotational pulley and
tween the string and beam models. Speed has its strongest effemtsverse span modes. This modal coupling provides a mecha-
for small e. nism whereby pulley rotation, which is directly excited by engine

Figure 9 shows the relationship between natural frequenciesque/speed fluctuations, couples to transverse vibration of all
and the tensioner effectivenegsfor different bending stiffness. spans, including those bounded by fixed centers. This provides an
The variation of  is caused solely by changing the tensioneexplanation for the span vibrations observed in practice that po-
orientation 8, ,. For small bending stiffness, only rotationallytentially lead to noise and belt fatigue failure. This mechanism
dominant modes are influenced significantly while transversgplies at engine idle speeds where parametric excitation mecha-
dominant modes are insensitive to the orientation of the tensioneisms based on higher frequency excitatid 13,14, do not ap-

This agrees with conclusions from the string modBI8]. As » ply.

increases, the natural frequencies of rotationally dominant modedVhile the natural frequencies generally increase with bending
increase. Physically, this is because largemeans the corre- stiffness, the changes are not monotonic. For small bending stiff-
sponding tensioner orientation provides increased resistaness, some natural frequencies initially decrease. This unusual
torque from the belts and makes it more difficult for the tension@henomenon results because the system steady state changes with
to rotate around its pivotFig. 10. This increases the effective bending stiffness in a way that tends to increase compliance for
rotational stiffness of the tensioner. Transverse dominant modiésflections about steady state.

are insensitive to this effect. Belt speed has reduced effect on the natural frequencies as

For significant bending stiffnes®r small tension all natural bending stiffness increases within practical ranges. In contrast to
frequencies are affected when the tensioner effectivemess the string model where only transverse dominant modes are af-
changedFig. 9). Furthermore, the dominant tendency of the natiected by speed, all natural frequencies change with speed as
ral frequencies is to decrease within contrast with the smalk  bending stiffness induced modal coupling increases. Unlike
case. These differences result because of the expanded vibrasimgle-span moving string and beam models, serpentine drive
mode coupling that leads to all spans and pulleys deflecting imatural frequencies do not decrease monotonically with speed.
given mode rather than the division into rotational and transverseFor systems with small bending stiffness, changing the ten-
dominant modes. For these coupled modes with modal deflectimiener orientation to increase the tensioner effectivengss-
distributed throughout the system, there are two competing effecteasesthe natural frequencies of rotationally dominant modes
as 7 increases. The first is described above for the smalhse while having little influence on the natural frequencies of trans-
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versely dominant modes. For systems of large bending stiffnesd8] Zhang, L., and Zu, J. W,, 1999, “Modal Analysis of Serpentine Belt Drive

tensioner orientation influences all natural frequencies and, for the, i%’;tnegmi JZ'US%“'\’IS v;t:éz%a bp- gggff&mplex Modal Analysis of Non-

example system, tends ttecreasethem asy increases. Self-Adjoint Hybrid Serpentine Belt Drive Systems,” ASME J. Vibr. Acoust.,
123 Apr.), pp. 150-156.
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e-mail: raman@ecn.purdue.edu zation procedure exploits Green’s theorem and exposes two different gyroscopic effects
underpinning the coupled system dynamics: One describes the gyroscopic coupling be-
School of Mechanical Engineering, tween the disk and acoustic oscillations, and another arises from the disk rotation. The
Purdue University, discretized dynamical system is cast in the compact form of a classical gyroscopic system
West Lafayette, IN 47907 and acoustic and disk mode coupling rules are derived. For the undamped system,

coupled structure-acoustic traveling waves can destabilize through mode coalescence
leading to flutter instability. A detailed investigation of the effects of dissipation arising
from acoustic and disk damping predicts previously unknown instability mecha-
nisms for this system. The results are expected to be relevant for the design of high
speed, low vibration, low-noise hard disk drives, and optical data storage
systems[DOI: 10.1115/1.1631034

1 Introduction compressible potential flow modeling of the surrounding fluid
overestimates the experimentally observed flutter speeds by sev-

The flow-induced vibrations of thin flexible rotating disk POSE, | orders of magnitude. Additionally, the underlying mecha-

5|gn|f|c_ant engineering ch_allenges in Fhe design of hlgh-speﬁ ms of aeroelastic flutter and issues of modal coupling of acous-
hard disk drives, optical disks, floppy disks, turbomachinery, anft and disk vibrations were not addressed. This work has led to a

circular saws. In data storage applications, the drive towards | eneral opinion in the community that compressible potential flow

creased rotation speeds to maximize data throughput are contifit : o :
ally challenged by flow-induced and aeroelastic vibrations. Theﬁﬁtilé?(ijr? r:?qeenst: Ig/y;?ecnigable of predicting accurately aeroelastic

vibrations contribute directly to track positioning errors of the The present work re-examines the aeroelastic flutter of a disk

read/write head. Furthermore, the disks are efficient sound raq%fating in an enclosed compressible fluid. The main contributions

tors, and unqler certain co_ndltlons t_he acoustic modes_of the.%rf"this article arg(i) to use discretization and computational tech-
closure amplify disk vibrations leading to significant noise emlqﬁques different from[3] that are better established in the

sion from the device. ! . . acoustic-structure interaction community, and to present for the
The aeroelastic stability of unenclosed rotating disks was inVe§«; time the discretized equations of motion governing the
tigated in several previous workgl—S5]. However, the present ¢ hieq rotating disk and acoustic oscillatioris) to explain
article focuses on the flutter of rotating disks in enclosed ﬂu'ds'c"f’early the coupling rules between disk vibration and fluid oscil-
situation more commonly observed in practice. Some works Uggion ' modes, and to describe the process of eigenvalue veering in
ad hoc rotating damping operators to model the surrounding fluighis coupled structure-acoustic systefiii,) to include systemati-
[5-7]. However, a majority of the literature uses thin hydrodygqy in the compressible flow model the effects of acoustic and
ne_lmlc_lul_)rlcatlon theory to model the coupling of_the disk with Qisk material damping which were neglected &, (iv) to dem-
thin air film, [8—12. These models are well suited for floppyonsirate that there are not one but three distinct aeroelastic mecha-
disks or circular saws with fluid bearings where the Reynoldg§sms for the onset of traveling wave flutter in such systems, and

number in the thin air film is very small. However, most othe[y) 1o demonstrate that the predicted flutter speeds, and modes are
applications such as hard disk drives, CD-ROM’s, and turbom@ery much in the range of known experimental results.

chinery, involve larger enclosures and stiffer disks. In addition, the
Reynolds numbers are very high, and the Ekman boundary layers

on the disk are very small compared to the enclosure dimensio@ls. Coupled Field Equations
Moreover acoustic oscillations in the enclosure can couple signifi-

cantly o disk vibrations. For such applications, therefore, an ee at outer radiuR, , rotates about its axis at a constant angular
propriate initial model is that of a compressible potential rovgpeede in a compressible fluid filled cavity as shown in Fig. 1.

(a(':l%uesg(e:%oelastic stability of flexible disks rotating in an encloseT € field equations for the small amplitude transverse vibrations
ty 9 the rotating disk of thicknessl and mass densitg, are for-

compressible potential flow was first investigated by Rensh ulated using the Kirchhoff plate theory for an isotropic, linearly

et al. [3]. Both theoretical predictions and experimental resultéﬁ stic plate which is modified through a rotation speed dependent

were presented. A key conclusion in this work was that the use r?l@mbrane stress field. Accordingli and v are the Young's

Contributed by the Applied Mechanics Division offE AMERICAN SOCIETY OF modulus and Poisson’s ratio of the disk material, respectively. The
ontripute y the Applie echanics Division ol . . . P . _
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- equations governing an E_U|e”an de_scr'pt'on of the time
CHANICS. Manuscript received by the Applied Mechanics Division, February llf,jepenqem transverse deflectlon of th_e d\M,(,.and .the compress-
2003; final revision, June 4, 2003. Associate Editor: O. O'Reilly. Discussion on thible fluid oscillations are described in an inertial, ground-fixed

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depgthordinate frameR 2] Z). The undeflected disk is located in the
ment of Mechanics and Environmental Engineering, University of California—San *

t -~ . ! . *
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months aﬂaneZ._ 0. Rad.'al and C|rcumferent|a;| componem$ ando of
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  the axisymmetric membrane stress field generated by steady rota-

A uniform, thin annular disk, clamped at inner radids and
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leads to the following coupled partial differential equations gov-
erning disk and acoustic oscillations:

i
W+ 20W 15+ QPW 5o+ Co[ W+ QW ;] +Kg[w]= A[[¢,t]]z?é)
L . 1
Vip= @‘ﬁ,tt (7)
T where
i
[
L L1 1
T Kgw]=V W_F(rUrW,r),r_r_zaaw,ea

Co[W + QW g]=n(Vw +Q V4w ,).

Fig. 1 A schematic diagram of the rotating disk in an enclosed . o . . . .

compressible, inviscid fluid Kq4l-] is a self-adjoint and positive definite stiffness operator in-
cluding membrane stress effects a@glw +Qw 4] contains a
self-adjoint damping term and a circulatory term. Two key dimen-
sionless parameters in E@) and Eq.(7) are:

tion are derived from classical plane-stress elasti¢itg]. An

inviscid, compressible, irrotational fluid of mass dengityand @ A, the weighted ratio of the fluid to disk mass density

acoustic speed, surrounds the disk. Under the above modeling Azﬂo ®)
assumptions, the field equation for the rotating plate subject to an pgH
aerodynamic pressure differenti@l between the upper and lower Note thatA vanishes in vacuum implying that E¢f) re-
face of the disk is[4,12, duces to the governing equation of a rotating disk without
pgH(W 114 2Q4W 15+ Q3W 40) + C[W 1+ QW 4]+ DV*W fluid coupling.
H H (ii) C, the ratio of acoustic speed of the fluid to a bending
wave speed of the stationary disk, that is
~ = (REFWg) p= =3 (05 W. ) 4=Q (1) P Y

R R c G ©

where V4 is the biharmonic operator, a comma in the subscript Co
S - R o .

denotes partial differentiation, adl=EH®/12(1-v°) is the disk wherec, =R, /T,= JD/p RZH is the flexural wave speed

flexural rigidity. Note that the Eulerian description of the trans-
verse disk deflection generates unsteady, gyroscopic, and Corioli%he
acceleration terms for each material particle. Further, the positi%/eerms
definite operato€[-] models the disk material damping. Indeed i
co-rotating coordinates the ter@[W ++ QW ,] represents a
positive definite co-rotating damping. In this article we chose
simple viscoelastic model for a thin plate withC[-]
=7*DV*(-), where 5* is a viscoelastic coefficien{4]. The
wave equation governing the propagation of infinitesimal distu
bances in an initially quiescent, inviscid, compressible and irrot
tional fluid is given by

of a flexural wave of wavelength72R, .

boundary conditions for a clamped-free disk are posed in
of the nondimensional variables a$3h For the surround-
r?ng compressible fluid, normal velocities satisfy the impermeabil-
ig/ boundary conditions at the rigid walls over the arAa
Z27(12+1°), and the normal velocity matching condition on the
disk surface over the argd=7(1— «?). In addition, dissipation
pjechanisms of the acoustic oscillations are included through the

1troduction of a highly absorbent wall of the cavity over the area

A= (Fig. 1). This boundary condition is often modeled as a
simple point-impedancez , [14]. The boundary conditions at

1 each wall become
ViD= =P 17 2
c5
5. ) . 0 on A
where V< is the Laplacian operator, anb(R,0,Z;T) is the ve- .
locity potential defined throughout the fluid domain. The velocity V¢2P.n={ *W on Ay (20)
field u=V®, and the linearized fluid pressuf(R,6,Z;T) at _ ab
v = s d* Iz, ON Ay
every point in the fluid is given by
P=—pi® ¢ (3) where,n is the unit normal vector on the surface, the sign

indicates the opposing normal directions on the top and bottom
side of the disk, and, is the nondimensionalized acoustic imped-
Q=p1®%— pi®’|z-0=pi[[P 1]]z=0 (4) ance defined by,=T,zx/p(R; . _ _
here th it andb indicate th ql . In this study, we consider the case when there is no radial gap
where n€ superscripesandb Indicate the Upper and lower Cavil-payyeen the disk and cylindrical rigid wall. The formulation pre-

ties, respectively. Introduction of the dimensionless variables sented here can be easily extended to the case with a radial gap. In
R Z R W Lab this case, however, the Dirichleboundary conditions for the

Accordingly

r R’ z= R' "R w= 0 |ab R acoustic field in the radial gap make expensive the computations.

° ° ° ° Indeed, a much larger degree-of-freedom model for the discretized

T pqR°H system would be needed for sufficient computational conver-
t==—, Q=Q4T,, T,= , (5) gence. Moreover, it can be shown that the form of the disk-

To D acoustic coupling in the discretized equations in this case remains

7 T2 T2 T similar to that of the present case. For this reason we (esgrict
7=, Ur:%gf ) 09:_"20; . ¢= ° o ourselves to the computationally simpler problem of a vanishing

To paRG paRG RoH radial gap.
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3 Coupled System Discretization

a,bra,b —
In what follows, the acousto-elasticity theory developed by of vab fva,b':n Fridv=
Dowell et al.[14] and others, is adapted to discretize the coupled

disk-cavity system. The uncoupled acoustic normal mdgesf Where

the upper and lower cavities correspond to the classical normal yvab= gjab (16)
mode solutions for a rigid cylindrical acoustic cavif§5|. These

rigid wall-normal mode solutions satisfy the wave equation déads to the discretized equations for the velocity potentials of the
well as the Neumann boundary conditions on all boundaries, upper and lower acoustic cavities coupled to the disk:

M2 when n=r

0 when n#r

2 M7
) , o .
VZFA"+ 5FA"=0 with VFAP-n=0 on A=Ag+AstAy oz LAt (ADPanl+ A 8,CR =~ A dnlin
(1) (17a)

by b
where A, is the nth uncoupled acoustical natural frequency and VM, by 2 - b . b

F, the corresponding normal mode. Application of Green'’s theo- c? Lbn+(An) b”]+AAZ bfcm_Ad% Ambnm

rem to the scalar fieldF2V2¢p3— $3V2F2 defined in the upper (17b)
cavity volumeV? leads to[14,16,17,

1 1
J | [ ewwear-aveepav cit=n | FErzaa L [ Frvugan
. An Ja, dJag
! (18)

_ f f (FAV 2. n— $2VF2. n)dA. (12) &e respectively,_ the components of the_ acoustic damping and the
disk-cavity coupling coefficient submatrices.
A Galerkin discretization of the disk vibration using the in vacuo
disk mode<Eg. (15)) and the substitution of Eq14) and Eq.(15)

Application of the boundary conditions and H@1) yields into Eq. (6) produces
1 . $? G+ 2MiQ8n+ Kl + 7070 A5+ MiQar)
@fva[Fﬁ¢a+(Aﬁ)2¢aFﬁ]dv+ fA Fﬁf—AdA:—fA FawdA. ) o e "
A d

) -an 3 a3 o) s

Similarly, accounting for the direction of the normal on the disk

5S_ - C s 2 (S _ c
surface in the lower cavity, Gm = 2M Q0+ K + 70 G~ M1 2 G)

—AAd(E AL > bﬁLL’i) (19)
n

n

1 ; ¢ .
?f\/b[Fﬁcﬁb-i-(AE)zqﬁbFﬁ]dV-i- L FﬁZdA: fA FawdA.
A d (130) where

1
Equations(13) can be regarded as weak forms of the original k= wﬁqs_ = mi(Qz—ﬁm)’ meS:Wf (vam)Rmrdr
partial differential Eq.(7). The velocity potentials and disk dis- K
placement are discretized using the rigid wall acoustic normal N
modes and the in vacuo structural modes, respectively, as the mu- _ _
tually orthogonal, complete basis functions. “m wJK (rorRm) Rndr B Trf

11 )
Ta'ngdr

K

d
S, 0,20 = D, ayF(r.6,2), (148)

T4_

Vislae T rar

¢b(r'012?t):2 bn(t)FR(r,6,2) (14b) . are the in vacuo natural frequencies of a stationary disk and
ay, and B, are nondimensional parameters related to the speed
dependence of the membrane stresses. Additionally, the disk radial

w(r,e;t):E Om(t) ¥m(r, 0) , (15) eigenfunctions are normalizedjiRzmrdr: 1.

m Combining Eq.(17) and Eg. (19 yields the gyroscopically
ecoupled discretized equations governing the rotating disk and fluid
oscillations in the cavity

(dz 1d mi)2

where a,, b,, and q,, are the generalized coordinates of th
upper, lower cavity and the disk, anf,, are the in vacuo struc-
tural modes of the stationary diski8]. The subscriptif;, n,, MX + (C+G)X+ (K +D)x=0 (20)
n;) denotes n; nodal diameter,n, nodal circle, andn;

z-directional node number of the cavity, anai(, m,) denotes a Where

m, nodal diameter andn, nodal circle disk mode, respectively. x=[a, b, ,qm]T

Each triad 64, n,, n3) is denoted simply byr and each dyad

(my, m,) is represented bgn. Further, owing to the axisymmetry M=diagM,,My,Mq], C=diadC,,Cy,Cq]

of the domain each asymmetric basis functiom €0 or m; -

#0) is divided into the sine and cosine components. The sine and G=[0,0,L4q;0,0, = Lg; ~Lag:Lng:Gq] (21)

cosine components are denoted in the text and Appendix by the — —
superscriptsS and C, respectively. Substitution of Eq14) and K=diadKq,Kp,Kq], D=diad0,0.0y]

Eq. (15) into Eq.(13) and the use of the orthogonality of the rigidThe components of the above submatrices are given in the Appen-
wall normal modes dix. The mass and stiffness matrices are each composed of diag-
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onal block matrices of upper, lower cavities and the rotating diskable 1 Disk and acoustic cavity parameters used in most
Several unusual features of the coupled discretized dynamical WPUWUOHS- These parameters correspond approximately to
tem (Eq. (20)) are listed as follows: ose of a hard disk drive platter.

1. The system features two intrinsically different gyroscopic R, 4.74 cm Outer radius
effects iNG: (Laq.Lpg) describing the gyroscopic coupling Ei 0_%9506nc1nr:1 gigekrta?glllé?ess
between disk gr}d upper and ]ower acoustic cavity osc[lla- Pa 2700 kg/ni Disk density
tions andG, arising from the disk rotation. The gyroscopic P 1.2 kg/m? Air density
coupling between structural vibrations and acoustic oscilla- E 71 GPa Young's modulus
tions of the surrounding enclosure is well known. Lord Ray- v 0.33 Poisson’s ratio
leigh referred to this effect as “gyrostatic” couplinfl6]. Co 343 misec Speed of sound in air

2. The vanishing natural frequency of the fundamental acoustic
mode renders positive semi-definite the system stiffness ma-
trix. However the computational difficulties introduced by

this singular stiffness matrix can be avoided through the i%2,0,0, (2,0,9, ..., (2,0N), ..., (2N,N) acoustic modes are
troduction of a Helmholtz stiffness effedt.9]. used as basis functions in the computation. Furthermore, because

3. The damping matrixC, is composed of the symmetric both the sine and cosine modes in the upper and lower cavities are

acoustic and disk damping submatrices. Moreover they df¢luded in the discretization, the total number of basis functions
diagonal so long as only the end covers of the cavity agonsidered in this computation becomes @+ 2N?). Figures
absorbent. 2(a) and(b) show the variation wittN of the (2,0) disk-dominated

4. The rotating damping arises from disk fixed material damgnode frequencies. Note that at supercritical speed the conver-
ing and leads to a skew-symmetric circulatory matix, gence of the2,0) disk-dominated forward traveling wav&TW)

Note that the disk material damping also contributes to thid that of the reflected traveling wa#@TW) are to be consid-
symmetricC matrix. ered. The results show good convergence characteristics for both

FTW and RTW frequencies. A choice Bf=5 enables the predic-
. tion to within 0.02% of the asymptotic value of tt2,0) disk-
4 Computational Issues dominated mode frequencies 8t;=40,000 rpm. Interestingly,
The coupled discretized equations governing disk and acoug@iedictions of RTW frequencies converge monotonically from be-
oscillations are a classical gyroscopic system with positive deféw while those of the FTW converge from above. Similar results
nite damping and circulatory terms. The resulting eigenvall®@ve also been reported recently in the literature with regard to
problem is conveniently solved using general solution techniquespercritical gyroscopic systemg22]. Computations were also
for gyroscopic systemg20,21]. For simplicity, only the case of performed to determine the convergence characteristics of other
identical top and bottom enclosures is derived in this work.  disk-dominated modes and also of acoustic-dominated modes at
The orthogonality conditionéEg. (16)) and the expression for several speeds with similar results. Based on this detailed conver-
the coupling coefficientéEq. (18)) lead immediately to twalisk- gence studyN=5 was chosen for all subsequent computations.
acoustic coupling rules This choice enabled the prediction with sufficient accuracy of the
lowest five disk and acoustic dominated modes. However, for very

1. The sine modes of the disk couple only with the sine modggna|| air gaps increasing number of basis functions are needed to
of cavity, and cosine modes of the disk couple only with thgnsyre sufficient accuracy.

cosine modes of cavity.
2. A disk and an acoustic mode couple only if their nodal di

ameter numbers are identical. > Stationary Disk

. o . Before investigating the dynamic behavior of a rotating disk, it
These coupling rules are exploited in the subsequent computatigigiseful to understand the coupling between the stationary disk
by breaking down the general eigenvalue problem into seveidlq the acoustic cavity. Although the gyroscopic term due to ro-
different sets of discretized equations. Each set or family of digytjon (Gq in Eq. (21)) vanishes for the stationary disk, the disk
cretized equations governs the dynamics of disk and acousfigyples with the acoustic modes due to acoustic-structure interac-
modes of a specific nodal diameter number. This partitioning gbn. The frequencies of the disk and acoustic-dominated axisym-
the discretized eigenvalue problem enables fast, accurate andpfistric modes(zero nodal diameter modesvith respect to the
expensive computations. Once the appropriate basis functions g&@dimensional cavity length, (air gap are shown in Fig. 3.
chosen for discretization, the eigenvalues are computed in MAT-geyeral key observations can be made from Fig. 3. First, be-

LAB using the state space form of the gyroscopic systetal, ___cause the cavities on either side of the disk are identicat I
A direct consequence of the coupled eigenvalue problem is that

the system modes are no longer purely disk vibration or acoustic

modes Coupled modes contain both disk vibration and acoustic or 2480 68.22

fluid oscillation components. Modes composed of mostly disk or () disk dominated FTW "1 (b) disk dominated RTW

acoustic components are referred to respectivelyisisor acous-

tic dominatedmodes. —~ 2475
The convergence characteristics of the computed eigenvaluez

with increasing number of basis functions are now describedz

Representative results are now presented to determiné@ibe g 2470

disk-dominated mode frequency for a disk with parameters listec

in Table 1, while rotating in an air filled cavity of3=LP

=1 cm at supercritical speefl)4=40,000 rpm. The disk param-

eters in Table 1 correspond to those of a commercial hard dis

platter. Note, however, that cavity lengths in a q_isk drive are usu 24600 5 p : 5 68.20; 5 T < 5

ally somewhat smaller than 1 cm. For a specific nodal diamete N N

number mode, eigenvalues are calculated using as basis functions

N disk modes andN? acoustic modes possessing the same nodal. 2 Convergence characteristics of the two nodal diameter

diameter number. For example, to determine two nodal diameteode at supercritical speed (40,000 rpm). Each N corresponds

modes of the system th@,0), (2,1, ..., (2N) disk modes, and to use of 2 (N+2N?) basis functions in the discretization.

Frequencies (Hz)
8
®
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Fig. 4 Coupled natural frequencies as a function of nondimen-
sional cavity length, /, of the asymmetric acoustic-structural
modes of the stationary disk in a cylindrical acoustic cavity.
Note that all frequencies are repeated due to the axisymmetry
of the domain.

Fig. 3 Coupled natural frequencies as a function of nondimen-
sional cavity length, /, of the axisymmetric acoustic-structural
modes of the stationary disk in a cylindrical acoustic cavity

=), there exist in-phase and out-of-phase acoustic m@mesfor

example the(0,1,0 acoustic mode in Fig. )3 In-phase modes low-noise rotating disk systems but also in the onset of aeroelastic
describe synchronous variation of acoustic pressure in upper angtabilities. The latter phenomenon is now discussed for the ro-
lower cavities, and do not couple to disk vibration. On the othéating disk system.

hand, out-of-phase acoustic modes couple directly to disk vibra-

tion. Clearly if the cavities are not identical, even the in-phasg Rotating Disk (No Damping)

modes could couple to disk vibration.

Secondly,eigenvalue veering phenomena occur whenever a
out-of-phase acoustic mode frequency approaches a disk m
frequency of the same nodal diameter numib&r example the
(0,0, acoustic-dominated mode frequency decreases with i
creasing air gap and veers with tk@ 1) disk-dominated mode
near | ~0.8. Following this the(0,1) disk-dominated mode re-
sembles suddenly th€0,0,1) acoustic-dominated mode. The
veered(0,0,1) mode in turn encounters th@®,0) disk dominated
mode atl ~5 leading to yet another veering phenomenon.

Finally, the numerical results indicate that the disk-dominated
zero-nodal diameter mod@®,0) frequency increases as air gaps
decrease. This is because for small air gaps the uncoupled acoustic
frequencies are very high and the acoustic coupling appears
mainly as an added Helmholtz stiffness term. However, for large
gaps, the(0,0) disk-dominated modes veer when they encounter
the (0,0,1) acoustic-dominated modBlote that as a direct conse-
guence of the coupling rules described earlier, the Helmholtz stiff-
ness effects only the axisymmetric modes of the coupled system

In contrast to the axisymmetric modes, the variations of the
natural frequencies withof the asymmetric modes of the coupled
disk-cylindrical acoustic cavity system are shown in Fig. 4. First,
the frequency of th€1,0) disk-dominated mode decreases with
decreasing air gaps. Because such modes are not affected by the
Helmhotz stiffness, they remain coupled weakly to acoustic
modes of the same nodal diameter. However, because the frequen-
cies of most acoustic modes increase with decreasing air gaps, this
weak coupling appears as an added mass effect ofiLifledisk-
dominated mode. Second, in contrast to the asymmetric case, A
strong eigenvalue veering can occur at small air gaps. For instance 0 200 400 600 800 1000
the (1,1) disk dominated mode and tl#&,0,0 acoustic dominated
out-of-phase mode veer whér 102,

The presence OT elgen_\/alue_ veering in such coupled Struc’[uﬂ?'. 5 Variation with nondimensional speed of the natural fre-
acoustic systems is of critical importance because small chang&scies of axisymmetric modes of the coupled rotating disk,
in system parameters can lead to the sudden change of a structg§gustic cavity system. System parameters are listed in Table 1
dominated mode into an acoustic-dominated mode and vice vergad a cavity depth of 1 cm is chosen for the computation (solid
Such phenomena not only play an important role in the design lafe: coupled freq., dashed line: uncoupled freq. ).

Disk rotation complicates significantly the coupling phenomena
he disk-cylindrical acoustic cavity system. The coupled eigen-

values depend on the gyroscopic terms arising from both disk
tation speed as well as acoustic-structure coupling. An air gap of
cm is chosen for all subsequent computations.

The speed dependence of the axisymmetric modes of the
coupled disk-acoustic cavity system is shown in Fig. 5. Dashed
lines indicating the uncoupled disk frequencies, that is disk fre-
quencies in the absence of fluid-structure interactidr=Q) are

ImQA)

Nondimensional speed,
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Fig. 6 Variation with nondimensional speed (0<0Q<150) of _50 ' 260 ' 460 ' 660 ' 860 ' 1000
the natural frequencies of axisymmetric modes of the coupled
rotating disk, acoustic cavity system. This computation is per- Nondimensional speed,
formed for the undamped system, with system parameters
listed in Table 1 and a cavity depth of 1 cm is chosen for the Fig. 7 Variation with nondimensional speed  (0<Q<1000) of
computation. the real and imaginary parts of the eigenvalues of axisymmetric

modes of the coupled rotating disk, acoustic cavity system.
This computation is performed for the undamped system, with
also plotted in Fig. 5. The rotational stress terms in the stiffneggstem parameters listed in Table 1 and a cavity depth of 1 cm
operator ensure that the disk axisymmetric mode frequencies ihchosen for the computation.
crease with increasing rotation speed. However, eigenvalue veer-
ing phenomena occur whenever a disk-dominated mode frequency

approaches that of an out-of-phase acoustic-dominated mode. Foéecondly, when the FTW frequency of a disk-dominated mode
instance th€0,1) disk-dominated mode veers with t&1,0 0ut- oo nters an acoustic-dominated mode frequency of the same
of-phase acoustic mode ne@r—100. Other examples of €igen- ,qqa| giameter number, the disk-dominated mode veers into an
value veering can also be seen in Fig. 5. This implies that diskz ) <tic-dominated mode. For example, #1e0) FTW disk-
dominated system modes can change suddenly at certain sp inated mode veers s.,trongly QN%’ into an acoustic-

into acoustic dominated modes and vice versa. Further the spe Minated(1,0,0 mode and its frequency approaches that of the
at which eigenvalue veering occurs can be predicted in the f 'ncoupled(l,’O,IQ acoustic mode. In other words, acoustic mode

lowing simple manner. Uncoupled axisymmetric disk frequencigg, ,encies act as barriers for FTW disk dominated mode frequen-
Increase with rotation sp_eed Wh'l.e the uncoupled aX|s_ymmetré s and force the disk-dominated FTW frequencies to veer into
acoustic mode frequencies are independent of rotation spegd stic dominated FTWs.

Therefore eigenvalue veerings of axisymmetric modes OCCurThirdIy, as the rotation speed increases further in the supercriti-

whenever the uncoupled disk frequencies nearly equal the yng e the frequencies of the RTW coalesce with the acoustic-

_coupled _acoustic frequencies. In_Fig. 5, this is indica_ted by _ﬂb%minated mode frequenciéBig. 7). For example th€2,0) disk-

intersections pf the uncouplgd disk frequency loci with the iNBominated RTW coalesces with th@,0,0 acoustic-dominated

phase acoustic frequency loci. . FTW atQ~770, the(3,0) disk-dominated RTW with thé3,0,0
The variation with speed of the asymmetric mode frequenug oustic-dominated FTW 42 ~440. and so on. This mode coa-

of tge sys}_er_n is fshowndin Foilgb 6.|f\s egpectel(_j, the dis_lg/(\jlomigat cence leads to the onset of traveling wave flutter over a certain
modes split into forward and backward traveling wa@esW and  gho0q range, and a pair of eigenvalues moves into the right half-
BTW) and the BTW frequencies decrease and vanish at their smplex plane

spective critical speeds. The lowest critical speed at nondimen-Several conclusions can be made from Fig. 7 about the nature

sional()~55 occurs for the3,0) disk-dominated mode. At SUPer- ¢ the mechanism in the undamped system that induces traveling
critical speed a BTW is referred to as a reflected traveling waye e flutter:

(RTW). The RTW frequencies increase from zero beyond the re-

spective critical speeds. Several other unique features of thel. For each nodal diameter number, the traveling wave flutter

coupled system in Fig. 6 are now described. instability occurs over the range of speed beyond which the
First, the repeated out-of-phase acoustic modes are also split specific mode restabilizes.

into FTW and BTW. For instance, the frequency of one of the 2. The one nodal diameter mode does not undergo flutter insta-

(1,0,0 out-of-phase acoustic modes increases with rotation speed bility. Because this mode has no critical speed and the sys-

while the other frequency of thél,0,0 mode decreases as the tem stiffness remains positive definite for all speeds in this

disk rotates. As in the case of disk modes, these can be interpreted mode,[23], the (0,1) mode remains stable for all rotation

as the forward and backward traveling waves of the acoustic cav- speeds.

ity modes. The underlying physics of this phenomenon lies in the3. The(2,0) mode has the largest speed range of instability and

coupling between the out-of-phase acoustic dominated modes to this range decreases with increase in nodal diameter number

disk dominated modes of the same nodal diameter number. If the of the unstable wave.

disk dominated modes split into FTW and BTW so will the acous- 4. Interestingly, the greater the nodal diameter number of the

tic dominated modes. mode, the lower its flutter speed. The lowest speed at which
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These instability regions are plotted for the undamped system 0 100 200 300 400 500 600 700
where =0 and z,=infinity. Nondimensional speed,

flutter occurs in this case seems to asymptoté)te 320. Fig. 9 Variation with nondimensional speed (0<Q<700) of

Note that the lowest critical speed of the disk)s-55. This the real and imaginary parts of the eigenvalues of three nodal
implies that while it is possible to describe a flutter speef{ameter modes of the coupled rotating disk, acoustic cavity
stem in the presence of acoustic damping alone induced by

beyond with the disk is unstable, it is impossible to sagéund absorbing wall  (z,=4.78X105). System parameters

exactlly which mOde.ShF"pe.deS‘a.'f’.i'iZ,eS first. From the,corﬁ‘éted in Table 1 and a cavity depth of 1 cm is chosen for the
putational results this first instability is likely to occur in acomputation.

very high nodal diameter number mode.

5. Because the traveling wave instability occurs from the coa-
lescence of acoustic and disk-dominated traveling waves,
the unstable wave itself is neither disk nor acoustic domi-

nated. The unstable wave then appears as a couplgdyi in the following ordex(@) the effects of acoustic damping

structural-acoustic traveling wave rotating in the same diregy 0 (b) the effects of disk damping alone, afu the effects of
tion as the disk, albeit slower than the disk. combined disk and acoustic damping. '

6. Other instabilities caused by higher mode coalescence can

also occur, although they are not shown in Fig. 7. For ex- 7.1 Acoustic Damping Alone. Acoustic damping arises in

ample, flutter instability caused by the mode coalescence thie model from the presence of a sound absorbing material on the

(5,0 and (5,1,0 waves occurs at a higher rotation speetbp and bottom ends of the cylindrical enclos(iey. (10)). In the

than for the instability involving a coalescence(6f0) and presence of acoustic damping only, the submatricgs D=0

(5,0,0 waves. andC,=C,#0 in Eqg. (21). This results in a classical gyroscopic
L . . . ) system with positive definite damping. In the absence of this

_The variation of the instability regions with respect to the noryamping term, the system loses positive definiteness at its first
dimensional parameters and C are shown in Fig. 8. At a par- cjtica| speed and is gyroscopically stabilized immediately beyond
ticular value ofA andC, a flutter instability of a traveling coupled cyjica| speed. According the to the Kelvin-Tait-Chetaev theorem,
acoustic-structural wave occurs over a finite speed range. ], therefore the inclusion of the positive-definite acoustic
speed range is different for different nodal diameter modes. In thehing destabilizes the system beyond its first critical speed.
limiting case, in vacuum\ —0 and the instability regions vanish. tpa¢ is "the disk-dominated RTW undergoes a flutter instability
On the other hand, the flutter speeds generally increase with izacry ot critical speed. Once the flutter is initiated, the zero
creasingC values. This occurs because higlvalues result in oqyjilibrium remains unstable for all supercritical speeds. Also
higher cavity frequencies relative to disk frequencies. The grea‘sg arly, the first flutter speed of the coupled system corresponds to
the C value, the higher the supercritical speed at which modge first critical speed, in this case that of 8¢0) disk-dominated
coalescence occurs. ode.

This completes the discussion of the instability mechanisms g1fThis prediction is confirmed numerically in Fig. 9, which shows
the rotating disk-cylindrical acoustic cavity system in the absengge yariation with rotation speed of the eigenvalues of the three
of dissipation. nodal diameter modes. The system parameters are listed in Table 1

. and the air gap is chosen to be 1 cm as before. A nondimensional
7 Effects of Dissipation impedance value af,=4.78< 10° is chosen for the computation.

In the presence of disk and acoustic damping, the system dys expected the RTW of th€),3) mode destabilizes exactly at
namics become more complicated than for undamped case distical speed. Further beyond this critical speed at least one pair
cussed earlier. This is clearly a more practically relevant scenarad. eigenvalues remains in the complex right half-plane. Several
The effects of such dissipative mechanisms are now studieddanclusions can be drawn from Fig. 9:
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Fig. 10 Variation with nondimensional speed (0<Q<700) of
the real and imaginary parts of the eigenvalues of three nodal
diameter modes of the coupled rotating disk, acoustic cavity
system in the presence of disk damping alone induced by vis-
coelastic disk material (7=1.766X10"%). System parameters
listed in Table 1 and a cavity depth of 1 cm is chosen for the
computation.

1. The disk destabilizes by a traveling wave flutter ofliak

dominated(3,00 RTW. This corresponds to the mode with
the lowest critical speed. Recall that in the absence of dal
ing, the unstable wave contains both disk and acous

components.

2. Unlike the undamped case, the zero equilibrium remains

stable for all supercritical speeds.

3. Interestingly, however, the instability at critical speed cann
be described as a classical Hopf bifurcation, for two reaso
(i) a pair of eigenvalues moves into the right half-plane wit
zero imaginary parts, an@) the instability also violates the
nonzero “speed” eigenvalue crossing condition for a Hop

bifurcation, becausd\/dQ) =0 at the instability[25].

in Fig. 9. It is found that with increasin@ the FTW disk domi-
nated(3,0) mode frequency approaches the three nodal diameter
acoustic dominated frequency. Ne@r-100 the disk-dominated
(3,00 mode veers to a near-speed independent natural frequency,
and in the process of veering becomes an acoustic-dominated
mode. Shortly thereafter, this acoustic dominatg®) FTW be-
comes unstable & ~180.

The flutter instability in the presence of disk material damping
alone is completely different from the instability mechanisms in
the absence of dissipation or in the presence of acoustic damping
alone:

1. In contrast to the other previous mechanisms, this flutter
instability takes the form of amcoustic-dominated=TW.
Once unstable, the equilibrium continues to remain unstable
at higher speeds.

2. For the chosen system parameters, the instability occurs at
an intermediate speed between the flutter speed of the same
mode in the absence of any dissipatidgfig. 7) and in the
presence of acoustic damping alaifrég. 9).

3. This instability represents a classical Hopf bifurcation be-
cause at this flutter speed a pair of eigenvalues correspond-
ing to an acoustic dominated FTW cross over to the right
half-plane with nonzero imaginary part and nonzero
“speed.” This is a particularly nonintuitive result given that
disk material damping usually suppresses rotating disk
instabilities.

To understand the underlying physics of this interesting result,
consider the following argument. Disk material damping leads
effectively to a damping that rotates with the digk2]. When
viewed from a ground fixed reference frame, this damping con-
tributes in Eq.(20) to the symmetric damping matri@ as well as
to skew-symmetric circulatory matrib). However, upon recast-
ing the discretized equations of moti@Eg. (20)) in a co-rotating
frame, the disk material damping is essentially a symmetric posi-
tive definite damping. Two conclusions follow immediately. First,
in the co-rotating frame, the acoustic cavity is no longer stationary
but rotates in a direction opposite to that of the disk. This gener-
ates gyroscopic terms in the acoustic cavity oscillations. The ro-

ngq_ting acoustic cavity then suffers critical speeds with vanishing

-rcaveling wave frequencies. Second, the disk material damping
hen provides a symmetric positive definite damping for the

uﬁ(_:oustic dominated traveling waves. Once again, invoking the

elvin-Tait and Chetaev theorem, this implies that in the presence

8{ disk material damping, an acoustic dominated traveling wave

festabilizes at the critical speed of the rotating cavity. The impli-
ﬁation therefore is that & ~ 180 in Fig. 10 flutter occurs exactly
at the critical speed of the acoustic dominated three nodal diam-
gter mode.

To confirm this hypothesis the discretized equatign. (20))
are recast in the co-rotating frame using the following time-

In this mechanism, the system destabilizes through disk dondiependent transformation
nated flutter when the system stiffness matrix loses positive defi-

niteness at the system critical speeds. Because the disk-fluid cou- [ @mnn ()| [cosnQt  —sinn, Ot (a5 0, (1)
pling does not appear in the stiffness matrix, the critical speed of as )~ sinn.0 I 3 t
the disk is independent of the properties of surrounding fluid. nnzng(t) sinm{t - cosn, {2t nnzn ) (223)
Thus the nondimensional flutter speed and mode do not change
with respect to the nondimensional parameterandC. .
s ; « Darmoing A i P ) f o (bﬁlnzna(t)) (cosnlﬂt —smnﬁt) Eslnzns(t))

: isk Damping Alone. In the absence of acoustic damp- s = o~
ing, the dissipation arises from disk material damping alone. The Br, () sinn, 0t cosn, Ot bR nony(t)
effect of this dissipation mechanism on the aeroelastic stability of (220)
the coupled disk-cavity system is now investigated. The real and c . —¢
imaginary parts of the eigenvalues of the three nodal diameter Grmym,(1) _ cosmQt  —sinmQt) [ Gm,m, (1)
system modes as a function ﬁfare_ghown in Fig. 10, with the qilmz(t) “lsinmQt  cosm,Ot aﬁlmz(t)
viscoelastic coefficienyy=1.766x 10" °. The variation withQ) of (220)

the natural frequencies of the disk with material damping alone

are nearly identical to those of the system with acoustic dampimdere the bar denotes coordinates in co-rotating frame, and the

alone(Fig. 9. However, upon closer examination, the real part oesulting eigenvalue dependence@ris plotted in Fig. 11 for the

the eigenvalues in Fig. 10 behave completely differently from thaame system parameters as those used in Fig. 10. The subscripts F
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Fig. 11 Variation with nondimensional speed (0<Q<300) of

the real and imaginary parts of the eigenvalues of three nodal 7.3 Combined Disk and Acoustic Damping. In the pres-

diameter modes in co-rotating frame, of the system in the pres-
ence of disk damping alone induced by viscoelastic disk mate-
rial (p=1.766X1073). System parameters listed in Table 1 and

a cavity depth of 1 cm is chosen for the computation.

ence of both disk and acoustic damping, flutter speed is controlled
directly through interplay of acoustic cavity and disk damping. To
investigate this effect, the flutter speeds of different nodal diam-
eter modes of the system are plotted in Fig. 13 as a function of the
parameterz, 7, the ratio of nondimensional disk material damp-
ing to nondimensional acoustic damping. The results are plotted

— ) _ ~ for a fixed value ofzy=4.78<10°. When 7 is small (low disk
and Bin Fig. 11 stand, respectively, for traveling waves rotating idamping or z, is small (high acoustic cavity dampingonset of

the same sense as the acoustic cavity or opposed to it, whienter occurs in a disk-dominated RTW slightly above the lowest

viewed in the co-rotating frame. For example, the (g,@ode in
Fig. 11 is essentially the same as the (8,&)ode in Fig. 10.
Similarly, the (3,O,O§U‘mode in ground-fixed frame is identical to

the (3,0,0§" mode in co-rotating frame.

10° . .
Cavity critical speeds

10t| —— (4,0) (3,0 (2,0)

From Fig. 11 it is clear that the acoustic modes split into FTW
and BTW components. Further the three nodal diameter acoustic
dominated traveling wave destabilizes exactly at the critical speec
of this acoustic mode when viewed in a co-rotating frame. Inter-
estingly therefore, the lowest flutter speed and corresponding flut-
ter mode in the presence of disk material damping alone are dic-
tated by the lowest critical speed of the acoustic cavity. Note that
the natural frequencies of the acoustic modes and therefore thei
critical speeds also depend on cavity dimensions. Therefore the
flutter speed and mode predicted by this instability mechanism
can be modified significantly through variations in the enclosure
geometry.

In addition, because the critical speed of the acoustic-
dominated mode is dependent on the properties of surrounding
fluid, the onset of flutter changes with respect to the nondimen-
sional parameterd andC. This dependence is described in Fig.
12. In vacuum ag\ — 0, flutter speed increase rapidly and occur at
infinite rotating speeds while in a dense fluid the system becomes
unstable at lower rotation speeds due to stronger disk-cavity cou:
plings. Furthermore, because the uncoupled natural frequency of
acoustic cavity is linearly proportional to the acoustic wave speed,
the flutter speed in this mechanism varies linearly with the nondiig. 13 Variation of nondimensional flutter speed with the
mensional wave speed. This completes the discussion of thenondimensional ratio of disk to acoustic damping zZ,m. These
flutter mechanism in the presence of disk damping alone. instability regions are plotted for ~ z,=4.78X10°.
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R PRYe TP B A = 00266 cretized, linear equations governing rotating disk and fluid oscil-
lations. The discretized dynamical system has the form of a
classical gyroscopic system with positive damping and circulatory
terms. Following a detailed convergence study, the coupled dis-
cretized eigenvalue problem is studied computationally.

The coupled rotating disk-acoustic cavity system oscillations
are governed by two different gyroscopic couplings: one is due to
acoustic-structure interaction and the other arises from disk rota-
tion. The disk-acoustic cavity coupling generates in and out-of-
¢ phase acoustic modes. For a symmetrically placed disks in enclo-

(d) A =0.0266 sure, out-of-phase acoustic modes couple to disk modes, and in-
20 phase acoustic modes decouple from disk vibration. As the disk

S, rotates, out-of-phase acoustic dominated as well as disk-
dominated modes split into FTW and BTW. Further, eigenvalue
veering between disk and acoustic modes leads to the sudden
transformation of disk to acoustic-dominated modes at supercriti-
cal rotation speed. For the undamped system, the flutter instability
is caused by mode coalescence over the certain speed range, lead-

40

0.03

< 0.02

0.01

0.0

0.03

< 0.02

0.01

A

3.0y G0 ing to the flutter of a coupled acoustic-structural wave of high
0 100 200 300 400 nodal diameter number. Further this wave propagates in the same
Nondimensional flutter speed, Nondimensional flutter speed, Q direction as disk rotation, albeit slower than it.

The inclusion of acoustic damping from absorbent walls desta-
bilizes a RTW of disk-dominated mode at the critical speed of the
Fig. 14 Variation of nondimensional flutter speed with A and system. The flutter mode corresponds to the mode with the lowest
C in the presence of both acoustic and disk damping. These critical speed. In addition, once initiated, the flutter instability
instability regions are plotted for the case of z%=15%10° and  persists for all higher speeds. In the presence of disk material
7*=3.2X107° (in a, b), and %*=3.2X10"*in (c, d). (a) and damping alone, an acoustic dominated FTW destabilizes via flut-
(b) correspond to a system where disk damping dominates ter instability at supercritical speed. The flutter instability occurs
acoustic damping while  (c) and (d) correspond to a situation in the form of a very high nodal diameter acoustic-dominated
where acoustic damping effects are dominant. wave. This unstable wave propagates in the same direction as the
disk, but travels slower than it. Further, this instability persists for
all higher speeds. In the presence of both disk and acoustic damp-

critical speed of the disk, and in the corresponding mode. Thigy the flutter speed, mode, and mechanism are controlled by the
mechanism is identical to the flutter mechanism discussed earligliy of disk to acoustic damping of the system.

with acoustic damping alone. On the other hand, whes large 1 may be noted that the instabilities predicted in this article

(high disk dampingor z, is large(low acoustic cavity damping  sccyr typically at supercritical speed. While these speeds are un-

the system flutters first in an acoustic dominated FTW with a Ve, 10 be encountered in commercial hard disk drives, the disk-
high nodal diameter number. For intermediate valueg,of the  cavity coupling and veering issues discussed in this paper are of

flutter speeds actually increase and approach the flutter spegls;est in the design of low-noise emission drives. Further, both

encountered from mode coalescence in the undamped SysteMy,q 4ar0elastic stability and cavity-disk coupling issues are likely
_The variation of the instability regions with respect to the nony, pe jmportant for optical or magneto-optical disks that operate
dimensional parameters andC are shown in Fig. 14. The reSUItScurrentIy near their critical speeds.
are plotted for fixed values of;=15x10° while 7*=3.2  The verification of these different instability mechanisms re-
X107% in Fig. 14a) and (b), and *=3.2x10"*?in Fig. 140) quires further detailed experiments and is the subject of ongoing
and (). The nondimensional ratios of disk to acoustic dampingesearch. It is worthwhile, however, to compare qualitatively the
zpm, in Fig. 14b) and in Fig. 14d), are 844.17 and 8.441 present predictions to known experimental results on the flutter of
X 107*, respectively. Note, however, that the nondimensional pgisks in enclosed spaces with radial gaps. Especially the onset of
rametersA andz, are related each other. For this reasom\as  flutter described for lightly damped steel diskg#] is consistent
varied in Fig. 14a) and(c), the value ofz, also changes. Specifi- with the dynamics predicted by the present study for systems with
cally the nondimensional rati@,n varies in the range 675 |ow disk to acoustic damping ratid§igs. 13 and 1% However,
~1013 in Fig. 14a) and from 6. 10" *~0.101 in Fig. 14c). In  to our best knowledge, the acoustic-dominated traveling wave
spite of this variation, Fig. 14) corresponds to a situation whereflutter phenomenon has not yet been observed experimentally.
disk damping dominates acoustic damping and Figc)ldorre- Finally we note that there is an interesting similarity between
sponds to the case where the acoustic damping dominates the ehigkflutter of infinitely long plateg,26,27, and the cavity damp-
damping. As expected the instability regions in Fig(@4nd(b) ing dominated instability discussed in the present work. In both
are similar to the case of disk damping aldfég. 12. Similarly, cases, the instability occurs as a traveling wave and the flutter
the instability region in §) resembles the case of acoustic dampnode wavelengths are of the order of twice the panel width or
ing alone. However, the instability region in Fig.(&#is different  disk radial extent. However, the disk-cavity coupling and cavity-
from the case of acoustic damping alone. This is because #@minated instability phenomena described in the present study

nondimensional acoustic impedanzg is increases as tha is  appear not to have been discussed yet in the literature on the
decreased and cannot be regarded as negligible at low fluid d@ptter of infinitely long panels.

sities. It is interesting to note also that Asdecreases the first
flutter mode can actually change from t80) disk dominated to
(4,0) disk-dominated RTW.
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where all submatrices are diagonal exc€pt andL,,, and their
each element is defined by the corresponding scalar variable in tt?s]
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On the Heavily Damped Response in'ef?}gﬁi?f’;ﬂ“;ﬁ, ﬁ;“fiﬁgg"‘f,fji?;ﬂ'ﬁ' the general solution of the
Viscously Damped Dynamic Systems q

2n

_ (D)= ¢U; expAit), (5)
R. M. Bulatovic 1
Faculty of Mechanical Engineering, University of wherec; are the constants determined from the initial conditions.
Montenegro, 81 000 Podgorica, Yugoslavia The expansior(5) is also valid forsemi-simplesigenvalues, i.e.,

for the roots\; of Eq. (4) having the multiplicityk, if the number
of linearly independent eigenvectors corresponding;tes equal
d.toAc It is well known that all eigenvalues ¢8) have negative real

Free motions of viscously damped linear systems are studie q V. th ; icall bl

heavily damped multi-degree-of-freedom system is defined as &k Is and, ci)nseq;entuy,bt e lesatﬁm |s_|asdymptogfca”y stable.

for which all its eigenvalues are real, negative, and semi-simpl&H€ System1) or (2) will be calledheavily dampedf all eigen-
lues of(3) are real and semi-simple, and hence all solutions

Several results are obtained which state conditions for the hea\//i  diff 2l Ea(D) d il ch o fh
damping of the system. The conditions are given directly in terflst) Of differential Eq.(1) do not oscillate. Characterization of the
vily damped system by its eigenvalues is not convenient for

of the coefficients of system matrices and these conditions . ; it : lete ei lue determi
yield design constraints in terms of the physical parameters of t flgnfpurposes, smtc)_e |t_reqU|fres a comp et € eigenva L:e egrml-
system. An example illustrates the validity and usefulness of f}f!'on Tor every combination of various systém parameters. L.on-

presented results[DOI: 10.1115/1.1629108 sequently, it is of interest to find conditions which are related
’ T ' in a simple way to the properties of the system matritsse
Inman([1]).

. . In the mechanics literature, particularly in ASMBurnal of
1 Introduction and Previous Results Applied Mechanicgsee the list of referencgssome attention has
We consider a viscously damped linear mechanical system den paid to the formulation of criteria which guarantee that all

scribed by the equation eigenvalues of the system are real and negative. There is a well-
. . known definition ofoverdampedystems first used by Duffif2]
Mg+Bg+Cq=0, (1) which ensures that a systef®) has real and semi-simple eigen-

whereq is then-dimensional position vector, arid, B, andC are values. Duffin’s definition states that an overdamped system is one
the inertia, damping, and stiffness matrices, assumed to be cgHch that
stant, real, symmetric, and positive definite. Siite- 0 (positive
definite, one can utilize the positive definite square root in a
familiar way to transform Eq(1) to the form for all nonzero reah-vectorsx. This is a sufficient condition for

X+Dx+Kx=0 @) (3) to have real and semi-simple eigenvalibat not necessary

' condition), i.e., (6) is sufficient for heavy damping in the sense of

where D=M "YBM ¥2=pT, K=M Y2CM Y2=KT and x this paper. The following simple example of the syst&nillus-

(X"Dx)?>4x"xx"K x (6)

=M. trates this point. Let
The eigenvalue problem associated w(i#h is 4 0 3 0
AN +AD+K)U=0, 3 = = :
( ) () D (O 10) and K (O 24)

wherel is the identity matrixU is an eigenvector of dimension
and \ is its eigenvalue. There aren2eigenvalues\; which are It is easy to verify that this uncoupled system is heavily damped
governed by the characteristic equation (the eigenvalues ark;=—1, A,=—3, A3=—4, and\,= —6)
but not overdampe@he condition(6) is not satisfiedl Thus, the
_ 2 _ )
A(N)=de(r"1+AD+K)=0. ) notions of heavy damping and of overdamping are different for
Comtibuted by the Abplied Mechanics Division ofiE AMERICAN SOCIETY OF multi-degree-of-freedom systems, although they are the same for
ontributed by the Applied Mechanics Division o ; _ _Af

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- single-degree-of-freedom systems. An overdamped system has

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 19S0Me properties which cannot be generalized to |eSS. heavily
1999; final revision, June 10, 2003. Associate Editor: V. K. Kinra. damped systemsee Lancast€i3]). Notice also that6) requires
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substantial calculation to check its validity. Later Inman and
Andry [4] proposed that the system is overdamped if | +io D w2 +K)Y/’

D>2K'2, (1) whereY=(w? —wD+K) 'DU. O

whereK 2 denotes the positive definite square root of the positive THEOREM 1 The system described by Eg. (2), with-D >0
definite matrixK. Unfortunately, this condition does not guarante@nd K=K'>0, is heavily damped if

real eigenvalues, as the example of Barkwell and LancSier 2_ Lol >
subsequently illustrated. The fallacy in the proof of condit{@n . D 2(K+ wmad ) >0, (.17)
has been recently discussed by Bhaglr Moreover, Barkwell where w4 is the highest frequency of the corresponding un-

Y

\Y (16)

and Lancastel5] obtained the following result: The systei®) is
overdamped if and only if there exists a positive numbkeuch
that

D>kl+k K. 8)

The evaluation of this condition requires searches ofkthealues
by trial and error.

Beskos and Bole}7] proposed a method to determine a region
in the parameter space such that each eigenvalue corresponding to

the values of damping coefficients in that region is real disd
tinct. On the boundary of this regiaficritical damping surface}

damped system
Proof. According to Bulatovid 8], we introduce auxiliary func-
tion of the form

V=Vi(xy) +Vi(y,—X) (18)
with
Vi(€7)=E(D?—K—whal) é+2E DK+ 7 (K2 + 02,K) 7.
(19)
Here, ¢ and 7 are n-dimensional real vectors and?,, is the

largest eigenvalue of matriK. The time derivative oV, along

the eigenvalues are real and at least one is repeated. Unfortunagéetyry solution of Eq(9), becomes/=0. Now, we can rewrit&/,
this method is cumbersome to use if the number of degrees-@:
freedom is large, but it can be applied successfully for two-
degree-of-freedom systems.

J’_
Thus, there is still a lack of simple and applicable conditions for §TF (&),

(20)

1
v1=§T(§D2—K—w5na4

heavy damping.

2 Simple Heavy Damping Conditions
We first formulate a lemma.

LEMMA 1. The system (2) is heavily damped if and only if the

following 2n-dimensional conservative gyroscopic system

o WYL MIHE

o U S

Proof. The eigenvalue problem associated wi@ is

s?l—K SD) (o
(—SD SI-K _(0

whereY andZ aren-dimensional vectors. The systd®) is stable
if and only if all eigenvalues of10) are purely imaginary and
semi-simple. Note that if §=iw, V'=(Y",Z")), where i
= /=1, is an eigenpair of10), then 6=—iw,V") is also an
eigenpair.

If we substitutes=iw in Eq. (10), we obtain

o] ©

Y

21=lo): (10)

— (0’ +K)Y+iwDZ=0, (11)
and
—iwDY—(w?l+K)Z=0. (12)
From Eq.(11), _
Z=— 'Zofl(aﬂl +K)Y, (13)
and substitution of this expression into Ed2) leads
(0*D '+ w?(D K+KD 1-D)+KD K)Y=0, (14)
which is equivalent to
(0’ + wD+K)D Y w?l —wD+K)Y=0. (15)

Let s=iw, w<0, be an eigenvalue ofl0) with eigenvector
VT=(Y",Z"). From Egs.(3) and (15), we deduce thah=w is
eigenvalue of(3) with eigenvectorU=D(w?l —wD+K)Y.
Conversely, iin=w<0 is an eigenvalue dB) with eigenvectoiJ,
thens= *iw are eigenvalues dfL0) with eigenvectors

132 / Vol. 71, JANUARY 2004

where
2F=(D¢+2Kn) T (DE+2Kn) +27 (0 K—K?) 7. (21)

From 2,,K—K?=0 and K?+ w?,,K>0, according to(21), we
see thaf- is positive semi-definite and the set

{(&,7):6=0F=0} (22)

is trivial. Consequently, according {80), V1(¢, ), as well as the
function (18), are positive definite if the conditiofil7) holds.
Therefore, Theorem 1 follows from Lyapunov’s stability theorem
and the previous lemma. O

For multi-degree-of-freedom systems the criterid¥) pro-
vides only sufficient and not necessary condition for heavy damp-
ing (unless eitheK=al or D=al, wherea is a positive scalar

In the case of “classical damping” in whicB andK commute
a sharper result can be obtained:

THEOREM 2 If DK =KD, then the system described by (2) is
heavily damped if and only if

D?>4K. (23)

Proof. If DK=KD, then(23) is necessary and sufficient for sta-
bility of the system(9). This follows immediately from a result of
Bulatovic[9]. O
Notice that(23) is equivalent to(7), if D andK commute. We
note also that the conditiof23) may be easily established through
the use of the modal matrix.
A simple necessary condition for heavy damping is given next.
THEOREM 3 If all eigenvalues of (3) are real, then

[D||2>2Tr(K) (24)

where Tr(K) is the trace of K and|D|| is the Euclidean matrix
norm of D

We note that TrK) == k;; and|D[?==];_,d.

Proof. By proof of Lemma 1, it follows that all roots of char-
acteristic Eq(4) are real if and only if every eigenvalue @f0) is
purely imaginary. If all eigenvalues @1.0) are purely imaginary,
then according to Theorem 2 of Lancaster and Zizl], the
condition (24) holds. O

There is another way of establishing this result. Indeed, the
eigenvalues\; of (3) and eigenvalues of the state matrix
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Fig. 1 The system of example

»

_ 0 J8 10 dy
are the same. Consequently, using a well-known result of matrix
theory (see Bellmarj11]), we have Fig. 2 Weak (R;), mixed (R,), and heavy (R;3) damping re-
on gions, and the region Ry, predicted by Theorem 1 for the sys-

2 2 2 tem shown in Fig. 1
> AZ=Tr(G2)=Tr(D2) - 2Tr(K),
i=1

which is pOSitiVe if all eigenvalues are real. From this and the fact The sufficient heavy damp|ng criterion obtained here for a gen-

that eral case of damping is next applied to this system and the results
||D\|2:Tr(D2) are compared with the exact solution.
' An elementary calculation shows thaﬁ]axz)\mm(K):& Con-
we obtain the result stated {24). dition (17) takes the form
Theorems 1-3 provide simple conditions for heavy damping, 5
and they involve no undetermined parameters. The one-parameter D2— (K4 w2 |)= di—10 2 0 30
criteria(i.e., conditions of the same type &) can be established (Kt wmad )= 2 d2-10 =0 (30)
by means of Lemma 1 and the results of Walkez] for stability ) )
of conservative gyroscopic systems. which yields
Finally, for completeness, the above results can be expressed in
terms of the original matrices as follows: d?>10 (31)
Q) If
and
- 2
BM™B~2(C+wpgM)>0, (25) d2d2— 10(d?+ d2) + 96>0. (32)

the system described by (1) must be heavily damped. )
(2) If BM~C=CM™ !B, then the system described by (1) is If the parametersl; andd, are now chosen to satisf1) and

heavily damped if and only if (32), then(2), (28) will be heavily damped and the system will not
o oscillate when perturbed from equilibrium. The regiBp, pre-
BM™"B—-4C>0. (26)  dicted by inequalitie$31) and(32) is represented by shaded area
(3) If the system described by (1) is heavily damped, then glngggj._Z\./;Ohe boundary of this region has asymptalgs: VID
2_ .
Tr(M™1B)3)>2Tr(M~1C). (27) Next, a complete two-parameted,(,d,) damping analysis of
the system, based on the discriminant of the characteristic poly-
3 lllustrative Example nomial and Theorem 3, is presented.

The characteristic equation for systés), (28) is
To illustrate the usefulness of the above results consider the q ysté), (28)

two-degree-of-freedom system shown in Fig. 1, wherand 3 M+an3+an?+agh+a,=0, (33)

stand for the spring constants and coefficients of viscous dampig\g1ere
respectively, andj; andq, are the displacements from equilib-
rium positions of masses; andm,. For simplicity, we takec, a;=d;+d,, a,=4+d;d,, az=2(d;+dy), a,=3.
=C,=C3=C andm;=m,=m. Such a model is described by the (34)
system(2) with The discriminant of the polynomidB3) is defined as
d, 0 2 -1 4
°“lo o) *Tlo1 2 (28) o=TT (=22 (35)

1>]
where where\;, \;j are the roots of the polynomiéinultiple roots being
counted as equal with different indige©n the other hand, the
d=———, i=12. (29) discriminants can be expressed by the coefficients of the polyno-
Jme mial (33), as follows(see, for example, Korn and Koft3)):
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4 s, s, S3 (25) is not as simple a&6), since it requires the calculation of the
maximal natural frequency which is not entirely trivial, but the
S—de S1 %2 Sz %4 (36) check of (25) is much easier than solving the spectrum of the
S, S3 S; S5’ entire damped system. On the other hand, in contrast to the eigen-
value analysis, conditio(25) yields inequalities amongst the vari-

S3 S+ S5 Se ous damping parameters, and these inequalities can be used to

with design a system or to adjust the damping constants in order to
_ \ eliminate oscillation of the system. This was illustrated in Section
S1= 78 4. Moreover, a procedure to determine the nature of eigenvalues
szzaf—Zaz of two-degree-of-freedom system, as an alternative to the Beskos
s3=—aj+3a,a,—3a; and Boley’s approach, was presented based on Theorem 3 and on
s4=a‘l‘—4a§a2+4ala3+2a§—4a4 . @7 the discriminant of the characteristic polynomial. This leads to a

5 3 5 2 complete two-parameter analysis, with the regions of weak,

Ss=—a5+5aja,— 5aja;—5a,a5+ 5aa;+a,a, mixed, and heavy damping of the system shown in Fig. 1. Figure

se=a3—6aja,+6aja;+9aja;—12a,a,a, 2 illustrates the accomplished accuracy obtained by using
—2a3a,—2a3+3a3+6a,a, Theorem 1.

From (36), (37), and(34) we see that depends on the parametersReferences

d; andd,. Since this expression is quite lengthy, it is omitted [1] Inman, D. J., 1989Vibration With Control, Measurement, and Stability
here. Prentice-Hall, Englewood Cliffs, NJ.

It is evident from(35) that =0 if (33) has multiple root;5<0 [2] Dfuffin, R. f 19&;5, “A Min(ijmax ;I'heory for Overdamped Networks,” Journal
; ot ; of Rational Mechanics and Analysié, pp. 221-233.
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H i _ pp. 927-930.
weakly dampedheavily dampeylif 5>0. An answer can be es [5] Barkwell, L., and Lancaster, P., 1992, “Overdamped and Gyroscopic Vibrating

tablished by Theorem 2. According to this theorem;Sf(df Systems,” ASME J. Appl. Mech59, pp. 176—181.
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. . [13] Korn, G. A., and Korn, T. M., 1961Mathematical Handbook for Scientists
The equations(d,,d,)=0 results in two curvesC; and C,, and EngineersMcGraw-Hill, New York.

which have been depicted by MATLAB, see Fig. 2. Cui@e¢
separates the weak damping regiBq(6>0,d5+d3<8) from
the mixed damping regioR, (6<0). CurveC,, which has the

totesl, = dd,= 8, tes th idy, fi th . . .
by fafnp}ngﬁgigﬁj(5fo,dsgef3%ie§). eregdR rom e o viscoelastic Compliant Contact-

Figure 2 shows that the regid®y contains regiomRy, predicted |mpact Models
by Theorem 1. Boundaries of these regions coincidb atd, and

the boundary oRy; slightly departs fronC,, more so asl; and
d, increase. Thus, for this example the conditidy) gives a T. M. Atanackovic
good result. rofessor
Finally, we note that another approach available to produce the
critical damping curve€; andC, is given in Beskos and Boley .
[7] for a slightly different two-degree-of-freedom system. Theip' T. Spasic
approach is based on a closed-form solution of the cubic polynBrofessor
mial which is obtained by differentiating the characteristic equaepartment of Mechanics, University of Novi Sad, POB

tion with respect to\. 55, 21121 Novi Sad, Yugoslavia

4 Concluding Remarks

We were interested in providing simple heavy damping criterd/e study dynamics of a mass, moving on a straight line, and
for multidimensional linear viscously damped systems with posimpacting against the rigid wall through a deformable body, that
tive definite damping and stiffness matrices. Our primary intentiome model as a straight rod of negligible mass. The chosen consti-
was to avoid spectraleigenvalug analysis of the full, original tutive model of the viscoelastic body comprises fractional deriva-
damped system. Several results were derived. Theorem 1 provitless of stress and strain and the restrictions on the coefficients
sufficient condition for heavy damping, while Theorem 2 statebat follow from Clausius Duhem inequality. We show that the
necessary and sufficient condition when the damping is classiadynamics of the problem is governed by a single differential equa-
Theorem 3 is a necessary condition. Both conditid (or (25)) tion of real order. The obtained equation was solved numerically.
and (23) (or (26)) are presented in the form of the positive defiThe comparison is made to the solution obtained by the Laplace
niteness of certain combination of the system matrices. Condititnansform and Post’s inversion formula. The predictions of the
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model concerning the duration of the impact, maximal values shown. Both models were used to study impadi3h Note, how-
the impacting force and deformation as well as the restitutioaever, that there exists a fundamental restriction on the coefficients
coefficient are determined for several values of system param-(2) that follows from the second law of thermodynamics,

eters. E>0, 7>0, 7> ®

[DOI: 10.1115/1.1629106
as proposed if6] and[14]. Although the Kelvin-Voigt modetr;
. =0 does not satisfy the restrictiof) it could be used for certain
1 Introduction materials, and certain types of deformations, E&e Also note
The impact of solid bodies is a complicated phenomena afiegt there will be no damping if,= 7 in (2), see[8].
could be studied by several different approaches. If impactingAs in [3], we consider that the body is separated when the
bodies are taken to be deformable then one has an advantagéasttact force is equal to zero. It will be shown that this occurs
being able to determine the impacting time, maximal deflectiofgfore the deformation is recovered.
and impacting forces, sdé]. Special feature of viscoelastic im- Introducing the dimensionless coordinate, force and time
pacting body is that there exist hysteresis-like behavior in force
displacement diagram. Such a behavior was explained either by X E P f T=t \E )
nonlinear modeld,2], or by use of the standard linear viscoelastic vg YM' voVmE’ m’
model, as done recently by Butcher and SegalfB&ms a matter . . A
of fact, in[3] besides the standard, the Kelvin-Voigt and MaxwelfS well as the dimensionless relaxation times
models of a viscoelastic body impacting against rigid obstacle . E E
were analyzed. =T \/% Ty = Ty \/; (5)
Our intention in this note is to use generalized model of a
viscoelastic body that contains fractional derivatives of stress afidm (1) and(2) we get the equations describing the impact of the
strain for the study of impact. This model of a viscoelastic bodgystem presented in Fig(H):
with fractional derivativegsee[4,5]) was studied if6-12), to 2 _ Y _
mention just a few. We believe that generalized model of vis- x#=—f, x(0)=0, x(0)=1, f(0)=0, ©)
coelastic body used here is capable of describing impact in a mewed
accurate way while still remaining in linear theof¢.3]. Another ft e f Doy o x(D 7
feature of our approach is a consequent use of the restrictions on i AT X '
the coefficients of the model that follow from the Clausius Duhemwhere we have omitted the bar, and where the derivatives are
inequality,[14]. The proposed model could be used for the studken with respect to dimensionless time.[8] the system(6),
of polymers elastomers and other systefi$). (7), was solved forr,=0.2; 7:=0.01, 0.04 and 0.08. As we see
the conditionr,> 7; was satisfied if3], although it was not ex-
plicitly stated.
2 The Models To solve(6), (7) we use the Laplace transform technique. In-
Consider a massn moving on a straight line with constanttroducing X=X(s)=L{x(t)}=[oe S%(t)dt and F=F(s)
velocity vy and impacting against the rigid wdlinfinite mass, = £{f(t)}=[Ze St (t)dt, from (6), (7) we get
through a deformable body, that we model as a straight rod of
negligible mass. We useto measure uniaxial deformation of that E 1+ TxSX g
deformable body. This deformation is assumed to be isothermal. T l+msTY ®)
Let f be the force between the body and the walhis force acts

also on a masm so that its equation of motion reads and
mx?=—f, x(0)=0, xV(0)=v,, f(0)=0, (1) v 1+7s Fo 1+7s ©)
3 2 ’ 3 2 :
where we used-()®=d¥(-)/dt* to denote théth derivative with TS+ s+l TS ST ns+l

respect to time. The relation betweeh= f(t) andx=x(t) (con- An initial remark is that since lig1, o sX(s) =0 than certainly if
stitutive equation of the deformable bgdyay be taken in differ- lim,_ ., x(t) exists it tends to zer¢as an expected consequence of
ent forms. In order to motivate the approach to be followed atteniscosity). Second, the inverse transform @) yields the follow-

tion is first focused on standard linear viscoelastic solid. ing relation between the force and the coordinate
2.1 Standard Linear Viscoelastic Solid: Zener Model. In Tx 7| (¢ gl
this case we have f(h=—x(+—|1-—] | e X(€)dé (10)
Tt Tf 7t/ Jo
f+ 7 fOU=E(x+ 7,-x), 2

which could be used if one wants to rewrite the impact meégl
wherer; andr, are the constants called relaxation times &rid (7) in the compact form of single integro-differential equation.
the modulus of elasticity. Note that [18], Eq. (2) was written in  Finally, with the help of standard software packages it is fairly
slightly different form (our constantsE, 7¢ and r, are given as Straightforward to obtain the solutior(t), f(t) in the closed
E:mwﬁ, n=20w, and 7=2{plw, where w, form. Namely, the inverse Laplace transform(éf for r;=0.01

= KK Fk)m), n=k,/(k;+k,) and ¢=k,c/(2(k, andr=0.2gives

+ko)mw,) are introduced irf3]). A special case of2) with 7y (t)=0.0002 2484+ e~ °8(1.006 sirt — 0.0003 cos),
=0 represents the so-called Kelvin-Voigt model of a viscoelastic ) (11)
body. Therheologicalmodel corresponding to Kelvin-Voigt body f(t)=—0.162 2*#+e %%%(sint+0.162 cog).

is given in Fig. 1a). In Fig. 1(b) the rheological model corre- o the |ater uséwhen the inverse Laplace transform fails to
sponding to standard linear viscoelastic solid, describet®hyis proceed to a closed fomnit is important to note that botk(t) and

- f(t) could be obtained by use of Post’s inversion formula,[46¢
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF p. 380, i.e

MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- ’ T

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 30, n\n+l n

2001; final revision, July 7, 2003. Associate Editor: K. R. Rajagopal. (—1)" = XM —
The forcef used here is given d@s=Ao whereA is the cross-sectional area and . t

o is the stress. We assume that the cross sectional area remains the same during the x(t)= lim

deformation. n—oo

n!
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Fig. 1 Systems under considerations

n+1
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f(t)= lim -

n—oo

(12)

Although Post’'s formula, discovered in 19307], may be re-
garded as an analytical result, very useful for applications, d

culties essentially technical in nature prevented its usage in pr

tical problems. However, nowadays tmth derivatives of(9)

needed for the right-hand sides @?2) could be easily calculated

by use of standard software packages.

meaning they have in standard models.(113) we assume that
E>O0, 7¢,>0, 7> 77, are satisfied and thus represent a thermo-
dynamically well-behaved model.
Introducing the dimensionless quantities
( E E) al2
and using4) we transform(13) into the following form(the bar is
omitted:

al2
_) v Tfa™ Tfa(_

m m (15)

Txa: TXa

f+7-fa'f(a):x+7xa'x(a)v (16)

and find that the impact of the fractional standard linear solid is
modeled by Eqs6) and(16). Note that this model, belongs to the
class of continuous dynamics models of collision, i.e., collision
dynamics is treated as a continuous time dynamics phenomena
restricted to local deformatior{gibration effects of the solid body
are not taken into accountCompared tq7) in expression(16)
the customary time derivatives of integer order are replaced by
derivatives of real orded with 0<«<1. The justification for such
models has resided in the fact that they are effective in describing
the behavior of some real materials. Actually the study of consid-
ered fractional standard linear solid models possess an essential
mathematical interest too.

Our main results concern the solution (6§, (16).

2.2.1 Numerical Solution. In order to compute the solution
for the case of generalized constitutive equation we apply argu-
ments presented in the book of Podlubf8], p. 223. First, we
eliminate f and remove the nonhomogeneous initial condition
(6)3. Namely, by introducing the variable

z(t) =x(t)—t, (17)

and using basic properties of the Riemann-Liouville fractional dif-
nﬁerentiation, instead o), (16), we obtain the following differen-

al-(E:i| equation of real order

With this preparation completed we turn now to a discussion #fith homogeneous boundary conditions

the more general compliant contact impact model.

2.2 Fractional Standard Linear Viscoelastic Solid: Modi-
fied Zener Model. Once again we start witll) but instead of
(2) here we deal with the model incorporating fractional damp

elements, Fig. (),
f4 7, FO=E(X+ 7y, XY, (13)

with 0<a<1 and where ()(*) denotes thenth derivative of a
function (-) taken in Riemann-Liouville form as

& y=ge=3 1 ftg(g)df
g g CdtT(1-a) o(t—§)"

dt*
d 1 [(tgt-§d¢
Tdtl(1-a) L £

1 J"g(l)(t—f)df
(1-a) J, g

th

_got®

“T(-a) T
o a
= — gMm
2, n)r<n+1fa)9 .
where I" denotes the Euler gamma function. Also (i), the
binomial coefficients are®)=(—1)""tal'(n—a)/T(1—a)T'(n
+1)=(-1)"(—a),/n! and U),=u(u+1)...WuU+n-1), n
=1,2,...,)o=1. The dimension of the constantg, andr;,, is

(14)

[time]*. Note that these constants no longer have the physical
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Twal(2)

(2+a) 4 5(2) ()= _p_ X 7 il-a
TiaZ +2'94 2+ 7,2 F(2—a)t . (18)
zZ¥(0)=0, k=0,1,2. (19)

Using the first-order approximation of probleifi8), (19
we derive the following algorithm for obtaining the numerical
. solution,[18]:

ing
z,=0, z,=0, z,=0, (20)
1
Z =
" 1+h 241 h %+ h 2
22y 1= Zn-p  TxaZ]219),0Zm-
h? h®
m 1-a
_ 7-fa/Ej:1‘0],2-%-01Zm—j . TXar(z)(mh)
hZ+e r2—a) |’
m=34, ... (21)

whereh is time step and where the coefficienis,., k=a, 2+a,
are calculated by the recurrence relationships=1; o; = (1
—(k+1)j)oj-1,, j=123.... Noting that z,=z(t,)
=z(mh) from (17) we obtain
X(tym)=mh+z,. (22)

Finally, by use of second-order backward differences f(6jnwve
find

(Zm_ 22m71+ foz)
_ 2

f(tm)= (23)
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Table 1 Impact materials for specific materials 1 T T T
Material Description Impact Description z L
a=1 T=2962  OA[" e
fmax(1.289)=0.887 G,
7:=0.01 x=0.144 )
Xmax(1.480)=0.869 , P R
7,=0.2 xV=_0756 96
a=1 T=2.981
f max(1.330)=0.907 3 Ny =
7:=0.04 x=0.126 o - i
Xmax(1.490)= 0.890 :
7,=0.2 xN=_-0.792
a=1 T=3.013
fmax(1.388)=0.933 o2k ]
71=0.08 x=0.100
Xma(1.507)=0.918 ©
7=0.2 xWM=-0.842 ‘ ‘ ‘ 1 |
a=0.95 T=2.945 0
frax{(1.289)=0.899 Q 0.5 1 1.5 2 25 t 3
T1o=0.01 x=0.144
Xmax(1.475)=0.870 Fig. 2 Curves x(t) for standard linear solid a=1, 7,=0.04, 7,
Tya=0.2 xN=—-0762 =0.2, (dotted), fractional standard solid with =049, 7;,=5
a=0.95 T=3.141 X10—8, 7,,=0.886, (solid line ) and for a=0.23, 7;,=0.004,
fmad1.570)=0.999 Tya=1.183, (dashed)
Ta=0.01 x=0
Xmad1.571)=0.998
Tyo=0.011 xM=-0.997
a=0.49 T=2.151
s fmas(0.832)=1.140 _ equation as a compliant contact impact model could be obtained
Tro=5X 10 x=0.232 ) r
Xoan(1.110)=0.642 eas!ly from(6). Note also tha_(26) g_enerallzeilo) as expected.
7., =0.886 ma D= _ 0596 Finally we apply Post's inversion formula. This procedure
a=0.23 T=2.025 could be used for error estimation of the numerical solution. Also
fnax(0.910)=1.356 by using (12) with X and F given by (25 we could obtain an
Tto=0.004 X (1.034)=0.632 x=0.135  apalytical approximation for the solutior(t) andf(t).
_ max= : 1 In the next section we illustrate all the results of above.
Txo=1.183 xM=-0.771

, . ) 3 The Predictions
The described numerical method was experimentally verified

on a number of test problems by comparingwhen it was pos- _ !N Table 1 we present the duration of impdttdetermined by
sible) with analytical solutions, seL8]. In the case of Eq(18), the conditionf(T)=0 as proposed i8], maximal values ok and

and therefore Eqs(22), (23), the concept of Post's formula al-f for several values of dimensionless relaxation times in case of
though less accurate for smallcould be very useful. standard lineatviscoelasti¢ solids and for several values of con-

stantsa, 77, , andr,, (see(4) and(5) for definitiong. The values
2.2.2 The Laplace Transform and Posts Inversion Formulaf dimensionless time corresponding to these maximums are
Applied to (6), (16). Using the standard procedure together withjiven in parenthesis. The valugsand x® at T (x®(T) deter-
the standard expression for the Laplace transforrg(®¥, given mines the restitution coefficienare also presented.
as L{gW}=s*G—[([}g(&)dé/(t— &)%) =0, Where L{g(t)} The numerical values of constantsc8<1, 7, and r,, were
=G=G(s) and where the term in brackets vanishes if lign taken from the paper of Fenander where the railpad models were
+g(t) is boundedsee[4]), from (6), (16) we find that investigated|8].
For =1 we apply the inverse Laplace transform (8. For
a<1 we apply numerical procedu(2l) and then22), (23). In all
the calculations the time step whs=10"3.
In Fig. 2 we present some solutiorét). The values obtained
and by applying Post’s inversion formulél2) to (9) for a=1,
147 g 14 rous® =0.04 andr,=0.2 are also presentedquares in Fig. 2 The
X = fa F= x ) difference between the exact soluti¢hl) and the solution ob-
TraS2 T+ 82+ 7y, 89+ 1 TSP O+ 8%+ 1,89+ 1 tained by Post’s formula fon=70, is less than %10 2. Also,
(25) the values calculated by Post’s formuB2) applied to(25) for

As before, since lim_, sX—0 we conclude that the motion will @=0-23, 71,=0.004, 7,,=1.183 forn=40 are also marked by
vanish as expected. Also note that the model incorporating fradfcles in Fig. 2. In this case the dlﬁerencefzbetween the numerical
tional damping element@5) does not admit closed form solution. Solution and these values are less thanl® “. In both cases the

As the matter of fact the inversion ¢24) yields the following derivatives were calculated with the help of SciworkPI&Tel
relation betweerf(t) andx(t) Software Researgtand Mathematic@\Volfram Research, Ing.It

is worth noting that modern computers allow largeand thus

1+ 7y,8”
F= X x

= 24
l+7'faS“ ( )

Txa Txa| [ 1 more accuracy.
f(t)= EX(tH m(l_ m) foewa(t_f'a) x(£)dé, Finally the hysteresis diagrams corresponding to the solutions
(26) presented in Fig. 2 are shown in Fig. 3.

] ) Note that when compared to standard linear viscoelastic solid
wheree, g(t;\) stands for the generalized Mittag-Leffler functhe solid described by fractional derivatives exhibits shorter dura-
tion, that is e, z(t;N\)=E, z(—\t*)/t*"# with E,4(t) tion of impact, smaller maximal deformation and larger maximal
=37_ot"'T'(an+B). The -corresponding integro-differentialforce.
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describing material Also when 7,— 7 there is no damping as ilc evski, N. A., 1976,Dynamic Contact of Solid Bodigblaukova Dumka,

expected, i.e., velocity after the rebound is almost of the same Kiev.

intensity as before the impact. In such a case the presented values

of T andx,,,, could be compared with the case of nonlinear spring

as presented iMm9]. Namely, in[19] the impact is modeled by the o ] o

equation Surface Instability of a Semi-Infinite
x®=—px¥2  x(0)=0, xP(0)=L1. @7 Elastic Body Under Surface

For example, if the we takp=1 we obtainT=3.218,x(T) van der Waals Forces

=—1 andx»=1.093. However, it should be noted that in tack-
ling the compliant impact problem by use of nonlinear elastic
spring one methodological anomaly is encountered. Namely, if ti@. Q. Ru
bod_y is released f_rom_ rest in a vertical plane _and _im_pinges thfepartment of Mechanical Engineering, University of
Egglgodnutgltzu(;f;rtr:]%ilrtlg\;\./lll bounce forever. In reality this is not thPAIber_ta, Edmonton, AL T6G 2G8, Canada

Our final remark concerns the thermodynamical restriction§-Mail: c.ru@ualberta.ca
Violating them could pose severe problems. Roughly speaking
putting 7¢,> 7y, Will lead to the rebound velocity which is higher
then the approaching velocity, i.dx"(T)|>x®(0)=1. In the It is shown that the surface of a semi-infinite linear elastic body
former example if the body falls a distanbet will bounce to the attracted by a rigid flat through van der Waals-like forces is al-

distances higher thelmand bounce forever as well. ways unstable. The wavelength of the surface wrinkling is finite
and decreases with the van der Waals interaction coefficient. In
5 Conclusions particular, this result implies that the deformation field of the

In this paper we have analyzed the elastic compliant cont mi-infinite linear elastic body attracted by a rigid flat cannot be

impact model with fractional derivative type of dissipation. Therdetermined uniquely.[DOI: 10.1115/1.1636791

modynamical restrictions on constitutive equations are taken into

account. We show that the dynamics of the problem is governed

by a single differential equation of real order. The obtained equgstroduction

tion was solved numerically. The comparison is made to the solu- ]

tion obtained by the Laplace transform and Post's inversion for- Intermolecular and surface forcdd], have a crucial effect on
mula. The predictions of the model concerning the duration of theechanical behavior of deformable bodies at micro/nanoscale.
impact, maximal values of the impacting force and deformation &1 well-known example is the contact mechanics of elastic bod-

well as the restitution coefficient are determined for several valul@$ in the presence of van der Waals-like interactj@n, Despite
of system parameters. extensive research, however, it appears that surface instability of

elastic bodies under van der Waals-like attractive forces has not
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been widely recognized. Very recently, surface instability of sions (1) is valid not only for van der Waals interaction, but also
compliant rubber-like elastic layer attracted by a rigid flat ha®r electrostatic interaction between two oppositely charged solid
been studied ifi3,4]. This new type of surface instability is elasticbodies,[9].
in nature and does not rely on the existence of a surface compresthe perturbed stresses and displacements have to meet the
sive prestress. Therefore, it is essentially different from othequations of plane elastostatics. Thus, in the upper half-plkane (
known surface instability due to surface compressive stress(), the perturbed stresses and displacemaenis)(can be given
[5-7], negative surface modulugg], or surface diffusion[8]. in terms of a single complex potenti@d(z) (see, e.g.[10], pp.

The analysis given ifi3,4] has been restricted to surface insta52—54 as follows:
bility of a thin elastic film bonded on a rigid substrate, although

the thickness of interacting deformable bodies is often large com- 2u(utiv)=kQ(2)+Q(2)+(z—-2)Q'(2),
pared to their other characteristic sizesich as the gap width -
between the interacting bodies, the wavelength, and even the size oyt oy=2[Q"(2)+Q'(2)], 2

of the interacting zone For an elastic film on a rigid substrate, it ) ) L= —_— )
is found,[3,4], that the wavelength of the surface instability modedyy—i0x,=Q'(2) = Q' (2) +(z=2)Q"(2), z=x+iy, y=0
is proportional to the thickness of the elastic film. Obviously, thiv':V

result cannot be directly applied to a semi-infinite elastic body tﬁlhereﬂ(z) Is an analytic function defined in the upper and lower

e — . . If-planes, respectivelyc=(3—4v) for plane strain and=(3
treating it as a limit case of an elastic layer, because it WOUL?V)/(1+ 1) for plane stress, ang and » are the shear modulus

pred.lc.t ffar.]t |nf||n|t(§. wg\vslengthldandtthus sulrtchethwrln.kllngf (t)l’fl 4nd Poisson’s ratio of the elastic half-plane. Since admissible per-
semi-infinité elastic body would not occur. 1t 1S the aim of g, hations must meet zero boundary conditions, all perturbed dis-

note to analyze surface instability of a semi-infinite elastic bod jacements and stresses must vanish whimds to infinity, and

Here, we shall confine ourselves to plane strain and thus consider O : s
R - z) and i rivativ roach zero wh n
an elastic half-plane attracted by a rigid flat through van d%fir?ity( ) and its derivatives approach zero whgrtends to
Waals-like interaction, as depicted in Fig. 1. Let us now examine the existence of a nonzero perturbation. It
follows from (2) that the second surface condition (@) gives

Surface Instability [Q'()+Q' (0] =[Q'(x)+Q'(x)]", y=0.

When the rigid flat is brought into contact with the elastic halfBecause)(z) approaches zero whertends to infinity, the above
plane, van der Waals forces come into play if the gap width beondition implies[10],
tween the two surfaces is, say, below 100 fip3]. For instance, _
a simple general expression for the van der Waals attraction be- O (z2)+Qz)=0 3)

tween two flat surfaces, as function of the distance, can be found h . | h h d LHS is th
in [3]. Thus, the present problem, depicted in Fig. 1, admits a tot3| (N€ entirez-plane, where the second term on LHS is the sym-
potential energy, just likd3,4], and is a conservative System_metrlc continuation of()(z) defined in the opposite half-plane

Hence, surface instability of the elastic half-plane can be studi@@thdr_‘?Specft to the real a;)xis. On usi(® and(3), the first surface
by the conventional method of examining the existence of nofiondition of (1) is given by

;rivial (_Jleformation state in _the neighborhood of the uniform de- 4iu[Q (-0 " (X)]
ormation state of the elastic half-plane.

Therefore, surface instability is defined by the existence of a =—BlcQ2)+ Q)]+ B[ «Q(2)+Q(2)]"
nontrivial infinitesimal perturbation which satisfies all linearized _ _
governing equations and zero boundary conditions. Since the van —Y[«Q"(2)+Q"(2)]" - [«Q"(2)+Q"(2)]"]

der Waals attractive forces only cause a surface normal stress on N B
the elastic half-plane, and the value of the surface normal stress at =B+ DIQT)+Q ()] y(xk+1)
any point can be assumed_ to l_Je a function of the distance between X[ () +Q""(x)], y=0

the two surface at that point, it follows that the perturbed surface

shear stress,, vanishes, and the perturbed surface normal stresfich leads to

ayy depends linearly on the perturbed surface normal displace- . , Y N
ment,v, of the elastic half-plane. Thus the surface conditions for [4ipnQ' (X)+ B(k+1)Q(X)+ (k+1)yQ"(X)]

the perturbed elastic half-plane can be written as =[=(k+1)BAX) — (k+1)yQ"(X)+4i uQ' (X)]”
Oyy= = BU— YU xx» nyzox y:O+ (1) y=0. 4)

where the interaction coefficierg is determined by the second
derivative of the van der Waals interaction energy at the equili
rium distance between two flat surfaces, atic-0) is the surface
energy of the elastic half-plane. In particular, the coefficignt
depends on the equilibrium distance between two flat surface
prior to surface instability, and is not equal to the Hamaker cotf
stant of the van der Waals la\l,3]. Here, because the van der ; / " _ .

Waals attractive force at any point is a decreasing function of the [41uQ(2)+ B+ DO+ (et 1)y () ]=0, y>0’(5)
distance at that point, the perturbed surface normal strgsat a [—B(k+1)Q(2)+4inQ' (z)— (k+1)yQ"(x)]=0, y<O0.

point is tensile(or compressiveif the perturbed surface normal _ _ _ o
displacement at that point is negativéor positive, see Fig. 1. Thus,{)(Z) can be determined by the two differential equations in
This explains the sign “” for the coefficient 8. Therefore, the the upper and lower half-planes, respectively. It can be verified
van der Waals interaction on the perturbed surface acts liketh&t @ nonzero solutiofd(z) which approaches zero whertends
uniform distributed linear spring with negative spring constant9 infinity exists if and only if3>0. Whenp>0, we have
and becomes a driving force for surface instability. Based on this Q(2)=Aexfirz] -0

fact, it is anticipated that the surfaces of the elastic half-plane o Yo
WOl_JId become u_nstable when tht_e _van_der V\_/a_als attractive inter- Q(2)=Bexg—irz], y<O
action, characterized by the coefficigBitis sufficiently strong. It

is stressed that the present analysis based on the surface condh

5|_ere, LHS of(4) can be understood as the boundary value of an
analytic function in the upper half-plane, while RHS as the bound-
ary value of another analytic function in the lower half-plane.
caus€(z) and its derivatives approach zero whetends to
nity, it follows from (4) that

©)

Journal of Applied Mechanics JANUARY 2004, Vol. 71 / 139



y. v

elastic half-plane (E, v)
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Fig. 1 Surface instability of an elastic half-plane under surface
van der Waals forces

\ —2u+ \/4ILL2+ By(k+ 1)?

y(k+1)

(@)

where the positive sign+" has been chosen becausamust be
positive. Further, in view of3), one finds

B=—A ®)
whereA=a+ib, anda andb are two arbitrary real numbers.

Discussions

In contrast to surface instability of an elastic film on a rigi

substrate[3,4], or the so-called “tip-surface” instability[11],

which occurs only when the interaction exceeds a certain criti
value, the above results indicate that surface instability of an el
tic half-plane occurs whenev@>0. In particular, this means that

2n/) (pm)

140//

1201

B=10“

1001

80F
3x10!

50-/’_//—/
5x10"

oo gxio
20;,//_,:——_,—,___/‘//—__’1012 J/m*
20 40 60 30 100

y (0.1 J/m*)

Fig. 2 The dependence of the wavelength of surface wrinkling
on the interaction coefficient B and the surface energy vy (when
p=1 MPa, v=1/2)

When vy or B8 is much larger than the above material constants,
the dependence of the wavelength, definedZay/\) through(7),
on bothp andy is shown in Fig. Awhereu=1 MPa, v=1/2) for
B=10", 3x 10, 5x 10, 8x 10, and 16%J/nf, respectively.
It is seen from Fig. 2 that the wavelength of surface wrinkling is
ery sensitive to the interaction coefficie@t but not to the sur-
ace energyy. In particular, the wavelength of surface wrinkling

C%?creases when the interaction coefficighincreases. Because

irface wrinkling becomes significant usually only when the
wavelength is sufficiently small, the surface instability studied

the deformation field of the elastic half-plane cannot be detd}€"® Would become significant only when the interaction coeffi-
mined uniquely. The perturbed surface displacements causedG§nt B is sufficiently large. It would happen usually only when

the surface instability are given by

2uu=(xk—1)[acosAx—b sin\x],

9)

2uv=(x+1)[bcosax+asin\x]

thé distance between two interacting bodies downs to the
nanoscale.

Finally, the present results are based on a simple linearized
analysis of nontrivial infinitesimal perturbations, without consult-
ing the total potential energy of the system. For instance, we have
not compared the total potential energy between the uniform state
and the perturbed nonuniform state. Indeed, detailed analysis of
post-bifurcation based on total potential energy of the system

wherea and b are two arbitrary real numbers. The ratio of thgq,1d be an interesting subject for future work.
magnitude of the surface normal displacement to the magnitude of

the surface tangential displacementis-1)/(k—1), and thus the

surface tangential displacement vanishes in plane strain when

v=1/2.
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Nonlinear E|asticity for Mode"ng the strain softening takes platsee the survey article by de Borst

f . . [6]). An interesting hyperelastic softening model based on the

Fracture of Isotropic Brittle Solids microstructural concept of the virtual internal bond has been pro-
posed recently by Gao and KlejB].

The computational efficiency of both volumetric and surface

K. Y. Volokh fracture models can suffer from two general problems. The first
Faculty of Civil and Environmental Engineering, problem is mesh sensitivity. It takes place when the deformed
Technion, Haifa 32000, Israel finite element model reaches a critical point, which is a limit and

multiple bifurcation point. This happens when a number of finite
elements in various areas of the structure reach the cohesive
) ) . ) strength simultaneously. The multiplicity of the bifurcation point
A softening hyperelastic continuum model is proposed for analygjsq, consequently, the sensitivity of computations increase with
of brittle fracture. Isotropic material is characterized by two stanhe refinement of the mesh. The mesh refinement can be limited
dard parameters—shear and bulk modulus—and an additiong), jntroducing the characteristic length like in Bazant and Planas
parameter of the volumetr_lc separat_lon_work. The model can l'{)g] or Gao and J{10]. This will provide the upper bound for the
considered as a volumetric generalization of the concept of g rcation multiplicity. It does not resolve the problem of the
cohesive surface. The meaning of the proposed constitutiy@,rcation multiplicity as a whole, however. A more radical way
equations is clarified by the examples of simple shear and hydﬁﬁ‘circumventing the mesh sensitivity issue is the introduction of
static pressure. It is emphasized that_ the proposed constitutiy® second displacement gradients and conjugate higher order
model includes only smooth functions and the necessaf)esse¢de Borst and van der Giessgti] and Hutchinsof12]).
computational techniques are those of nonlinear elasticitypig augmented initial boundary value problem can avoid the
[DOI: 10.1115/1.1636795 troubling critical point of the finite element model at all. The price
for that is high because the enhanced model requires the addi-
tional boundary conditions which are not readily interpreted in
1 Introduction simple physical terms.
he bifurcation multiplicity and the related mesh sensitivity are

The idea to describe fracture as a material separation across . - . o .
! iNherent inany softening material model for specificloading of
surface was pioneered by Barenbfag. It appears by name of the the considered structure. Another computational problem of the

cohesive zone mod€CZM) in the modern literature. The cohe- . I . ; .
sive zone is a surface in a bulk material where displacement eparation constitutive models is more universal. It is related to

continuities occur. Thus, continuum is enhanced with discontinw-e?tg;e_ﬁifd'g:glﬁ'gﬁ;&gﬁ?g o(ijrzlitrsnalgkz ?r: Eéﬁgcggnggiiﬁsélzg?
ties. The latter requires an additional constitutive descriptio e models of debonding. These undesirable features significantly

Equations relating normal and tangential displacement jum o : S ;
across the cohesive surfaces with the proper tractions defin% Or:lts;::i?tssgl:mencal procedures and require informal experience

specific CZM. There is a plenty of proposals of the “cohesive We aim at formulating a volumetric material failure model,

constitutive equationgfor example, Barenbaltfl], Rice and S ; X .
Wang[2], Tvergaard and HutchinsdB], and Xu and Needleman which is both analytically and computationally simpler than the
existing fracture models. For this purpose a nonlinear softening

Efe]gzltigrlll stif:ﬁ:srg a?eOdrilz:cﬁrae rﬁgﬂﬁrﬂrﬁegnﬂl{ﬂgtfgve'?ogfhf;!?gv I;‘i)erelastic continuum model is considered. Isotropic material is
! ! PP characterized by two standard parameters—shear and bulk

increasing separation. This scenario is in harmony with our imullﬁodulus—and an additional parameter of thumetric separa-

tive understanding of the rupture process. It is qualitatively analg- - . !
gous to atomic interactions. Hlon work This model can be considered as a volumetric gener-

Needlemar(s] lfed the cohesive zone models to compurag (% 30 T TR, 7 e Fo e e amples of
tional practice. Since then CZMs are used increasingly in finite prop g . y : p

X ; . e ) . simple shear and hydrostatic pressure. It is emphasized that the
element simulations of crack-tip plasticity and creep; crazing i roposed constitutive model includes only smooth functions and
polymers; adhesively bonded joints; interface cracks in bimateﬁi P y

als; delamination in composites and multilayers; fast crack prop _:Stril;;:essary computational techniques are those of nonlinear

gation in polymers, etc. Cohesive zones can be inside finite ele- Y-

ments or along their boundariéde Borst[6], Xu and Needleman o )

[4], and Belytschko et al[7]). Crack nucleation, propagation,2 Constitutive Equations

branching, kinking, and arrest are a natural outcome of the com-e set the strain energy per unit volume in the form

putations where the discontinuity surfaces are spread over the

bulk material. This is in contrast to the traditional approach of K K G

fracture mechanics where stress analysis is separated from a de- W=&-0{1+3 \/%8>9Xp[ ’3\/;8’ 68”8”-],

scription of the actual process of material failure. (2.1)
The CZM approach is natural for simulation of fracture at the . o i,

material interface in composites and multilayers. It is less natut§[1€re the standard volumetric/deviatoric decomposition of the

for modeling fracture of the bulk material because it leads to tfr&in tensor is used,

simultaneous use of two material models for the same real mate- e=¢e,/3, (2.2)
rial. One model describes the bulk material, while the other model
describes the cohesive zones imbedded in the bulk material. Such &j=¢&jj—&djj. (2.3)

two-model approach is rather artificial physically. It seems pre&oefﬁcientsK and G are the usual bulk and shear modulus re-

erable to incorporate a material failure law directly in the constie,q tiyely, whiled is a new constant of the isotropic brittle solid.
tutive description of the bulk material. Such volumetric models his is thevolumetric separation workts dimension is work per

the material failure via strain localization are usually based it volume. i.e.. it is the same as the dimensiorKoénd G and

inelastic constitutive equations, including damage theories, wh%(-‘é dimensi'on c;f stress. It is worth emphasizing that the intro-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF duced vol_u_metrlc Separf’mon work IS- different from the separation

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- work fraditionally used in the cohesive surface approach to frac-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octobefure. The dimenSioh of thellatter is work per u.nit area.
21, 2002; final revision, August 18, 2003. Associate Editor: H. Gao. For a hyperelastic material stresses are defined as follows:
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Fig. 1 Simple shear. Normalized traction  (vertical axis ) versus
shear deformation (horizontal axis ) as defined by Eq. (3.7).
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_(98” - ﬁemn (78”'

de (98”' ’

O'ij (24)

All entries on the right-hand side of this equation are readily com-

puted accounting for the strain energy expression:

IW oG 1 3\/R 3\/R G
[9emn— €mnl 1+ 68 eX 58 aeijeij ,
(2.5)
9€mn
&Sij :6mi6jn_6ij 6mn/3, (26)
IW \/R G
EZQKE exp, —3 58_ aeijeij y (27)
0 513 2.8
o 03 (2.8)

05 f \
\
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Fig. 2 Hydrostatic pressure. Normalized pressure (vertical
axis) versus volumetric deformation (horizontal axis ) as de-
fined by Eq. (4.3).

The local maximum of the curve is at point

Y= Nac

The corresponding absolute magnitude of the maximum traction is

Tmax= GPexp{—1/2}. (3.4)

Assume that for the given material the maximum traction is
known:

(3.3)

Tmax= G/100. (3.5)
Then we have
b= —G 3.6
T 10texp—1)° (3.6)

By using the volumetric/deviatoric decomposition of the stresSubstituting Eq(3.6) in Eg. (3.2) and normalizing the latter with

tensor,
(Tij:0'§ij+sij y (T:(Tkk/3, (29)
we have
IW \/R \/R G
si,:E:ZGe,j 1+3 ¢ exp —3 ae—aemnemn ,

(2.10)

JW K G
Uzﬁ::gKS ex _3 as_aemnemn . (211)

Linearized Eqs(2.10 and (2.11) present the classical Hooke'’s

law.

In order to justify and clarify the specific choice of the strain
energy we consider two limit cases in the following two sections.

3 Simple Shear

respect tor,,,x We obtain

T

=200y exp{—2-10* exp(— 1) ?}.

3.7)

Tmax

The graph of this function is shown in Fig. 1.

4 Hydrostatic Pressure

Assume that the deformation under a uniform hydrostatic pres-
sure is purely volumetric

O'ij:()'lsij , 8”285”. (41)
In this case the constitutive la{2.11) takes the form
K
o=3Ke exp[—S\/%s]. 4.2)

The shape of this curve appears in Fig. 2. Qualitatively, it can be

Assume that only the following strain and stress componernitierpreted as the linear increase of the magnitude of the tension

are nonzero:

T=S812=S1 , Y=T€1,=€y. (3.1)
In this case the constitutive lai2.10 takes the form
2G
=2Gyexp — Eyz ) (3.2)

pressure with the increase of the material volume at the point, it
reaches a maximum, and then approaches zero with increasing
separation. The latter is nothing but the void nucleation. For the
compression pressure the situation is different, however. There is
no separation!

Assume that the material is defined by E§.5 andK/G=2,
then Eq.(4.2) normalized with respect te,,,, takes the following

The shape of this curve appears in Fig. 1. Qualitatively, this meafr%)srm:

that the magnitude of the shear traction increases linearly with the o
shear strain, reaches a maximum, and then approaches zero with

=600 exp{ — 300y2 exp —1)&}.

Tmax

(4.3)

increasing separation. It does not matter what the sign of the trac-

tion is.
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The graph of this function is shown in Fig. 2.
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5 Conclusions Flutter of Rotating Shells With a

A novel constitutive model of an isotropic brittle solid has beeCo-rotating Axial Flow 1
proposed. The exponential hyperelastic constitutive law describes
this model. The material bulk modulus and the shear modulus are
completed with a new constant—the volumetric separation work. Cortelezzi
The proposed constitutive equations are cohesive, that is they
naturally allow for the material separation—strain localizatio =
These equations may be interpreted on the basis of the simplé
shear and hydrostatic pressure examples. The distortideaia- . .
toric) deformation at the given point exhibits behavior analogod¥l: P. Paidoussis
to the simple shear, which graph is shown in Fig. 1. The dilat&ellow ASME
tional (volumetrig deformation at the given point exhibits behav-

ior analogous to the hydrostatic pressure, which graph is shownfigpartment of Mechanical Engineering, McGill

Fig. 2. ; ;
Adding the momentum conservation laws and the prop(le‘#nlversny’ Montreal, QC H3A 2K6, Canada

boundary and initial conditions to the constitutive equations de-

scribed in Section 2 of our work, it is possible to set the initial

boundary value problem ofonlinear elasticity The latter means It is shown that, in certain regions of parameter space, travelling

that the standard and well established numerical procedures wave solutions in rotating shells containing co-rotating inviscid

available. When a brittle solid is loaded quasi-statically then ttkiid become indeterminate. This may render the determination of

crack nucleation means passing a limit point in the state spacetioé flutter speed impossible, or the solution nonphysical.

the discretized IBVP. Well-developed techniques of the arc-lengtBOl: 10.1115/1.1636794

continuation can be usdrisfield [13] and Riks[14]). The loss

of the positive definiteness of the tangent stiffness ma(ttve

Jacobian of the total discrete energyeans static instability. If ntroduction

the equilibrium path does not become stable again, then the (!iy-

namic crack propagation takes place and dynamic integration pro-The dynamics and stability of a shell containing fluid in

cedures should be use@elytschko et al.[15] and Xu and matchedsolid body rotation and also flowing axially was exam-

Needlemar[4]). It is worth emphasizing that only smooth func-ined by Lai and Chow1], inspired by fluid-structure interactions

tions are used in the constitutive equations. The latter allows fior “the thrust chamber and the pipelines in the liquid propellant

circumventing the problems of inequalities and vertex pointéged system of a spinning rocket.” In contrast to Srinivaga

which are typical of most separation models. Dowell et al.[3] and related studies which are connected to a real
system and need to face the complications attendant thereto, the
problem studied by Lai and Chow is very idealized. A closely
similar study was made by Chen and Bettin which the shell is

Acknowledgment stationary but the fluid is rotating as in the foregoing; thus, the

. . physical system is closer to engineering applications, but the use
This research was supported by the Fund for the Promotion gfinyiscid flow theory is less justifiable—see Baussig5] for a
Research at the Technion. review.

This note presents new results which show that some of those
by Lai and Chow and Bert and Chen are questionable.

ong
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assuming the fluid to be inviscid and incompressible, DibBing
the material derivative.
Considering traveling wave solutions, the velocities are ex- 8 05 .
pressed as
{vas vey vb={U, 0, B+{dy(r), B,(r), Dy(r)}ee, (3) 0
a=wt—kx—né, 4)
-0.5

1 1 1 L 1 L
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~

u

wherek is the axial wavenumber; similarly,

p=P+p*, p*=pe’, (®) .
Fig. 1 The dimensionless frequency & versus U for different
in which p* is the perturbation pressure, whiR is the mean 0, as given by Lai and Chow
pressure.
Utilizing these equations and continuity, one eventually finds

d*p . 1dp ez 1 n?| o 6 Typical Results
dr? rodr ( ) re P=5 ©) Typical results from Lai and Chow|d] work are shown in Fig.
1 for a rotating elastomer shell with co-rotating and axially flow-
20 ing fluid. It is seen that, at a fixe@=0.1 (1 820 r.p.m). and a
A= (w—kU)’ ™ given wave numberx =10, the system first loses stability in the

n=3 mode atU=0.089 (U=3.3 m/s)—at the “nose” of the
for small perturbations. Equatiof6) admits solutions of three curve shown. Whe)=0 (not shown, one obtains flutter in the
different types, depending on2. The perturbation pressure isn=6 mode, at a higher criticdll, by about 11%.
related to the perturbation radial displacement via the imperme-Similar results have been obtained for Chen and Bel#,

ability boundary condition, system. The analysis is similar, and so is the form of the solution.
Urlr—a=iW(w—kU)€®, (8)
where the shell displacements are taken to be Newer Work
_ ) The authors decided to extend this analysis to take real fluid
{u, v, w={u, v, wie~ (9) effects into account. The first step was to reproduce Lai and
. . . . Chow’s results, using the same E@$)—(11). This was found to
Using these equations, the solutions(@ may be written as be impossible, at least for part of the solutiofssich as those
shown in Fig. ). Specifically, in most cases it was found impos-
5 pa(w—kU)2(1—=N?)I,(kry1—\?) _ sible to “close the curve” at the nose, and hence to determine the

~ KaVT= Ml y(ka IR — (LNl (kaVT-a7) erical =0

At first it was thought that the difficulties were numerical, and
A2<1, (10)  several different root-finding methods were tried, but they all gave
similar results. The problem is real, and it is the following. Refer-
8p(n+1)Q%r" ) ring to Egs.(10 a,b,c), it is noted that(i) to trace each of the
:a””[n(nJr 1)+k%a?] w, A°=1, (1®)  curves of Fig. 1 fully, one generally needs all forms forEgs.
(10 a,b,c); (ii) the denominator of10¢) is a functional of the )
Bessel functions, each of which crosses zero an infinite number of

_ 20132 vy
= pA(@=KU)TA A q(kryA~—1) W, times, and so does the denominator as a whole. For example, by
kaya2—1J,_;(kayN?—1—n(1+N)J (kayr?—1) inspection, for then=0 case the denominator becomes zero at

every value ofkayA?—1 for which 1 ;(kayA?=1)=0. As a
result, the perturbation pressure at these points is indeterminate
and the solution becomes impossible.

A typical set of results for the=0 case of Fig. 1 are shown in
Fig. 2. The two straight lines limit the domain within which exist
neous ODEs ifu, v, andw, solution of which yields the desired islets where a solution is not feasible. Thus, it becomes impossible
frequencyw. to properly “cl_ose t_he curve” and deterr_niriéf. Ger_1era||y, the

The results are presented in terms of the following dimensiohidth and orientation of the no-solution band is parameter-
less parameters: dependent; thus, the band could well disappear completely or it

could cover most of the stability curve.
p(1-13) p(1— 1) In this regard, a valuable suggestion was made by a reviewer of
v=wa\/——, O=0ar/———, an earlier version of this paper. The original eigenvalue problem
E E of Eq. (1) may symbolically be written astw=p, wherep
5 =Aw with A=Ay /Ap . If this is recast in terms of pressure, one
U=u p(1—7v%) c—ka (11) obtains the equivalent eigenvalue problémpp=Ayp, which
' ' may well circumvent the numerical difficulties associated with
Ap=0 at some frequencies. The infinite pressure points could
where v is the Poisson ratioE Young's modulus,a the shell then be viewed as points of zero displacement amplifudew-
radius, antps and p the shell and fluid densities. ever, although this could mean that closed curves similar to Fig. 1

AZ>1, (1C)
where J and |, are Bessel and modified Bessel functions of th

first kind and ordemn. These expressions, evaluated ata, to-
gether with(9) are then substituted intd), giving three homoge-
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1.5

Reciprocity Theorems for Diffusion,
Flow, and Waves

1.0
Kees Wapenaar and Jacob Fokkema

Centre for Technical Geoscience, Delft University of
Technology, P. O. Box 5028, 2600 GA Delft,

The Netherlands

18 05

05 , , \ , . , Diffusion, flow, and wave phenomena can each be captured by a
0 002 004 006 008 010 0.2 0.14 unified differential equation in matrix-vector form. This equation
U forms the basis for the derivation of unified reciprocity theorems
for diffusion, flow and wave phenomena.

Fig. 2 The recalculated @ versus U plot for n=0 [DOI: 10.1115/1.1636792

could then be obtained, it does not truly solve the problem; solintroduction
tions of zero displacement amplitude are as strange as solutions 06
infinite pressure for this linear homogeneous problem. Thus, iﬁ{
stead of islets of nonsolutiofinfinite pressurewe would have e
islets of zero-amplitude solutions. u

The same applies to Chen and Bert’s results, in view of the AD—;+BU+ Dyu=s, (1)
similarities in the expressions for the perturbation pressures.

iffusion, flow, and wave phenomena can each be captured by
following differential equation in matrix-vector form:

) whereu=u(x,t) is a vector containing space and time-dependent
Conclusion field quantities,s=s(x,t) is a source vectorA=A(x) and B
It is not known how the two sets of previous authors have B(x) are matrices containing space-dependent material param-

overcome these difficulties and have presented full cutveis.of ~ ters, andd, is a matrix containing the spatial differential opera-
course possible to ignore the islets of nonsolution and join th@rSd/ X1, d/9xz, andd/dxs. Finally, D/Dt denotes the material
valid regions with a trusty French curve, thoughy solution tme derivative, defined aB/Dt=d/dt+v-V=d/dt+ v/ X,
within the no-solution band is really questionable. Alternatively?hered/dt denotes the time derivative in the reference frame and
the previous authors may have used the device suggested byf&/(X) iS the space-dependent flow velocity of the materiql;
reviewer. In either case a mathematical/physical difficulty existg€notes théth component of. Throughout this paper the sum-
Fundamentally, the question is this: does the mathematical diation convention applies to repeated subscripts; lowercase Latin
ficulty have the physical meaning that flutter of arbitrary ampliUPSCripts run from 1 to 3. The vectors and matrices in(Exare
tude in such cases is impossible, even though its existence sed#fifier defined in the appendices for diffusi¢Appendix A),
physically reasonable? Of course, the whole analysis of the phyéF-OUS'“C wave propagation in moving fluiddppendix B, mo-
cai system is highly idealized by ignoring viscous effects. Thefpentum transportAppendix O, and coupled elastodynamic and
incorporation, however, is anything but trivial. Perhaps, as is oft&iectromagnetic wave propagation in porous sdldspendix D).
the case, added realism will also overcome the mathematical dfi- this paper we use Ed1) as the basis for deriving unified
ficulties. This line of research is being pursued. reciprocity theorems for these phenomena. In general, a reciproc-

It was nevertheless thought that the research community sholhgtheorem interrelates the quantities that characterize two admis-

be made aware that the results of the 1970s analyses maySH¥e physical states that could occur in one and the same domain,
flawed in some regions of the parameter space. [1]. One can distinguish between convolution type and correlation

type reciprocity theorems|2]. Generally speaking, these two
types of reciprocity theorems find their applications in forward
and inverse problems, respectively. Both types of reciprocity theo-
rems will be derived for the field vectar.

As suggested by the same reviewer, at these points the fluid would then behave
as a vibration absorber. . . . . .
3All of those who actually did the calculations being unreachable. The Differential Equatlon in the Frequency Domain
Reciprocity theorems can be derived in the time domain, the

Laplace domain and the frequency domdi8]. Here we only
References consider the frequency domain. We define the Fourier transform

[1] Lai, Y.-C., and Chow, C.-Y., 1973, “Stability of a Rotating Thin Elastic TubeOf a time-dependent functionf(t) as f(w)szwf(t)exp
Containing a Fluid Flow,” Zeitschrift fu angewande Mathematik und (—jwt)dt, wherej is the imaginary unit and denotes the angular

Mechanik,53, pp. 511-517. ' ) o frequency. We apply the Fourier transform to all terms in @9
[2] Srlmvasgn, A _V., 1971, .Flutter Arjaly5|s qf 'I’?otatlng Cylindrical Shells Im-,nder the assumption that this equation is linean.itdence, we
mersed in a Circular Helical Flowfield of Air,” AIAA J.9, pp. 394-400. only consider those cases in which the field quantities do not

[3] Dowell, E. H., Srinivasan, A. V., McLean, J. D., and Ambrose, J., 1974 . . . .
“Aeroelastic Stability of Cylindrical Shells Subjected to a Rotating Flow,” appear in any of the matrices or operators in ﬂm In particular,

AIAA J., 12, pp. 1644—1651. this is why the ternrDu/Dt in the momentum transport E¢C7)
[4] Chen, T. L. C., and Bert, C. W., 1977, “Dynamic Stability of Isotropic orlS replaced bWU/_’?t In (ClO). Transformlng Eq-(l) to the fre-
Composite-Material Cylindrical Shells Containing Swirling Fluid Flow,” quency domain yields
ASME J. Appl. Mech. 44, pp. 112—116ibid. 44, p. 513.
[5] Padoussis, M. P., 200FIuid-Structure Interactions: Slender Structures and  Contributed by the Applied Mechanics Division o AMERICAN SOCIETY OF
Axial Flow, 2, Elsevier, Oxford. MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 8,
2002; final revision, May 3, 2003. Associate Editor: D. A. Siginer.
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A(jo+v-V)0+Bl+D,0=5 (2) convention does not apply for these subscjiptée substituteti,

. . i and(g for aandb in Eqg. (8), apply Eq.(2) for statesA andB and
wherel=0(x, w) is the space and frequency-dependent field vegge the symmetry properties

tor and5=3(x,w) is the space and frequency-dependent source
vector. The termv-V should be dropped for linearized momen- AJK=KA, and BiK=KBj 9)
tum transport(Appendix Q as well as for wave phenomena in
nonmoving media(Appendix D. Finally we remark that in a
number of cases matri® contains temporal convolution kernels . ) oA T 3
in the time domain(Appendix B or, equivalently, complex UaKNyUgd™x= | [UpKSg—s Kugd®x
frequency-dependent material parameters in the frequency domain’ v

(Appendices B and D

(see the appendicesThis yields

+ f UAK[j w(Ap—Ag)+(Ba—Bg) Jugd®x
Vv

Modification of Gauss’ Divergence Theorem
o . . + | [((va-V)ua) TKA
The reciprocity theorem will be derived for a voluméen- oA A A

closed by surface) with outward pointing normal vectar. Note
that 91 does not necessarily coincide with a physical boundary. —UAKA (Vg V)] ugdPx. (10)
Gauss’ divergence theorem plays a central role in the derivatior];I ! . . )
For a scalar field(x), this theorem reads The first term in the last integral can be written as

da(x) ((Va- V)UATKA plg =V - (VAURKA U5

ax d®x= @ a(x)n;d?x, 3) 501 AL

} v
v I » _ALK¢UB_ULKAA(VA'V)UB.

wheren; denotes théth component of. In this section we will IXi

modify this theorem for the differential operator matiy appear- (11)
ing in Egs. (1) and (2). Note thatD,=D, for all forms of D,

appearing_ in the appendicébere superscript denotes r_natrix
transposition only; it does not denote operator transpogitiost tion this term(with v, , replaced binO,Av Appendix B is negli-

D,; denote the operator in rolvand columnJ of matrixD,. The "~ " . A : S i
symmetry ofD, implies D,;=D,, . We define a matriN, which glble in comparison with the spatial derivatives of the wave fields

contains the components of the normal veatprorganized in a Ua angﬂ%ék';%r tzzS;PetrOSit;s:ioonsH%%nCﬂdetrﬁg irt]etrhn? aggr?tg(ijri\(i:r?;
e - ; . i A . ,

e e i ceovens s st 06 )1, wil be ropped. Substu e remainder of e

hzlaJveNu: N;, . For example, for matriced, andN, in Eqsx.‘(A3) right-hand side of Eq11) into Eq.(lO) ar_1d applying the theore_m

and (A5) we haveD j,=D;=3d/dx, and Nyy=Ny=n,. If we of Gauss for the term containing the divergence operator, yields

now replace the scalar fiel(x) by a,(x)b;(x), we may gener- - A o
alize Eq.(3) to § uAKNXquzx:f[uAKsB—sAKuB]d3x
2% 14

For diffusion (Appendix A the termd(v; AA)/dX; vanishes on
account of the equation of continuity. For acoustic wave propaga-

Daxbxd3x=\tﬁaxbed2x, 4

fv IJ[ I( ) J( )] » I( ) J( ) 1J ( ) +fGAK[jw(AA—AB)+(BA—BB)]03d3X
where the summation convention applies for repeated capital Y

Latin subscript§which may run from 1 to 4, 12 or 22, depending . .
on the choice of operatdb,). Applying the product rule for dif- — | UAK[AA(VA- V) +Ag(Ve-V)]Upd"x
ferentiation and using the symmetry propeBy;=D;,, we ob- v
tain for the integrand in the left-hand side of Eg)

D;(ajby)=a;D;by+(Dya)by=a'Db+ (D)™,  (5)

wherea andb are vector functions, containing the scalar functionsghis is the unified reciprocity theorem of the convolution type
a,(x) and by(x), respectively. Rewriting the integrand in thespeak of convolution type, because the multiplications in the fre-

+ é (GXKAAGB)VAﬂde. (12)
v

right-hand side of Eq4) in a similar way, we thus obtain quency domain correspond to convolutions in the time doméin
interrelates the field quantitigsontained inli, and{g), the ma-

f[aTDXb+(DXa)Tb]d3x: 35 a'N,bdx. (6) terial parametergcontained inA,, Ba, Ag, andBg), the flow

v v velocities (/4 andvg) as well as the source functiofsontained

in 5, and%g) of statesA andB. The left-hand side is a boundary
integral which contains a specific combination of the field quan-
tities of statesA andB at the boundary of the volume The first
D,K=—-KD,, (7) integral on the right-hand side interrelates the field quantities and
the source functions iW. The second integral contains the differ-
ences of the medium parameters in both states; obviously this
integral vanishes when the medium parameters in both states are
T T 3 - ) identical. '_I'_he t_hird in_tegral on the _right-hand side cont_ains the

[a'KDb—(Dsa) Kb]d’x= ® a KN,bdx. (8)  flow velocities inV; this integral vanishes when the medium pa-

v » rameters in both states are identical and the flow velocities in both
. . . states are opposite to each other. The last integral on the right-
Reciprocity Theorem of the Convolution Type hand side is a boundary integral containing the normal component

We consider two physical states in voluiieThe field quanti- of the flow velocity in staté; it vanishes when this flow velocity
ties, the material parameters, the flow velocity as well as tligtangential to the bounda@). Depending on the type of appli-
source functions may be different in both states and they will lmation, state#\ andB can be both physical states, or both math-
distinguished with subscriptd and B (of course the summation ematical statege.g., Green’s statgsor one can be a physical state

Finally we consider a variant of this equation. We replacky
Ka, whereK is a diagonal matrix with the following property:

see the appendices for details. With this replacement(@de-
comes
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and the other a mathematical stdthe latter situation leads to Appendix A

representation integralsFor further discussions on convolution- o ) L o
type reciprocity theorems in different fields of application we refer Mass Diffusion.  The equation of continuity for speciésn a
to Lyamshe\[4], De Hoop and Starfil], Fokkema and Van den mixture of fluids reads

Berg[3], Allard et al.[5], Pride and Haartsef6], and Belinskiy DY g3
[7]. i BN

et tax Y (A1)
Reciprocity Theorem of the Correlation Type where Y® is the mass fraction of specids J™ its mass flux

We substitutdl};, andig for a andb in Eq. (6), wheré denotes relative to the mixturep is the mass density of the mixture and
complex conjugation. Following the same procedure as in the plfé(- ) the mass production rate density of spedidglue to chemi-

vious section, using the symmetry property cal reactions Fick’s first law of diffusion reads
H_ Yo
AR=Aa (13) 0+eDM— =0, ()

where™ denotes complex conjugation and transposition, we ob- i

tain where D® is the diffusion coefficient for specids Equations
(A1) and(A2) can be combined to yield Eq@l), with
35 QN G P f 08, + &0, 1
2% v

y (k) o®
I 0
+ f OA[j w(Aa—Ag) — (B +Bg)]0gd®x Lo Lo )
v R 0
(A3)
+fa,'i[AA(vA-V)—AB(VB-V)]aBon A
v 0 — — —
Xy Xy  OXg
- fﬁ (08 Al VandX. (14) 2 09 o o
av X,
This is the unified reciprocity theorem of the correlation type D= d '
speak of correlation type, because the multiplications in the fre- w90 0
quency domain correspond to correlations in the time domain 2
The termﬂ,’j contains “back-propagating” field quantities in state i 0 0 0
A, [2]. When we compare this reciprocity theorem with Etp), X3
we observe that, apart from the complex conjugation, the diagonal
matrix K is absent in all integrals and that some plus and minus o 0 0 O
signs have been changed. In particular, the teBR—<{Bg) has 0 00 O
been replaced bﬂ:‘F Bg), which means that the second integral A= and
on the right-hand side no longer vanishes when the medium pa- 0 0 00
rameters in both states are identical. Moreover, the {ekR(Va 0 0 0 O
-V)+Ag(vg-V)] has been replaced byAx(Va-V)—Ag(Vg (A4)
-V)], which means that the third integral on the right-hand side 0 0 0 0
vanishes when the medium parameters contained in matias
well as the flow velocities are identical in both states. For a dis- 0 L 0
cussion on the application of correlation-type reciprocity theorems oD®
to inverse problems we refer to Fisher and Langenpg&kgnd De
Hoop and Stanfi1]. B= 0 0o 1
oDW
Conclusions 1
We have formulated a general differential equation in matrix- 0 0 0 W

vector form(equation(1)), which applies to diffusiorfAppendix
A), acoustic wave propagation in moving fluiappendix B, MatricesN, and K, appearing in the modified divergence theo-
momentum transportAppendix Q and coupled elastodynamic rems(6) and(8), read

and electromagnetic wave propagation in fluid-saturated porous

solids(Appendix D. For linear phenomenavhich excludes non- 0 ng ny ng
linear momentum transportwe have transformed the general n, 0 0 0
equation from the time domain to the frequency doni&a. (2)). N,= and
Based on this general equation as well as the symmetry properties Nz
(7), (9), and(13) we have derived unified reciprocity theorems of ns 0 0 O
the convolution typgEq. (12)) and of the correlation typéEq. (A5)
(14)), respectively. 1 0 0 0
0 -1 0 0
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Appendix B the isotropic viscosity parameter. Equatiq@y) and(C2) can be

) o ) ] ) combined to yield the general matrix-vector Efy). To this end
Acoustic Wave Propagation in Moving Fluids. The linear- e first rewrite these equations as

ized equation of motion in a moving fluid reads

Do bv_ 97 (C3)
J =+ =f,
g—+bv*v+ P_+ (B1) °Dt o
9%,
. ov
with 7+ hy S =pa, (c4)
D J J i
+up— (82) with

Dt at  “kox,'

wherep is the acoustic pressure, the particle velocity associated ( vl)
V= ,

fy T3 6y
f=| fo|z=| 25|, &=| 9 and
fs T3 83j

to the acoustic wave motigmvhich is to be distinguished from the U2
flow velocity vE in the operatoD/Dt), ¢ the mass density of the Us (C5)
medium in equilibrium,f; the volume density of external force, Tin Mua M
andb’ a causal loss functiofx denotes a temporal convolutipn ! ! !
The linearized stress-strain relation reads hy=\| 72ju 72521 7253
1 Dp A 731 W3j21 73j3i
Kbt PPt =0 (B3)  Note that
whereK is the bulk compression modulugthe volume injection h; = hﬁ (C6)

rate density, antb® a causal loss function.

Equations(B1) and (B3) can be combined to yield the general on account of the symmetry propertiespfi, . Hence, we obtain

matrix-vector Eq.(1), with D/Dt defined in Eq.(B2) and —Du — _
A—— +Bu+CD,u=s, cn
Dt
p q
L | T with
Uo ! f2 ! v f
f
U3 3 e -7 —_ | péy
1 | T pa |
— 0 0 O
K T3 Pds
A=l 0 ¢ 0 O and B4) el O O O O 0 0O
0 0 ¢ O _ | O O O O _|/O I O O
A= = C8
0 0 0 ¢ O O O o oo 1 of ©®
pP* 0 0 0 O O O O O O O |
0 b O 0 I O O O
B= .
0 0 b O O hy; hyp hys
C=
0 0 0 bvx O hy hy hygl’
MatricesD,, N,, andK are the same as in Appendix A. The O hz hsp has
symmetry properties described by E¢8, (9), and(13) are easily
confirmed. Finally, note that in the frequency domain formulation, O Dy D; Ds
the temporal convolution kernet®(x,t)* andb?(x,t)* in matrix D, O O O
B are replaced by complex frequency-dependent functions Dy= Db O O O and
Q[P N 1 2
bP(x,w) andb’(x,w), respectively.
D; O O O (9)
Appendix C 9 0o o0
Momentum Transport. The nonlinear equation of motion for X
a viscous fluid reads d
Dj: 0 _ 0 ,
Dv; dm; —f c1 9Xj
° ot % (C1) 0 0
wherev; is the particle velocitys; the stress tensopg the mass 2
density, andf; the volume density of external force. Stoke'sor j=1, 2, 3,I being the X3 identity matrix andD the 3x3 null
stress-strain rate relation reads matrix. Multiplication of all terms in Eq(C7) by the inverse ofC
P and linearization of the terr@u/Dt yields
Uk
ik S =pdj, (C2) ou
! A— +Bu+D,u=s, (C10)
where 7;; is the anisotropic viscosity tensor apdthe hydro- at
static pressure. The viscosity tensor obeys the following symmetgyth
relation i = ;i1 = Mijik = 7kij - FOr isotropic fluids the viscos- o _
ity tensor readsy;j = n(— 2/35;; 8+ 551 + 5 5jk), Wheren is A=C A=A, B=C B and s=C's (Cl1)
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MatricesN, and K, appearing in the modified divergence theoare source functions in terms of the external electric and magnetic
rems(6) and(8), read current densities. The induced electric current density is coupled
to the elastodynamic wave motion, according to
O N;y N, Ng

n O
N, O O O ‘ T S N
_ —lo n o J=0E-L[Vp+jwo'V*—1'], (D7)
Ny N, O O O and N; . O, ,
n
j

where ¢ is the complex frequency dependent conductivity, with
(C12) o=o'. Substituting the constitutive relatigid7) into the Max-
for j=1, 2, 3 and well Eq. (D5), and adding times Eq.(D2) to Eq.(D5) in order
to compensate for the termL[Vp+jwe V5], yields

N, O O O

K=diag1,—-1,—1,—1), with 1=(1,1,1. (C13)

Based on the structure of the matriggs,C, D, andK as well joeE+(o— gLk 1)E+ yLk W—VxH=-3° (D8)
as the symmetry relatiofC6), we find that the symmetry proper-
ties described by Eq#7), (9), and(13) are obeyed. EquationgD8) and(D6), together with Eqs(D1), (D2), (D3), and
. D4) can be combined to yield
Appendix D ©4 y
Coupled Elastodynamic and Electromagnetic Wave Propa- ijfH*ng CDXQZQ (D9)

gation in Porous Solids. We briefly review the theory for elas-
todynamic waves coupled to electromagnetic fields in a diSSi%here
tive inhomogeneous anisotropic fluid-saturated porous @€l

The linearized equations of motion read in the frequency domain

(using the vector notation introduced in Appendix C o §1 A, O O
boys f 7] b (D1) 0=( 0|, s=|s|, A=| O A, Aml,
jwoPVP+jwe'W— — =17, D1 ) 2 -
x; 3 S3 O A}
R B ] A 23 A33 (DlO)
joo B+ gk Y(W—LE)+Vp=Ff", (D2) = o5 =
B B
with W= ¢(v'— ). Here?¥® and ¥’ are the averaged solid and _ 1 13
fluid particle velocities associatgd to the wave motidnis the = o o O],
filtration velocity, ¢ the porosi'[y,ﬂrjb the averaged bulk stresg, _g‘er 0 533
the averaged fluid pressure, aid the averaged electric field
strength. The source functioh® andf’ are the volume densities I o O D o o
of external force on the bulk and on the fluid, respectively. The 1
constitutive parameterg® and o' are the anisotropic bulk and C=| O Cz Cy and D,=| O Dyp O |,
fluid mass densities, respective[(10]. In the following we as- O Cl, Cyu O O Dy
sume that these tensors are symmetric, according”te(o®)” (D11)

ande’=(¢"T, which is for example the case when the anisotropy

is the result of parallel fine layering at a scale much smaller thgghere| and O are identity and null matrices of appropriate size
the wavelength. The complex frequency-dependent tengdthe  gng

dynamic permeability tensor of the porous material, vkithk”,

and 7 is the fluid viscosity parameter. Finally, the complex o
frequency-dependent tensbraccounts for the coupling between . - .
the elastodynamic and electromagnetic waves. In the following . |E P N W)
we will assume that this tensor is symmetric as well, according to U= A/ U= —AZ v U= P/’
L=LT (Pride and Haartsef6] discuss the conditions for this -
symmetry. 3
The linearized stress-strain relations read A
FoMVad e P 3f
—j A_ P .V W= a —-J 2 0 2 f
janf-i—cuaxl +d;V-W=0, (D3) s=| anl, &= . S= ), (D12)
-J 0 0
oo g OV ~ 0
pr+d|W+MV'W:O, (D4)
[
b
with 0 a 3x1 null vector andd; andc;; defined similar asj; and e 0 00
h]| n Eq (CS), l.e., (dJ)|:d|] , with dij:dji ,Tand (le)ik:CijkI s . e O . (e} | O O
W|th Cijkl :.Cjikl :Cijlk:Cklij . Note thatC“ :C” . M, d” and Cijkl Allz( ), A22— y
are the stiffness parameters of the porous solid. O nu 0 o0 1 O
Maxwell's electromagnetic field equations read O O 0O |
. s N A D13
joeE+J—VXH=—J° (D5) (b13)
. . of 0
jouH+VXE=—-J", D6
) jop ) (D6) - oo _ /o o
whereH is the averaged magnetic field strenglhthe averaged Arz= o ol Azz= o ,
induced electric current density,and u are the anisotropic per- 1
mittivity and permeability, withe=€" and u= ", andJ® andJ™ O 0
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—  [(e—glk~i) O} _
Bll_( o , Bia=
_ [kt 0
Bss=| ¢ ,
0 0
I O O O

Coo=

00O
Y
Y
N
Ny
w

| 0
Cas= of M)’
0
O D;
D= , = -—
11 D, O 0 IXg
J
Xy
O V
Das= vl 0

7]|:R71 0)
© O p1a
O 0
o d,
O dy|’
O 4/ (pig)
J
X Xy
J
O - T L
A%y
o
1 (D16)

andD,, equal toD, in Eq. (C9). Multiplying all terms in Eq.(D9)

by the inverse ofC finally yields

joAU+BU+ D=5,

with A=C A, B=C 'B=B and$=C"

(D17)

15=s. MatricesN, and

K , appearing in the modified divergence theorei®sand (8),

read
N (e} (e}
Sl N (@] © Ng
N, = , Np= )
X 22 11 N, O
O O  Na3 (D18)
0 -n n
3 2 O n
No: N3 0 —Ny |, N33: nT 0/
- n2 nl 0
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K=diag —1,1,1,—1,-1,-1,1,—-1), (D19)

andN,, equal toN, in Eq. (C12). Based on the structure of the
matricesA, B, C, D,, andK as well as the symmetry relations

discussed above, we find that the symmetry properties described

by Egs.(7), (9), and(13) are obeyed.

__Finally, note that when the coupling tendoiis zero, the matrix
B,; vanishes and hence equati@) decouples into the electro-
magnetic wave equation for the wave vectgrand Biot's po-
roelastic wave equation for the wave vect(“Jizr (og)T, [11]. For a
nonporous solid the matricés,; andC,3 vanish as well, so Biot's

wave equation reduces to the elastodynamic wave equation for the

wave vectorll,. Obviously the symmetry properties described by
Eqgs.(7), (9), and(13) are obeyed for the matrices appearing in the

electromagnetic wave equation, Biot's poroelastic wave equation

and the elastodynamic wave equation, respectively.
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